首页 > 最新文献

Physiological research最新文献

英文 中文
Eicosapentaenoic Acid Triggers Phosphatidylserine Externalization in the Erythrocyte Membrane through Calcium Signaling and Anticholinesterase Activity.
IF 1.9 4区 医学 Q3 PHYSIOLOGY Pub Date : 2024-12-31
F H Alharthy, J Alsughayyir, M A Alfhili

Hemolysis and eryptosis contribute to anemia encountered in patients undergoing chemotherapy. Eicosapentaenoic acid (EPA) is an omega-3 dietary fatty acid that has anticancer potential by inducing apoptosis in cancer cells, but its effect on the physiology and lifespan of red blood cells (RBCs) is understudied. Human RBCs were exposed to anticancer concentrations of EPA (10-100 ?M) for 24 h at 37 °C. Acetylcholinesterase (AChE) activity and hemolysis were measured by colorimetric assays whereas annexin-V-FITC and forward scatter (FSC) were employed to identify eryptotic cells. Oxidative stress was assessed by H2DCFDA and intracellular Ca2+ was measured by Fluo4/AM. EPA significantly increased hemolysis and K+ leakage, and LDH and AST activities in the supernatants in a concentration-dependent manner. EPA also significantly increased annexin-V-FITC-positive cells and Fluo4 fluorescence and decreased FSC and AChE activity. A significant reduction in the hemolytic activity of EPA was noted in the presence extracellular isosmotic urea, 125 mM KCl, and polyethylene glycol 8000 (PEG 8000), but not sucrose. In conclusion, EPA stimulates hemolysis and eryptosis through Ca2+ buildup and AChE inhibition. Urea, blocking KCl efflux, and PEG 8000 alleviate the hemolytic activity of EPA. The anticancer potential of EPA may be optimized using Ca2+ channel blockers and chelators to minimize its toxicity to off-target tissue. Keywords: EPA, Eryptosis, Hemolysis, Calcium, Anticancer.

{"title":"Eicosapentaenoic Acid Triggers Phosphatidylserine Externalization in the Erythrocyte Membrane through Calcium Signaling and Anticholinesterase Activity.","authors":"F H Alharthy, J Alsughayyir, M A Alfhili","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Hemolysis and eryptosis contribute to anemia encountered in patients undergoing chemotherapy. Eicosapentaenoic acid (EPA) is an omega-3 dietary fatty acid that has anticancer potential by inducing apoptosis in cancer cells, but its effect on the physiology and lifespan of red blood cells (RBCs) is understudied. Human RBCs were exposed to anticancer concentrations of EPA (10-100 ?M) for 24 h at 37 °C. Acetylcholinesterase (AChE) activity and hemolysis were measured by colorimetric assays whereas annexin-V-FITC and forward scatter (FSC) were employed to identify eryptotic cells. Oxidative stress was assessed by H2DCFDA and intracellular Ca2+ was measured by Fluo4/AM. EPA significantly increased hemolysis and K+ leakage, and LDH and AST activities in the supernatants in a concentration-dependent manner. EPA also significantly increased annexin-V-FITC-positive cells and Fluo4 fluorescence and decreased FSC and AChE activity. A significant reduction in the hemolytic activity of EPA was noted in the presence extracellular isosmotic urea, 125 mM KCl, and polyethylene glycol 8000 (PEG 8000), but not sucrose. In conclusion, EPA stimulates hemolysis and eryptosis through Ca2+ buildup and AChE inhibition. Urea, blocking KCl efflux, and PEG 8000 alleviate the hemolytic activity of EPA. The anticancer potential of EPA may be optimized using Ca2+ channel blockers and chelators to minimize its toxicity to off-target tissue. Keywords: EPA, Eryptosis, Hemolysis, Calcium, Anticancer.</p>","PeriodicalId":20235,"journal":{"name":"Physiological research","volume":"73 6","pages":"1075-1084"},"PeriodicalIF":1.9,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11835212/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143189605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Endothelial Dysfunction in the Tubule Area Accelerates the Progression of Early Diabetic Kidney Disease.
IF 1.9 4区 医学 Q3 PHYSIOLOGY Pub Date : 2024-12-31
W Zeng, D Ying, B Chen, P Wang

Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease. Therefore, understanding the molecular regulatory mechanisms underlying the pathogenesis of DKD is imperative. In this study, we aimed to explore the molecular mechanisms of tubule region endothelial dysfunction in early DKD. Early-stage DKD model was established in 16-week-old female db/db mice for 16 weeks. Body weight, glucose level, and urine albumin-to-creatinine ratio (UACR) were measured. Hematoxylin and eosin (H&E) and periodic acid-Schiff (PAS) staining were performed to evaluate pathological lesions. RNA sequencing data of the kidneys and integrated publicly available single-cell and spatial transcriptome datasets were used to investigate the mechanism of endothelial dysfunction. There was a significant increase in body weight (p = 0.001), glucose levels (p=0.0008), and UACR (p=0.006) in db/db mice compared with db/m mice. H&E and PAS staining showed that vacuolar lesions and protein casts of tubules were the major histopathological changes observed in early-stage DKD mice. The apoptotic pathway in endothelial cells was notably activated in DKD, and Thbs1 was identified as the central gene involved in this apoptotic process. Deconvolution of the cell composition in the RNA sequencing data showed a decrease in the proportion of endothelial cells in the DKD mice. Further analysis of the activity and regulatory network of transcription factors showed that Creb1 was activated in both mouse and human early-stage DKD, suggesting that Creb1 activation may be involved in early kidney injury. The endothelial cell apoptotic pathway is activated in DKD, and the proportion of endothelial cells was reduced in the DKD mice, which is significantly associated with Thbs1. Keywords: Diabetic kidney disease, Endothelial dysfunction, RNA sequencing,Thbs1, Creb1.

{"title":"Endothelial Dysfunction in the Tubule Area Accelerates the Progression of Early Diabetic Kidney Disease.","authors":"W Zeng, D Ying, B Chen, P Wang","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease. Therefore, understanding the molecular regulatory mechanisms underlying the pathogenesis of DKD is imperative. In this study, we aimed to explore the molecular mechanisms of tubule region endothelial dysfunction in early DKD. Early-stage DKD model was established in 16-week-old female db/db mice for 16 weeks. Body weight, glucose level, and urine albumin-to-creatinine ratio (UACR) were measured. Hematoxylin and eosin (H&E) and periodic acid-Schiff (PAS) staining were performed to evaluate pathological lesions. RNA sequencing data of the kidneys and integrated publicly available single-cell and spatial transcriptome datasets were used to investigate the mechanism of endothelial dysfunction. There was a significant increase in body weight (p = 0.001), glucose levels (p=0.0008), and UACR (p=0.006) in db/db mice compared with db/m mice. H&E and PAS staining showed that vacuolar lesions and protein casts of tubules were the major histopathological changes observed in early-stage DKD mice. The apoptotic pathway in endothelial cells was notably activated in DKD, and Thbs1 was identified as the central gene involved in this apoptotic process. Deconvolution of the cell composition in the RNA sequencing data showed a decrease in the proportion of endothelial cells in the DKD mice. Further analysis of the activity and regulatory network of transcription factors showed that Creb1 was activated in both mouse and human early-stage DKD, suggesting that Creb1 activation may be involved in early kidney injury. The endothelial cell apoptotic pathway is activated in DKD, and the proportion of endothelial cells was reduced in the DKD mice, which is significantly associated with Thbs1. Keywords: Diabetic kidney disease, Endothelial dysfunction, RNA sequencing,Thbs1, Creb1.</p>","PeriodicalId":20235,"journal":{"name":"Physiological research","volume":"73 6","pages":"1013-1024"},"PeriodicalIF":1.9,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11835216/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143189623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Physiology and Pathobiology of Perivascular Adipose Tissue: Inflammation-based Atherogenesis.
IF 1.9 4区 医学 Q3 PHYSIOLOGY Pub Date : 2024-12-31
B Muffová, I Králová Lesná, R Poledne

Perivascular adipose tissue (PVAT) envelops the majority of systemic vessels, providing crucial mechanical support and vessel protection. In physiological conditions, PVAT releases various bioactive molecules, contributing to the anti-inflammatory environment around neighboring vessels. However, in conditions like obesity, PVAT can exacerbate cardiovascular issues such as atherosclerosis. Communication between PVAT and nearby vessels is bidirectional, with PVAT responding dynamically to signals from the vasculature. This responsiveness positions PVAT as a promising indicator of vascular inflammation. Recently, the role of PVAT in the CVD risk prediction is also greatly discussed. The objective of this review is to summarize the current state of knowledge about the PVAT function, its role in physiologic and pathophysiologic processes and its potential in CVD risk prediction. Keywords: Perivascular adipose tissue, inflammation, atherogenesis, Fat attenuation index.

{"title":"Physiology and Pathobiology of Perivascular Adipose Tissue: Inflammation-based Atherogenesis.","authors":"B Muffová, I Králová Lesná, R Poledne","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Perivascular adipose tissue (PVAT) envelops the majority of systemic vessels, providing crucial mechanical support and vessel protection. In physiological conditions, PVAT releases various bioactive molecules, contributing to the anti-inflammatory environment around neighboring vessels. However, in conditions like obesity, PVAT can exacerbate cardiovascular issues such as atherosclerosis. Communication between PVAT and nearby vessels is bidirectional, with PVAT responding dynamically to signals from the vasculature. This responsiveness positions PVAT as a promising indicator of vascular inflammation. Recently, the role of PVAT in the CVD risk prediction is also greatly discussed. The objective of this review is to summarize the current state of knowledge about the PVAT function, its role in physiologic and pathophysiologic processes and its potential in CVD risk prediction. Keywords: Perivascular adipose tissue, inflammation, atherogenesis, Fat attenuation index.</p>","PeriodicalId":20235,"journal":{"name":"Physiological research","volume":"73 6","pages":"929-941"},"PeriodicalIF":1.9,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11835208/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143189695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessment of the Cardiovascular Risk of High-Fat-High-Fructose Diet in Hereditary Hypertriacylglycerolemic Rats and Venlafaxine Effect. 遗传性高三酰甘油血症大鼠高脂高果糖饮食对心血管风险的评估及文拉法辛的影响
IF 1.9 4区 医学 Q3 PHYSIOLOGY Pub Date : 2024-12-31
M Sasváriová, L Salvaras, D Sečkárová Micháliková, B Tyukos Kaprinay, V Knezl, Z Gáspárová, T Stankovičová

Metabolic syndrome (MetS) represents a worldwide health problem, affecting cardiovascular and mental health. People with MetS are often suffering from depression. We used hereditary hypertriacylglycerolemic (HTG) rats as an animal model of MetS, and these were fed a high-fat-high-fructose diet (HFFD) to imitate unhealthy eating habits of people having several MetS risk factors and suffering depression. Male HTG rats were fed a standard diet (HTG-SD) or HFFD for eight weeks (HFFD8). Venlafaxine was administered for the last three weeks of the experiment (HFFD8+VE). Heart function was observed on the level of intact organisms (standard ECG in vivo), isolated hearts (perfusion according to Langendorff ex vivo), and molecular level, using the RT-PCR technique. The function of the isolated perfused heart was monitored under baseline and ischemia/reperfusion conditions. Analysis of ECG showed electrical abnormalities in vivo, such as significant QRS complex prolongation and increased heart rate. Ex vivo venlafaxine significantly reduced QT interval after ischemia/reperfusion injury. Baseline values of contractile abilities of the heart tended to be suppressed by HFFD. A significant reduction of LVDP was present in the HFFD8 group. Molecular analysis of specific genes involved in cardiac electrical (Cacna1c, Scn5a), contractile (Myh6, Myh7), metabolic function (Pgc1alpha) and calcium handling (Serca2a, Ryr2) supported some of the functional findings in vivo and ex vivo. Based on the present effect of venlafaxine on heart function, further research is needed regarding its cardiometabolic safety in the treatment of patients with MetS suffering from depression. Keywords: Metabolic syndrome, Venlafaxine, ECG, Cardiac contraction, Ischemia/Reperfusion.

{"title":"Assessment of the Cardiovascular Risk of High-Fat-High-Fructose Diet in Hereditary Hypertriacylglycerolemic Rats and Venlafaxine Effect.","authors":"M Sasváriová, L Salvaras, D Sečkárová Micháliková, B Tyukos Kaprinay, V Knezl, Z Gáspárová, T Stankovičová","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Metabolic syndrome (MetS) represents a worldwide health problem, affecting cardiovascular and mental health. People with MetS are often suffering from depression. We used hereditary hypertriacylglycerolemic (HTG) rats as an animal model of MetS, and these were fed a high-fat-high-fructose diet (HFFD) to imitate unhealthy eating habits of people having several MetS risk factors and suffering depression. Male HTG rats were fed a standard diet (HTG-SD) or HFFD for eight weeks (HFFD8). Venlafaxine was administered for the last three weeks of the experiment (HFFD8+VE). Heart function was observed on the level of intact organisms (standard ECG in vivo), isolated hearts (perfusion according to Langendorff ex vivo), and molecular level, using the RT-PCR technique. The function of the isolated perfused heart was monitored under baseline and ischemia/reperfusion conditions. Analysis of ECG showed electrical abnormalities in vivo, such as significant QRS complex prolongation and increased heart rate. Ex vivo venlafaxine significantly reduced QT interval after ischemia/reperfusion injury. Baseline values of contractile abilities of the heart tended to be suppressed by HFFD. A significant reduction of LVDP was present in the HFFD8 group. Molecular analysis of specific genes involved in cardiac electrical (Cacna1c, Scn5a), contractile (Myh6, Myh7), metabolic function (Pgc1alpha) and calcium handling (Serca2a, Ryr2) supported some of the functional findings in vivo and ex vivo. Based on the present effect of venlafaxine on heart function, further research is needed regarding its cardiometabolic safety in the treatment of patients with MetS suffering from depression. Keywords: Metabolic syndrome, Venlafaxine, ECG, Cardiac contraction, Ischemia/Reperfusion.</p>","PeriodicalId":20235,"journal":{"name":"Physiological research","volume":"73 6","pages":"973-984"},"PeriodicalIF":1.9,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11835213/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143189404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
"Form follows function": the developmental morphology of the cardiac atria. “形随功能”:心脏心房的发育形态。
IF 1.9 4区 医学 Q3 PHYSIOLOGY Pub Date : 2024-12-31 DOI: 10.33549/physiolres.935503
C Neradilova, M Gregorovicova, J Kovanda, A Kvasilova, V Melenovsky, O Nanka, D Sedmera

Although the heart atria have a lesser functional importance than the ventricles, atria play an important role in the pathophysiology of heart failure and supraventricular arrhythmias, particularly atrial fibrillation. In addition, knowledge of atrial morphology recently became more relevant as cardiac electrophysiology and interventional procedures in the atria gained an increasingly significant role in the clinical management of patients with heart disease. The atrial chambers are thin-walled, and several vessels enter at the level of the atria. The left and right atrium have different structures and shape. In general, both atrial chambers have the venous part, the appendage, and the vestibule; different aspects of each part allow us to distinguish morphologically between the left and right atrium. The human atrial conduction system consists of the sinus node and the atrioventricular node with no histologically specialized conduction pathways in the atrial chamber and an interatrial connection. The data show that the propagation of the impulse depends mainly on the myocardial architecture in the atria and the orientation of the myocytes plays a significant role in conduction. To complete the picture, it is also important to know how the atria develop and what is the embryonic origin of its different structures, as this may play a role in the development of some pathological conditions such as atrial fibrillation or certain types of congenital heart defects. Functional impairment of the atria can in some situations severely compromise heart pumping function, and conversely, can support it if other areas are damaged, balancing the blood flow to the body for some time. Key words Morphology of atrial chambers, Pectinate muscles, Atrial function.

虽然心房的功能重要性不如心室,但心房在心力衰竭和室上性心律失常,特别是房颤的病理生理中起着重要作用。此外,随着心脏电生理学和心房介入治疗在心脏病患者的临床管理中发挥越来越重要的作用,心房形态学的知识最近变得更加相关。房室壁薄,有几条血管在心房水平进入。左右心房有不同的结构和形状。一般来说,两个房室都有静脉部分、附肢和前庭;每一部分的不同侧面使我们能够在形态学上区分左心房和右心房。人体心房传导系统由窦房结和房室结组成,在组织学上心房内没有专门的传导途径和心房间连接。数据表明,脉冲的传播主要取决于心房内的心肌结构,而心肌细胞的取向在传导中起着重要作用。为了完善这幅图,了解心房如何发育以及其不同结构的胚胎起源也很重要,因为这可能在一些病理状况的发展中发挥作用,如心房颤动或某些类型的先天性心脏缺陷。在某些情况下,心房的功能损伤会严重损害心脏泵血功能,相反,如果其他部位受损,心房可以支持心脏泵血功能,在一段时间内平衡血液流向身体。【关键词】房室形态学;栉状肌;心房功能;
{"title":"\"Form follows function\": the developmental morphology of the cardiac atria.","authors":"C Neradilova, M Gregorovicova, J Kovanda, A Kvasilova, V Melenovsky, O Nanka, D Sedmera","doi":"10.33549/physiolres.935503","DOIUrl":"10.33549/physiolres.935503","url":null,"abstract":"<p><p>Although the heart atria have a lesser functional importance than the ventricles, atria play an important role in the pathophysiology of heart failure and supraventricular arrhythmias, particularly atrial fibrillation. In addition, knowledge of atrial morphology recently became more relevant as cardiac electrophysiology and interventional procedures in the atria gained an increasingly significant role in the clinical management of patients with heart disease. The atrial chambers are thin-walled, and several vessels enter at the level of the atria. The left and right atrium have different structures and shape. In general, both atrial chambers have the venous part, the appendage, and the vestibule; different aspects of each part allow us to distinguish morphologically between the left and right atrium. The human atrial conduction system consists of the sinus node and the atrioventricular node with no histologically specialized conduction pathways in the atrial chamber and an interatrial connection. The data show that the propagation of the impulse depends mainly on the myocardial architecture in the atria and the orientation of the myocytes plays a significant role in conduction. To complete the picture, it is also important to know how the atria develop and what is the embryonic origin of its different structures, as this may play a role in the development of some pathological conditions such as atrial fibrillation or certain types of congenital heart defects. Functional impairment of the atria can in some situations severely compromise heart pumping function, and conversely, can support it if other areas are damaged, balancing the blood flow to the body for some time. Key words Morphology of atrial chambers, Pectinate muscles, Atrial function.</p>","PeriodicalId":20235,"journal":{"name":"Physiological research","volume":"73 S3","pages":"S697-S714"},"PeriodicalIF":1.9,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11827060/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142979721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-Intensity Interval Training Increases Osteoarthritis-Associated Pain-Sensitive Threshold Through Reduction of Perineuronal Nets of the Medial Prefrontal Cortex in Rats.
IF 1.9 4区 医学 Q3 PHYSIOLOGY Pub Date : 2024-12-31
X Zhang, F E Kong, C-S Lin, Z-Q Ye, A-L Chen, K Cheng, X-P Li

High-intensity interval training (HIIT) is considered an effective therapy strategy for improving chronic pain associated with osteoarthritis (OA). Perineuronal nets (PNNs) are specialized extracellular matrix structures in the cerebral cortex that play a crucial role in regulating chronic pain. However, little is unknown whether HIIT could alleviate OA pain sensitization by reducing PNN levels. This study aimed to determine whether HIIT could reduce sensitivity of the affected joint(s) to pain in a chronic pain model in rats with OA. A rat model of interest was induced by intra-articular injection of monosodium iodoacetate (MIA) into the right knee. Thereafter, the mechanical withdrawal thresholds (MWTs) and PNN levels in the contralateral medial prefrontal cortex (mPFC) were measured in rats in the presence or absence of HIIT alone or in combination with injection of chondroitinase-ABC (ChABC) into the contralateral mPFC (inducing the degradation of PNNs), respectively. Results indicated that rats with OA exhibited significant reductions in MWTs, but a significant increase in the PNN levels; that HIIT reversed changes in MWTs and PNN levels in rats with OA, and that pretreatment of ChABC abolished effects of HIIT on MWTs, with PNN levels not changed. We concluded that pain sensitization in rats with OA may correlate with an increase in PNN levels in the mPFC, and that HIIT may increases OA pain-sensitive threshold by reduction of the PNN levels in the mPFC. Keywords: Osteoarthritis, Chronic pain, Pain sensitization, High-intensity interval training, Perineuronal nets.

{"title":"High-Intensity Interval Training Increases Osteoarthritis-Associated Pain-Sensitive Threshold Through Reduction of Perineuronal Nets of the Medial Prefrontal Cortex in Rats.","authors":"X Zhang, F E Kong, C-S Lin, Z-Q Ye, A-L Chen, K Cheng, X-P Li","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>High-intensity interval training (HIIT) is considered an effective therapy strategy for improving chronic pain associated with osteoarthritis (OA). Perineuronal nets (PNNs) are specialized extracellular matrix structures in the cerebral cortex that play a crucial role in regulating chronic pain. However, little is unknown whether HIIT could alleviate OA pain sensitization by reducing PNN levels. This study aimed to determine whether HIIT could reduce sensitivity of the affected joint(s) to pain in a chronic pain model in rats with OA. A rat model of interest was induced by intra-articular injection of monosodium iodoacetate (MIA) into the right knee. Thereafter, the mechanical withdrawal thresholds (MWTs) and PNN levels in the contralateral medial prefrontal cortex (mPFC) were measured in rats in the presence or absence of HIIT alone or in combination with injection of chondroitinase-ABC (ChABC) into the contralateral mPFC (inducing the degradation of PNNs), respectively. Results indicated that rats with OA exhibited significant reductions in MWTs, but a significant increase in the PNN levels; that HIIT reversed changes in MWTs and PNN levels in rats with OA, and that pretreatment of ChABC abolished effects of HIIT on MWTs, with PNN levels not changed. We concluded that pain sensitization in rats with OA may correlate with an increase in PNN levels in the mPFC, and that HIIT may increases OA pain-sensitive threshold by reduction of the PNN levels in the mPFC. Keywords: Osteoarthritis, Chronic pain, Pain sensitization, High-intensity interval training, Perineuronal nets.</p>","PeriodicalId":20235,"journal":{"name":"Physiological research","volume":"73 6","pages":"1085-1097"},"PeriodicalIF":1.9,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11835209/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143189647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Can Buckwheat Affect Health and Female Reproductive Functions?
IF 1.9 4区 医学 Q3 PHYSIOLOGY Pub Date : 2024-12-31
A V Sirotkin

The aim of the present narrative review is to summarise the existing knowledge concerning physiological and reproductive effects of buckwheat, its mechanisms of action on various targets, as well as outlines the direction of the further studies of this functional food plant. Search for literature was performed in agreement with the PRISMA criteria in Cochrane Library, Pubmed, Web of Science, SCOPUS databases between the year 1995 and 2023. Words used to search were buckwheat, review, fertility, ovarian and mechanisms. The current review of the available literature demonstrates the high nutritional value of buckwheat, as well as high contents and number of regulatory molecules in this functional food plant. These molecules can, via multiple signalling pathways, affect a wide spectrum of physiological processes and illnesses, which suggests a therapeutic value of buckwheat substances. Furthermore, recent reports demonstrate ability of buckwheat extract to directly affect basic ovarian cell functions (proliferation, apoptosis, viability, steroidogenesis). On the other hand, understanding the character and applicability of buckwheat influence on female reproductive processes requires further studies. Keywords: Buckwheat, Nutrition, Health, Ovary, Signalling.

{"title":"Can Buckwheat Affect Health and Female Reproductive Functions?","authors":"A V Sirotkin","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>The aim of the present narrative review is to summarise the existing knowledge concerning physiological and reproductive effects of buckwheat, its mechanisms of action on various targets, as well as outlines the direction of the further studies of this functional food plant. Search for literature was performed in agreement with the PRISMA criteria in Cochrane Library, Pubmed, Web of Science, SCOPUS databases between the year 1995 and 2023. Words used to search were buckwheat, review, fertility, ovarian and mechanisms. The current review of the available literature demonstrates the high nutritional value of buckwheat, as well as high contents and number of regulatory molecules in this functional food plant. These molecules can, via multiple signalling pathways, affect a wide spectrum of physiological processes and illnesses, which suggests a therapeutic value of buckwheat substances. Furthermore, recent reports demonstrate ability of buckwheat extract to directly affect basic ovarian cell functions (proliferation, apoptosis, viability, steroidogenesis). On the other hand, understanding the character and applicability of buckwheat influence on female reproductive processes requires further studies. Keywords: Buckwheat, Nutrition, Health, Ovary, Signalling.</p>","PeriodicalId":20235,"journal":{"name":"Physiological research","volume":"73 6","pages":"943-950"},"PeriodicalIF":1.9,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11835214/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143189678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of Blood Pressure and Heart Rate on PWV Measurement: Assessment Under Real-Time Blood Pressure Monitoring. 血压和心率对脉搏波速度测量的影响:实时血压监测下的评估
IF 1.9 4区 医学 Q3 PHYSIOLOGY Pub Date : 2024-12-31
J Liu, B An, B Shi, X Li, L Qian

Pulse Wave Velocity (PWV) is widely used to assess arterial elasticity and is an independent risk factor for cardiovascular disease, but it is influenced by multiple factors. Objective is to assess the impact of blood pressure and heart rate on PWV. Twenty healthy young individuals were enlisted as subjects. Real-time blood pressure monitoring was performed by non-invasive continuous blood pressure measuring instrument during the detection of subjects' carotid PWV. During real-time blood pressure monitoring, exercise load caused fluctuations in blood pressure and heart rate, and PWV changes of each subject under different blood pressure and heart rate conditions were recorded simultaneously. Among the 20 subjects, PWV was associated with blood pressure in four subjects and heart rate in one subject. PWV increased with rising blood pressure when the systolic pressure fluctuation range was >=30mmHg, diastolic pressure fluctuation range was >=18mmHg, and mean arterial pressure fluctuation range was >=20mmHg. PWV increased with rising heart rate, when the heart rate fluctuation range was >30 beats/min. Blood pressure and heart rate have some influence on PWV. However, the fluctuation range of blood pressure and heart rate should reach a certain value, the impact is significant. Keywords: Pulse wave velocity, Blood pressure, Heart rate.

脉搏波速度(PWV)被广泛用于评估动脉弹性,是心血管疾病的独立风险因素,但它受多种因素影响。目的是评估血压和心率对脉搏波速度的影响。研究对象为 20 名健康年轻人。在检测受试者颈动脉脉搏波速度时,使用无创连续血压测量仪进行实时血压监测。在实时血压监测过程中,运动负荷引起血压和心率的波动,同时记录每个受试者在不同血压和心率条件下的脉搏波速度变化。在 20 名受试者中,4 名受试者的脉搏波速度与血压有关,1 名受试者的脉搏波速度与心率有关。当收缩压波动范围大于等于 30 毫米汞柱、舒张压波动范围大于等于 18 毫米汞柱、平均动脉压波动范围大于等于 20 毫米汞柱时,脉搏波速度随血压升高而增加。当心率波动范围大于 30 次/分时,脉搏波速度随心率上升而增加。血压和心率对脉搏波速度有一定的影响。但血压和心率的波动范围应达到一定值,影响才会显著。关键词脉搏波速度 血压 心率
{"title":"Influence of Blood Pressure and Heart Rate on PWV Measurement: Assessment Under Real-Time Blood Pressure Monitoring.","authors":"J Liu, B An, B Shi, X Li, L Qian","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Pulse Wave Velocity (PWV) is widely used to assess arterial elasticity and is an independent risk factor for cardiovascular disease, but it is influenced by multiple factors. Objective is to assess the impact of blood pressure and heart rate on PWV. Twenty healthy young individuals were enlisted as subjects. Real-time blood pressure monitoring was performed by non-invasive continuous blood pressure measuring instrument during the detection of subjects' carotid PWV. During real-time blood pressure monitoring, exercise load caused fluctuations in blood pressure and heart rate, and PWV changes of each subject under different blood pressure and heart rate conditions were recorded simultaneously. Among the 20 subjects, PWV was associated with blood pressure in four subjects and heart rate in one subject. PWV increased with rising blood pressure when the systolic pressure fluctuation range was >=30mmHg, diastolic pressure fluctuation range was >=18mmHg, and mean arterial pressure fluctuation range was >=20mmHg. PWV increased with rising heart rate, when the heart rate fluctuation range was >30 beats/min. Blood pressure and heart rate have some influence on PWV. However, the fluctuation range of blood pressure and heart rate should reach a certain value, the impact is significant. Keywords: Pulse wave velocity, Blood pressure, Heart rate.</p>","PeriodicalId":20235,"journal":{"name":"Physiological research","volume":"73 6","pages":"963-971"},"PeriodicalIF":1.9,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11835220/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143189773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Long-Term Adverse Effects of Perinatal Hypoxia on the Adult Pulmonary Circulation Vary Between Males and Females in a Murine Model. 小鼠模型中围产期缺氧对成年肺循环的长期不利影响因雌雄而异
IF 1.9 4区 医学 Q3 PHYSIOLOGY Pub Date : 2024-11-29
A-C Peyter, V Muehlethaler, J-F Tolsa

Adverse events during the perinatal period are associated with an increased risk to develop cardiometabolic diseases later in life. We established a murine model to study long-term effects of perinatal hypoxia (PH) on the pulmonary circulation. We previously demonstrated that PH led to an impaired regulation of pulmonary vascular tone in adulthood, linked to alterations in K+ channels in males and in the nitric oxide (NO)/cyclic guanosine monophosphate pathway in females. Moreover, simultaneous administration of inhaled NO (iNO) during PH exposure prevented adverse effects of PH on adult pulmonary vasculature in females. The present study showed that PH induced a significant increase in right ventricular pressure in males and females, and an enhanced sensitivity to acute hypoxia in females. PH significantly reduced acetylcholine-induced relaxation in pulmonary artery, to a greater extent in females than in males. PH led to right ventricular hypertrophy in adulthood, appearing earlier in males than in females. Morphometric measurements showed a significant increase in the number of 25-75-µm pulmonary vessels in male lungs following PH, probably resulting in increased pulmonary vascular resistance. The effects of prolonged hypoxia in adulthood differed between males and females. Perinatal iNO during PH prevented PH-induced alterations in the cardiopulmonary system, whereas perinatal iNO alone could have some adverse effects. Therefore, PH led to long-lasting alterations in the regulation of adult pulmonary circulation, which vary between males and females. In males, the increased pulmonary vascular resistance was associated with morphological changes besides functional alterations, whereas females showed an important pulmonary vascular dysfunction. Keywords: Perinatal hypoxia, Pulmonary circulation, Endothelium-dependent relaxation, Phosphodiesterases, Sex differences.

围产期的不良事件与日后罹患心脏代谢疾病的风险增加有关。我们建立了一个小鼠模型来研究围产期缺氧(PH)对肺循环的长期影响。我们以前曾证实,围产期缺氧会导致成年后肺血管张力调节受损,这与雄性小鼠 K+ 通道和雌性小鼠一氧化氮(NO)/单磷酸环鸟苷通路的改变有关。此外,在暴露于PH期间同时吸入一氧化氮(iNO)可防止PH对女性成年肺血管的不良影响。本研究表明,PH 会导致男性和女性右心室压力显著升高,并增强女性对急性缺氧的敏感性。PH明显降低了乙酰胆碱诱导的肺动脉松弛,女性的程度高于男性。PH导致成年后右心室肥大,男性比女性出现得更早。形态测量显示,男性肺部 25-75 微米肺血管的数量在 PH 后显著增加,这可能是肺血管阻力增加的结果。成年后长期缺氧对男性和女性的影响有所不同。PH 期间的围产期 iNO 可防止 PH 引起的心肺系统改变,而单独使用围产期 iNO 则会产生一些不利影响。因此,PH 会导致成年肺循环调节的长期改变,而这种改变在男性和女性之间存在差异。男性的肺血管阻力增加除了与功能改变有关外,还与形态学改变有关,而女性则表现出重要的肺血管功能障碍。关键词围产期缺氧 肺循环 内皮依赖性松弛 磷酸二酯酶 性别差异
{"title":"Long-Term Adverse Effects of Perinatal Hypoxia on the Adult Pulmonary Circulation Vary Between Males and Females in a Murine Model.","authors":"A-C Peyter, V Muehlethaler, J-F Tolsa","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Adverse events during the perinatal period are associated with an increased risk to develop cardiometabolic diseases later in life. We established a murine model to study long-term effects of perinatal hypoxia (PH) on the pulmonary circulation. We previously demonstrated that PH led to an impaired regulation of pulmonary vascular tone in adulthood, linked to alterations in K+ channels in males and in the nitric oxide (NO)/cyclic guanosine monophosphate pathway in females. Moreover, simultaneous administration of inhaled NO (iNO) during PH exposure prevented adverse effects of PH on adult pulmonary vasculature in females. The present study showed that PH induced a significant increase in right ventricular pressure in males and females, and an enhanced sensitivity to acute hypoxia in females. PH significantly reduced acetylcholine-induced relaxation in pulmonary artery, to a greater extent in females than in males. PH led to right ventricular hypertrophy in adulthood, appearing earlier in males than in females. Morphometric measurements showed a significant increase in the number of 25-75-µm pulmonary vessels in male lungs following PH, probably resulting in increased pulmonary vascular resistance. The effects of prolonged hypoxia in adulthood differed between males and females. Perinatal iNO during PH prevented PH-induced alterations in the cardiopulmonary system, whereas perinatal iNO alone could have some adverse effects. Therefore, PH led to long-lasting alterations in the regulation of adult pulmonary circulation, which vary between males and females. In males, the increased pulmonary vascular resistance was associated with morphological changes besides functional alterations, whereas females showed an important pulmonary vascular dysfunction. Keywords: Perinatal hypoxia, Pulmonary circulation, Endothelium-dependent relaxation, Phosphodiesterases, Sex differences.</p>","PeriodicalId":20235,"journal":{"name":"Physiological research","volume":"73 S2","pages":"S541-S556"},"PeriodicalIF":1.9,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11627267/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142716880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanisms Controlling the Behavior of Vascular Smooth Muscle Cells in Hypoxic Pulmonary Hypertension. 缺氧性肺动脉高压中血管平滑肌细胞行为的控制机制
IF 1.9 4区 医学 Q3 PHYSIOLOGY Pub Date : 2024-11-29
L Bačáková, A Sedlář, J Musílková, A Eckhardt, M Žaloudíková, F Kolář, H Maxová

Pulmonary hypertension is a complex and heterogeneous condition with five main subtypes (groups). This review focuses on pulmonary hypertension caused by chronic hypoxia (hypoxic pulmonary hypertension, HPH, group 3). It is based mainly on our own experimental work, especially our collaboration with the group of Professor Herget, whose fifth anniversary of death we commemorate. We have found that oxidation and degradation of the extracellular matrix (ECM) in vitro, in either the presence or the absence of pro-inflammatory cells, activate vascular smooth muscle cell (VSMC) proliferation. Significant changes in the ECM of pulmonary arteries also occurred in vivo in hypoxic rats, namely a decrease in collagen VI and an increase in matrix metalloproteinase 9 (MMP-9) in the tunica media, which may also contribute to the growth activation of VSMCs. The proliferation of VSMCs was also enhanced in their co-culture with macrophages, most likely due to the paracrine production of growth factors in these cells. However, hypoxia itself has a dual effect: on the one hand, it can activate VSMC proliferation and hyperplasia, but on the other hand, it can also induce VSMC hypertrophy and increased expression of contractile markers in these cells. The influence of hypoxia-inducible factors, microRNAs and galectin-3 in the initiation and development of HPH, and the role of cell types other than VSMCs (endothelial cells, adventitial fibroblasts) are also discussed. Keywords: Vasoconstriction, Remodeling, Oxidation, Degradation, Extracellular matrix, Collagen, Proteolytic enzymes, Metalloproteinases, Macrophages, Mast cells, Smooth muscle cells, Endothelial cells, Fibroblasts, Mesenchymal stem cells, Hypoxia-inducible factor, microRNA, Galectins, Hyperplasia, Hypertrophy, Therapy of hypoxic pulmonary hypertension.

肺动脉高压是一种复杂的异质性疾病,主要有五种亚型(组别)。本综述侧重于慢性缺氧引起的肺动脉高压(缺氧性肺动脉高压,HPH,第 3 组)。它主要基于我们自己的实验工作,特别是我们与 Herget 教授小组的合作,我们纪念 Herget 教授逝世五周年。我们发现,无论是否存在促炎细胞,体外细胞外基质(ECM)的氧化和降解都会激活血管平滑肌细胞(VSMC)的增殖。缺氧大鼠体内肺动脉的细胞外基质也发生了显著变化,即中膜中胶原蛋白 VI 减少,基质金属蛋白酶 9(MMP-9)增加,这也可能有助于激活 VSMC 的生长。VSMC 与巨噬细胞共培养时,其增殖也得到了增强,这很可能是由于这些细胞产生了旁分泌生长因子。然而,缺氧本身具有双重作用:一方面,它能激活 VSMC 增殖和增生,但另一方面,它也能诱导 VSMC 肥大,增加这些细胞中收缩标志物的表达。本文还讨论了缺氧诱导因子、microRNAs 和 galectin-3 在 HPH 启动和发展过程中的影响,以及 VSMCs 以外的细胞类型(内皮细胞、临近纤维母细胞)的作用。关键词:血管收缩血管收缩 重塑 氧化 降解 细胞外基质 胶原 蛋白水解酶 金属蛋白酶 巨噬细胞 肥大细胞 平滑肌细胞 内皮细胞 成纤维细胞 间充质干细胞 缺氧诱导因子 microRNA 加连蛋白 增生 肥大 缺氧性肺动脉高压的治疗
{"title":"Mechanisms Controlling the Behavior of Vascular Smooth Muscle Cells in Hypoxic Pulmonary Hypertension.","authors":"L Bačáková, A Sedlář, J Musílková, A Eckhardt, M Žaloudíková, F Kolář, H Maxová","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Pulmonary hypertension is a complex and heterogeneous condition with five main subtypes (groups). This review focuses on pulmonary hypertension caused by chronic hypoxia (hypoxic pulmonary hypertension, HPH, group 3). It is based mainly on our own experimental work, especially our collaboration with the group of Professor Herget, whose fifth anniversary of death we commemorate. We have found that oxidation and degradation of the extracellular matrix (ECM) in vitro, in either the presence or the absence of pro-inflammatory cells, activate vascular smooth muscle cell (VSMC) proliferation. Significant changes in the ECM of pulmonary arteries also occurred in vivo in hypoxic rats, namely a decrease in collagen VI and an increase in matrix metalloproteinase 9 (MMP-9) in the tunica media, which may also contribute to the growth activation of VSMCs. The proliferation of VSMCs was also enhanced in their co-culture with macrophages, most likely due to the paracrine production of growth factors in these cells. However, hypoxia itself has a dual effect: on the one hand, it can activate VSMC proliferation and hyperplasia, but on the other hand, it can also induce VSMC hypertrophy and increased expression of contractile markers in these cells. The influence of hypoxia-inducible factors, microRNAs and galectin-3 in the initiation and development of HPH, and the role of cell types other than VSMCs (endothelial cells, adventitial fibroblasts) are also discussed. Keywords: Vasoconstriction, Remodeling, Oxidation, Degradation, Extracellular matrix, Collagen, Proteolytic enzymes, Metalloproteinases, Macrophages, Mast cells, Smooth muscle cells, Endothelial cells, Fibroblasts, Mesenchymal stem cells, Hypoxia-inducible factor, microRNA, Galectins, Hyperplasia, Hypertrophy, Therapy of hypoxic pulmonary hypertension.</p>","PeriodicalId":20235,"journal":{"name":"Physiological research","volume":"73 S2","pages":"S569-S596"},"PeriodicalIF":1.9,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11627264/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142716963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Physiological research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1