首页 > 最新文献

Plasma Physics and Controlled Fusion最新文献

英文 中文
Experimental study on plasma characteristics in the extraction region of a high-power RF negative ion source based on electrostatic probe 基于静电探针的大功率射频负离子源萃取区等离子体特性的实验研究
IF 2.2 2区 物理与天体物理 Q2 PHYSICS, FLUIDS & PLASMAS Pub Date : 2024-09-04 DOI: 10.1088/1361-6587/ad705b
Xufeng Peng, Yongjian Xu, Yahong Xie, Jianglong Wei, Yufan Li, Yuwen Yang, Bo Liu, Junwei Xie, Bin Wu
The plasma characteristics of the extraction region in high-power RF negative ion source have a significant impact on the production and extraction of negative hydrogen ions. This study utilized electrostatic probe to investigate the effect of RF power, source pressure, magnetic filter field and bias voltage on the plasma parameters of the extraction region (without cesium), and also studied the variation of plasma parameters with position and time. The results indicate that as RF power increases, the plasma density in the extraction region significantly rises, but it also leads to an increase in the electron temperature (<inline-formula><tex-math><?CDATA ${T_{text{e}}}$?></tex-math><mml:math overflow="scroll"><mml:mrow><mml:mrow><mml:msub><mml:mi>T</mml:mi><mml:mrow><mml:mtext>e</mml:mtext></mml:mrow></mml:msub></mml:mrow></mml:mrow></mml:math><inline-graphic xlink:href="ppcfad705bieqn1.gif"></inline-graphic></inline-formula>) of the extraction region (which increases the loss of negative hydrogen ions); increasing the source pressure can effectively increase the electron density (<inline-formula><tex-math><?CDATA ${N_{text{e}}}$?></tex-math><mml:math overflow="scroll"><mml:mrow><mml:mrow><mml:msub><mml:mi>N</mml:mi><mml:mrow><mml:mtext>e</mml:mtext></mml:mrow></mml:msub></mml:mrow></mml:mrow></mml:math><inline-graphic xlink:href="ppcfad705bieqn2.gif"></inline-graphic></inline-formula>) in the extraction region and reduce <inline-formula><tex-math><?CDATA ${T_{text{e}}}$?></tex-math><mml:math overflow="scroll"><mml:mrow><mml:mrow><mml:msub><mml:mi>T</mml:mi><mml:mrow><mml:mtext>e</mml:mtext></mml:mrow></mml:msub></mml:mrow></mml:mrow></mml:math><inline-graphic xlink:href="ppcfad705bieqn3.gif"></inline-graphic></inline-formula> as expected; increasing the magnetic filter field can effectively reduce the <inline-formula><tex-math><?CDATA ${T_{text{e}}}$?></tex-math><mml:math overflow="scroll"><mml:mrow><mml:mrow><mml:msub><mml:mi>T</mml:mi><mml:mrow><mml:mtext>e</mml:mtext></mml:mrow></mml:msub></mml:mrow></mml:mrow></mml:math><inline-graphic xlink:href="ppcfad705bieqn4.gif"></inline-graphic></inline-formula> in the extraction region, but after the plasma grid current exceeds 1900 A, the change in <inline-formula><tex-math><?CDATA ${T_{text{e}}}$?></tex-math><mml:math overflow="scroll"><mml:mrow><mml:mrow><mml:msub><mml:mi>T</mml:mi><mml:mrow><mml:mtext>e</mml:mtext></mml:mrow></mml:msub></mml:mrow></mml:mrow></mml:math><inline-graphic xlink:href="ppcfad705bieqn5.gif"></inline-graphic></inline-formula> is not significant; although increasement of the bias voltage can effectively suppress the <inline-formula><tex-math><?CDATA ${N_{text{e}}}$?></tex-math><mml:math overflow="scroll"><mml:mrow><mml:mrow><mml:msub><mml:mi>N</mml:mi><mml:mrow><mml:mtext>e</mml:mtext></mml:mrow></mml:msub></mml:mrow></mml:mrow></mml:math><inline-graphic xlink:href="ppcfad705bieqn6.gif"></inline-graphic></inline-formula> in the extraction region, it causes <inline-f
大功率射频负离子源萃取区的等离子体特性对负氢离子的产生和萃取有重要影响。本研究利用静电探针研究了射频功率、源压力、磁滤波场和偏置电压对萃取区(不含铯)等离子体参数的影响,并研究了等离子体参数随位置和时间的变化。结果表明,随着射频功率的增加,萃取区的等离子体密度会显著提高,但同时也会导致萃取区电子温度(Te)的升高(增加了负氢离子的损失);增加源压力可以有效提高萃取区的电子密度(Ne),并降低 Te;增加磁滤波器磁场可以有效降低萃取区的 Te,但在等离子体栅电流超过 1900 A 后,Te 的变化并不显著;虽然增加偏置电压可以有效抑制萃取区的 Ne,但却会导致 Te 上升;此外,萃取区的等离子体参数分布相对均匀;而且等离子体参数随时间的变化并不明显。这些发现不仅加深了对负离子源萃取区等离子体行为物理机制的理解,也为大功率射频负离子源的优化提供了重要的理论和实验依据。
{"title":"Experimental study on plasma characteristics in the extraction region of a high-power RF negative ion source based on electrostatic probe","authors":"Xufeng Peng, Yongjian Xu, Yahong Xie, Jianglong Wei, Yufan Li, Yuwen Yang, Bo Liu, Junwei Xie, Bin Wu","doi":"10.1088/1361-6587/ad705b","DOIUrl":"https://doi.org/10.1088/1361-6587/ad705b","url":null,"abstract":"The plasma characteristics of the extraction region in high-power RF negative ion source have a significant impact on the production and extraction of negative hydrogen ions. This study utilized electrostatic probe to investigate the effect of RF power, source pressure, magnetic filter field and bias voltage on the plasma parameters of the extraction region (without cesium), and also studied the variation of plasma parameters with position and time. The results indicate that as RF power increases, the plasma density in the extraction region significantly rises, but it also leads to an increase in the electron temperature (&lt;inline-formula&gt;\u0000&lt;tex-math&gt;&lt;?CDATA ${T_{text{e}}}$?&gt;&lt;/tex-math&gt;&lt;mml:math overflow=\"scroll\"&gt;&lt;mml:mrow&gt;&lt;mml:mrow&gt;&lt;mml:msub&gt;&lt;mml:mi&gt;T&lt;/mml:mi&gt;&lt;mml:mrow&gt;&lt;mml:mtext&gt;e&lt;/mml:mtext&gt;&lt;/mml:mrow&gt;&lt;/mml:msub&gt;&lt;/mml:mrow&gt;&lt;/mml:mrow&gt;&lt;/mml:math&gt;&lt;inline-graphic xlink:href=\"ppcfad705bieqn1.gif\"&gt;&lt;/inline-graphic&gt;&lt;/inline-formula&gt;) of the extraction region (which increases the loss of negative hydrogen ions); increasing the source pressure can effectively increase the electron density (&lt;inline-formula&gt;\u0000&lt;tex-math&gt;&lt;?CDATA ${N_{text{e}}}$?&gt;&lt;/tex-math&gt;&lt;mml:math overflow=\"scroll\"&gt;&lt;mml:mrow&gt;&lt;mml:mrow&gt;&lt;mml:msub&gt;&lt;mml:mi&gt;N&lt;/mml:mi&gt;&lt;mml:mrow&gt;&lt;mml:mtext&gt;e&lt;/mml:mtext&gt;&lt;/mml:mrow&gt;&lt;/mml:msub&gt;&lt;/mml:mrow&gt;&lt;/mml:mrow&gt;&lt;/mml:math&gt;&lt;inline-graphic xlink:href=\"ppcfad705bieqn2.gif\"&gt;&lt;/inline-graphic&gt;&lt;/inline-formula&gt;) in the extraction region and reduce &lt;inline-formula&gt;\u0000&lt;tex-math&gt;&lt;?CDATA ${T_{text{e}}}$?&gt;&lt;/tex-math&gt;&lt;mml:math overflow=\"scroll\"&gt;&lt;mml:mrow&gt;&lt;mml:mrow&gt;&lt;mml:msub&gt;&lt;mml:mi&gt;T&lt;/mml:mi&gt;&lt;mml:mrow&gt;&lt;mml:mtext&gt;e&lt;/mml:mtext&gt;&lt;/mml:mrow&gt;&lt;/mml:msub&gt;&lt;/mml:mrow&gt;&lt;/mml:mrow&gt;&lt;/mml:math&gt;&lt;inline-graphic xlink:href=\"ppcfad705bieqn3.gif\"&gt;&lt;/inline-graphic&gt;&lt;/inline-formula&gt; as expected; increasing the magnetic filter field can effectively reduce the &lt;inline-formula&gt;\u0000&lt;tex-math&gt;&lt;?CDATA ${T_{text{e}}}$?&gt;&lt;/tex-math&gt;&lt;mml:math overflow=\"scroll\"&gt;&lt;mml:mrow&gt;&lt;mml:mrow&gt;&lt;mml:msub&gt;&lt;mml:mi&gt;T&lt;/mml:mi&gt;&lt;mml:mrow&gt;&lt;mml:mtext&gt;e&lt;/mml:mtext&gt;&lt;/mml:mrow&gt;&lt;/mml:msub&gt;&lt;/mml:mrow&gt;&lt;/mml:mrow&gt;&lt;/mml:math&gt;&lt;inline-graphic xlink:href=\"ppcfad705bieqn4.gif\"&gt;&lt;/inline-graphic&gt;&lt;/inline-formula&gt; in the extraction region, but after the plasma grid current exceeds 1900 A, the change in &lt;inline-formula&gt;\u0000&lt;tex-math&gt;&lt;?CDATA ${T_{text{e}}}$?&gt;&lt;/tex-math&gt;&lt;mml:math overflow=\"scroll\"&gt;&lt;mml:mrow&gt;&lt;mml:mrow&gt;&lt;mml:msub&gt;&lt;mml:mi&gt;T&lt;/mml:mi&gt;&lt;mml:mrow&gt;&lt;mml:mtext&gt;e&lt;/mml:mtext&gt;&lt;/mml:mrow&gt;&lt;/mml:msub&gt;&lt;/mml:mrow&gt;&lt;/mml:mrow&gt;&lt;/mml:math&gt;&lt;inline-graphic xlink:href=\"ppcfad705bieqn5.gif\"&gt;&lt;/inline-graphic&gt;&lt;/inline-formula&gt; is not significant; although increasement of the bias voltage can effectively suppress the &lt;inline-formula&gt;\u0000&lt;tex-math&gt;&lt;?CDATA ${N_{text{e}}}$?&gt;&lt;/tex-math&gt;&lt;mml:math overflow=\"scroll\"&gt;&lt;mml:mrow&gt;&lt;mml:mrow&gt;&lt;mml:msub&gt;&lt;mml:mi&gt;N&lt;/mml:mi&gt;&lt;mml:mrow&gt;&lt;mml:mtext&gt;e&lt;/mml:mtext&gt;&lt;/mml:mrow&gt;&lt;/mml:msub&gt;&lt;/mml:mrow&gt;&lt;/mml:mrow&gt;&lt;/mml:math&gt;&lt;inline-graphic xlink:href=\"ppcfad705bieqn6.gif\"&gt;&lt;/inline-graphic&gt;&lt;/inline-formula&gt; in the extraction region, it causes &lt;inline-f","PeriodicalId":20239,"journal":{"name":"Plasma Physics and Controlled Fusion","volume":"17 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142181226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Drift instabilities driven by slab ion temperature gradient in suprathermal plasmas 超热等离子体中由板块离子温度梯度驱动的漂移不稳定性
IF 2.2 2区 物理与天体物理 Q2 PHYSICS, FLUIDS & PLASMAS Pub Date : 2024-09-04 DOI: 10.1088/1361-6587/ad7319
Ran Guo
The drift instabilities driven by the slab ion temperature gradient (ITG) in Kappa-distributed plasmas are investigated by the kinetic method. The linear dispersion relation is given in an integral representation involving only the standard plasma dispersion function. The wave frequency and growth rate are derived without the density inhomogeneity. Numerical solutions of the dispersion equation are conducted to show the different effects of the suprathermal ions and electrons. We find that the suprathermal ions can enhance the instability in large wavenumbers but suppress it in small wavenumbers. Thus, the suprathermalization of ions could be one of the factors leading to a lower limit of wavenumbers for the ITG instabilities. Besides, the numerical calculations also imply that the thermal speed ratio affects the intensities of the suprathermal effects. Finally, in the presence of density inhomogeneity, the ITG instability boundary is numerically analyzed.
采用动力学方法研究了卡帕分布等离子体中由板坯离子温度梯度(ITG)驱动的漂移不稳定性。线性弥散关系用积分表示法给出,只涉及标准等离子体弥散函数。在不考虑密度不均匀性的情况下,得出了波频和增长率。对弥散方程进行了数值求解,以显示超热离子和电子的不同影响。我们发现,过热离子会增强大波数的不稳定性,但会抑制小波数的不稳定性。因此,离子的过热化可能是导致 ITG 不稳定性波数下限的因素之一。此外,数值计算还表明,热速比会影响超热效应的强度。最后,在密度不均匀的情况下,对 ITG 不稳定边界进行了数值分析。
{"title":"Drift instabilities driven by slab ion temperature gradient in suprathermal plasmas","authors":"Ran Guo","doi":"10.1088/1361-6587/ad7319","DOIUrl":"https://doi.org/10.1088/1361-6587/ad7319","url":null,"abstract":"The drift instabilities driven by the slab ion temperature gradient (ITG) in Kappa-distributed plasmas are investigated by the kinetic method. The linear dispersion relation is given in an integral representation involving only the standard plasma dispersion function. The wave frequency and growth rate are derived without the density inhomogeneity. Numerical solutions of the dispersion equation are conducted to show the different effects of the suprathermal ions and electrons. We find that the suprathermal ions can enhance the instability in large wavenumbers but suppress it in small wavenumbers. Thus, the suprathermalization of ions could be one of the factors leading to a lower limit of wavenumbers for the ITG instabilities. Besides, the numerical calculations also imply that the thermal speed ratio affects the intensities of the suprathermal effects. Finally, in the presence of density inhomogeneity, the ITG instability boundary is numerically analyzed.","PeriodicalId":20239,"journal":{"name":"Plasma Physics and Controlled Fusion","volume":"49 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142181227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design concept of intelligent integrated control system for neutral beam injection 中性束注入智能集成控制系统的设计理念
IF 2.2 2区 物理与天体物理 Q2 PHYSICS, FLUIDS & PLASMAS Pub Date : 2024-09-03 DOI: 10.1088/1361-6587/ad731a
Yu Gu, Chundong Hu, Yang Li, Yuanzhe Zhao, Qinglong Cui, Yahong Xie
Due to the specificity of neutral beam injection (NBI) system, the control of its actual physical system is achieved by the integrated control system (ICS). The current NBI ICS adopts a distributed design structure to balance the system load, which is also the mainstream system design and architecture model of ICS around the world. However, from a practical point of view, the distributed system architecture is not perfect. In the long run, upgrading the system intelligence and automation capabilities is an inevitable choice for the future, so it is necessary to explore ways to transform and upgrade the ICS. At present, Internet of Things (IoT), as an important part of the new generation information technology, can realize the control of everything through data exchange. This is because on the one hand, IoT has wide compatibility and powerful scenario-based capabilities, it not only has the advantages and characteristics of distributed design, but also can pull the NBI subsystems into the same level scenario and lay the foundation for the further construction of digital NBI; on the other hand, the intervention of artificial intelligence makes IoT have some new typical characteristics such as intelligent sensing, ubiquitous connectivity, precise control, digital modeling, real-time analysis and iterative optimization, which is enough to pull the current NBI ICS into a new intelligent control era. Finally, it is worth mentioning that due to its inherent design structure and functional characteristics, ICS tends to be broadly generic, so it is not exclusively used for NBI operation in nuclear fusion, and it can provide some insight into other application areas.
由于中性束注入(NBI)系统的特殊性,其实际物理系统的控制由集成控制系统(ICS)实现。目前的 NBI 集成控制系统采用分布式设计结构来平衡系统负载,这也是目前世界上集成控制系统的主流系统设计和架构模式。但从实际情况来看,分布式系统架构并不完美。从长远来看,提升系统智能化和自动化能力是未来的必然选择,因此有必要探索综合布线系统的转型升级之路。当前,物联网作为新一代信息技术的重要组成部分,可以通过数据交换实现对万物的控制。这一方面是因为物联网具有广泛的兼容性和强大的场景化能力,它不仅具有分布式设计的优势和特点,还能将NBI各子系统拉入同级场景,为进一步建设数字化NBI奠定基础;另一方面,人工智能的介入使得物联网具有智能感知、泛在连接、精准控制、数字建模、实时分析、迭代优化等一些新的典型特征,足以将当前的NBI ICS拉入一个全新的智能控制时代。最后值得一提的是,由于其固有的设计结构和功能特点,ICS往往具有广泛的通用性,因此它并不完全用于核聚变中的NBI运行,它可以为其他应用领域提供一些启示。
{"title":"Design concept of intelligent integrated control system for neutral beam injection","authors":"Yu Gu, Chundong Hu, Yang Li, Yuanzhe Zhao, Qinglong Cui, Yahong Xie","doi":"10.1088/1361-6587/ad731a","DOIUrl":"https://doi.org/10.1088/1361-6587/ad731a","url":null,"abstract":"Due to the specificity of neutral beam injection (NBI) system, the control of its actual physical system is achieved by the integrated control system (ICS). The current NBI ICS adopts a distributed design structure to balance the system load, which is also the mainstream system design and architecture model of ICS around the world. However, from a practical point of view, the distributed system architecture is not perfect. In the long run, upgrading the system intelligence and automation capabilities is an inevitable choice for the future, so it is necessary to explore ways to transform and upgrade the ICS. At present, Internet of Things (IoT), as an important part of the new generation information technology, can realize the control of everything through data exchange. This is because on the one hand, IoT has wide compatibility and powerful scenario-based capabilities, it not only has the advantages and characteristics of distributed design, but also can pull the NBI subsystems into the same level scenario and lay the foundation for the further construction of digital NBI; on the other hand, the intervention of artificial intelligence makes IoT have some new typical characteristics such as intelligent sensing, ubiquitous connectivity, precise control, digital modeling, real-time analysis and iterative optimization, which is enough to pull the current NBI ICS into a new intelligent control era. Finally, it is worth mentioning that due to its inherent design structure and functional characteristics, ICS tends to be broadly generic, so it is not exclusively used for NBI operation in nuclear fusion, and it can provide some insight into other application areas.","PeriodicalId":20239,"journal":{"name":"Plasma Physics and Controlled Fusion","volume":"21 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142181228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Finite orbit width effects on turbulent transport of ion parallel momentum 有限轨道宽度对离子平行动量湍流传输的影响
IF 2.2 2区 物理与天体物理 Q2 PHYSICS, FLUIDS & PLASMAS Pub Date : 2024-09-03 DOI: 10.1088/1361-6587/ad7318
Yang Li
A kinetic model for ion turbulent parallel momentum transport is developed with finite orbit width effects for Tokamak plasmas. It is shown that the curvature and gradient drifts of ions can introduce pressure perturbations into the transport equation of ion parallel momentum, which leads to a new source term. And the source term can be understood as a Coriolis force and can play a key role in the toroidal symmetry breaking during the spontaneous spin-up process.
针对托卡马克等离子体,建立了一个具有有限轨道宽度效应的离子湍流平行动量输运动力学模型。研究表明,离子的曲率和梯度漂移会在离子平行动量输运方程中引入压力扰动,从而导致一个新的源项。这个源项可以理解为科里奥利力,在自旋上升过程中对环对称破缺起着关键作用。
{"title":"Finite orbit width effects on turbulent transport of ion parallel momentum","authors":"Yang Li","doi":"10.1088/1361-6587/ad7318","DOIUrl":"https://doi.org/10.1088/1361-6587/ad7318","url":null,"abstract":"A kinetic model for ion turbulent parallel momentum transport is developed with finite orbit width effects for Tokamak plasmas. It is shown that the curvature and gradient drifts of ions can introduce pressure perturbations into the transport equation of ion parallel momentum, which leads to a new source term. And the source term can be understood as a Coriolis force and can play a key role in the toroidal symmetry breaking during the spontaneous spin-up process.","PeriodicalId":20239,"journal":{"name":"Plasma Physics and Controlled Fusion","volume":"30 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142181229","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Implementation of matrix compression in the coupling of JOREK to realistic 3D conducting wall structures 在 JOREK 与现实三维导电墙结构的耦合中实施矩阵压缩
IF 2.2 2区 物理与天体物理 Q2 PHYSICS, FLUIDS & PLASMAS Pub Date : 2024-09-02 DOI: 10.1088/1361-6587/ad728a
F Cipolletta, N Schwarz, M Hoelzl, S Ventre, N Isernia, G Rubinacci, A Soba, M J Mantsinen, the JOREK Team7
JOREK is an advanced non-linear simulation code for studying MHD instabilities in magnetically confined fusion plasmas and their control and/or mitigation. A free-boundary and resistive wall extension was introduced via coupling to the STARWALL and CARIDDI codes, both able to provide dense response matrices describing the electromagnetic interactions between plasma and conducting structures. For detailed CAD representations of the conducting structures and high resolutions for the plasma region, memory and computing time limitations restrict the possibility of simulating the ITER tokamak. In the present work, the Singular Value Decomposition provided by routines from the ScaLAPACK library has been successfully applied to compress some of the dense response matrices and thus optimize memory usage. This is demonstrated for simulations of Tearing Mode and Vertical Displacement Event instabilities. An outlook to future applications on large production cases and further extensions of the method are discussed.
JOREK 是一种先进的非线性模拟代码,用于研究磁约束聚变等离子体中的 MHD 不稳定性及其控制和/或缓解。通过与 STARWALL 和 CARIDDI 代码的耦合,引入了自由边界和电阻壁扩展,这两种代码都能够提供密集的响应矩阵,描述等离子体和导电结构之间的电磁相互作用。对于导电结构的详细 CAD 表示和等离子体区域的高分辨率,内存和计算时间限制了模拟热核实验堆托卡马克的可能性。在本研究中,ScaLAPACK 库中的例程提供的奇异值分解功能已成功应用于压缩某些密集响应矩阵,从而优化了内存使用。这在撕裂模式和垂直位移事件不稳定性模拟中得到了验证。本文还讨论了未来在大型生产案例中的应用前景以及该方法的进一步扩展。
{"title":"Implementation of matrix compression in the coupling of JOREK to realistic 3D conducting wall structures","authors":"F Cipolletta, N Schwarz, M Hoelzl, S Ventre, N Isernia, G Rubinacci, A Soba, M J Mantsinen, the JOREK Team7","doi":"10.1088/1361-6587/ad728a","DOIUrl":"https://doi.org/10.1088/1361-6587/ad728a","url":null,"abstract":"JOREK is an advanced non-linear simulation code for studying MHD instabilities in magnetically confined fusion plasmas and their control and/or mitigation. A free-boundary and resistive wall extension was introduced via coupling to the STARWALL and CARIDDI codes, both able to provide dense response matrices describing the electromagnetic interactions between plasma and conducting structures. For detailed CAD representations of the conducting structures and high resolutions for the plasma region, memory and computing time limitations restrict the possibility of simulating the ITER tokamak. In the present work, the Singular Value Decomposition provided by routines from the ScaLAPACK library has been successfully applied to compress some of the dense response matrices and thus optimize memory usage. This is demonstrated for simulations of Tearing Mode and Vertical Displacement Event instabilities. An outlook to future applications on large production cases and further extensions of the method are discussed.","PeriodicalId":20239,"journal":{"name":"Plasma Physics and Controlled Fusion","volume":"54 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142181230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Turbulent relaxation patterns in SOL plasma SOL 等离子体中的湍流弛豫模式
IF 2.2 2区 物理与天体物理 Q2 PHYSICS, FLUIDS & PLASMAS Pub Date : 2024-08-28 DOI: 10.1088/1361-6587/ad705c
R Varennes, G Dif-Pradalier, P Ghendrih, V Grandgirard, O Panico, Y Sarazin, E Serre, D Zarzoso
Relaxations of localized over-density in a plane transverse to the magnetic field are numerically investigated under the effect of drift-wave and interchange drives in SOL conditions. Such a controlled departure from thermodynamic equilibrium allows the investigation of fundamental processes at play in cross-field transport. Interchange instabilities generate ballistic outward radial flux with low amplitude zonal flow patterns, whereas drift-wave instabilities result in symmetric radial flux with large amplitude zonal flow patterns. When both instabilities are considered, the combined effects tend to favor drift-waves, leading to a weaker outward flux with larger zonal flow patterns.
在 SOL 条件下的漂移波和交换驱动作用下,对磁场横向平面上局部过密度的弛豫进行了数值研究。这种对热力学平衡的受控偏离允许对跨磁场传输中的基本过程进行研究。交换不稳定性会产生具有低振幅带状流模式的弹道向外径向通量,而流波不稳定性则会产生具有大振幅带状流模式的对称径向通量。当同时考虑这两种不稳定性时,综合效应倾向于流波,从而导致较弱的向外通量和较大的带状流模式。
{"title":"Turbulent relaxation patterns in SOL plasma","authors":"R Varennes, G Dif-Pradalier, P Ghendrih, V Grandgirard, O Panico, Y Sarazin, E Serre, D Zarzoso","doi":"10.1088/1361-6587/ad705c","DOIUrl":"https://doi.org/10.1088/1361-6587/ad705c","url":null,"abstract":"Relaxations of localized over-density in a plane transverse to the magnetic field are numerically investigated under the effect of drift-wave and interchange drives in SOL conditions. Such a controlled departure from thermodynamic equilibrium allows the investigation of fundamental processes at play in cross-field transport. Interchange instabilities generate ballistic outward radial flux with low amplitude zonal flow patterns, whereas drift-wave instabilities result in symmetric radial flux with large amplitude zonal flow patterns. When both instabilities are considered, the combined effects tend to favor drift-waves, leading to a weaker outward flux with larger zonal flow patterns.","PeriodicalId":20239,"journal":{"name":"Plasma Physics and Controlled Fusion","volume":"17 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142181231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Accuracy and scalability of incompressible inductionless MHD codes applied to fusion technologies 应用于核聚变技术的不可压缩无感应 MHD 代码的准确性和可扩展性
IF 2.2 2区 物理与天体物理 Q2 PHYSICS, FLUIDS & PLASMAS Pub Date : 2024-08-27 DOI: 10.1088/1361-6587/ad6a82
Fernando R Urgorri, Guillermo G Fonfría, Francesc Verdugo, Javier Príncipe, Santiago Badia
It is well-known that magnetohydrodynamics (MHD) dominates the dynamic of the liquid metal flows inside the breeding blankets (BB) of future nuclear fusion plants by magnetic confinement. MHD is a multiphysics phenomenon involving both electromagnetism and incompressible fluid mechanics. From the computational point of view, the simulation of MHD flows in fusion relevant conditions entails a significant challenge. Indeed, due to the shape of the induced electrical currents inside the bulk of the fluid, high spatial resolutions are needed to capture the large gradients found in boundary layers and 3D effects. Besides, solving the equations accurately typically requires very small time steps for the transient algorithms. Over the past few decades, some parallel MHD codes have been developed with success to simulate complex flows in increasingly realistic geometries. Among them, the MHD tools of commercial CFD platforms have attracted attention due to their relatively soft learning curve. Most of these codes are based on the so called ϕ-formulation which, by applying the divergence free condition of the current density to the Ohms law, reduces the electromagnetic part of the problem to a single Poisson equation. As a downside, the approach segregates the fluid and electromagnetic problem. In practice, this establishes important limits to the mesh element size, to the mesh quality and to the time-step needed to obtain accurate and stable solutions that maintains charge conservation at a discrete level. In this work, these limits are explored for the commercial platform ANSYS-Fluent using a test geometry under different conditions. As an alternative, a new code based on Finite Element Methods (FEM) is introduced as well. This open-source code, called GridapMHD (https://github.com/gridapapps/GridapMHD.jl), aims at solving the full set of MHD equations using a monolithic approach. GridapMHD is still in early stages of development but it has already shown promising results.
众所周知,磁流体力学(MHD)在未来核聚变装置的磁约束孕育毯(BB)内液态金属流的动力学中占主导地位。MHD 是一种涉及电磁学和不可压缩流体力学的多物理现象。从计算角度来看,模拟核聚变相关条件下的 MHD 流动是一项重大挑战。事实上,由于流体内部感应电流的形状,需要很高的空间分辨率来捕捉边界层中的大梯度和三维效应。此外,对于瞬态算法来说,准确求解方程通常需要非常小的时间步长。在过去的几十年里,一些并行 MHD 代码已经开发成功,可以模拟越来越逼真的几何形状中的复杂流动。其中,商业 CFD 平台的 MHD 工具因其相对较低的学习曲线而备受关注。这些代码大多基于所谓的 j 公式,通过将电流密度的无发散条件应用于欧姆定律,将问题的电磁部分简化为单一的泊松方程。这种方法的缺点是分离了流体和电磁问题。在实践中,这对网格元素大小、网格质量以及获得精确稳定的解决方案所需的时间步长提出了重要限制,从而在离散水平上保持电荷守恒。在这项工作中,我们利用不同条件下的测试几何体,对商业平台 ANSYS-Fluent 的这些限制进行了探索。作为替代方案,还引入了基于有限元方法 (FEM) 的新代码。该开源代码名为 GridapMHD (https://github.com/gridapapps/GridapMHD.jl),旨在使用整体方法求解全套 MHD 方程。GridapMHD 仍处于早期开发阶段,但已经取得了可喜的成果。
{"title":"Accuracy and scalability of incompressible inductionless MHD codes applied to fusion technologies","authors":"Fernando R Urgorri, Guillermo G Fonfría, Francesc Verdugo, Javier Príncipe, Santiago Badia","doi":"10.1088/1361-6587/ad6a82","DOIUrl":"https://doi.org/10.1088/1361-6587/ad6a82","url":null,"abstract":"It is well-known that magnetohydrodynamics (MHD) dominates the dynamic of the liquid metal flows inside the breeding blankets (BB) of future nuclear fusion plants by magnetic confinement. MHD is a multiphysics phenomenon involving both electromagnetism and incompressible fluid mechanics. From the computational point of view, the simulation of MHD flows in fusion relevant conditions entails a significant challenge. Indeed, due to the shape of the induced electrical currents inside the bulk of the fluid, high spatial resolutions are needed to capture the large gradients found in boundary layers and 3D effects. Besides, solving the equations accurately typically requires very small time steps for the transient algorithms. Over the past few decades, some parallel MHD codes have been developed with success to simulate complex flows in increasingly realistic geometries. Among them, the MHD tools of commercial CFD platforms have attracted attention due to their relatively soft learning curve. Most of these codes are based on the so called <italic toggle=\"yes\">ϕ</italic>-formulation which, by applying the divergence free condition of the current density to the Ohms law, reduces the electromagnetic part of the problem to a single Poisson equation. As a downside, the approach segregates the fluid and electromagnetic problem. In practice, this establishes important limits to the mesh element size, to the mesh quality and to the time-step needed to obtain accurate and stable solutions that maintains charge conservation at a discrete level. In this work, these limits are explored for the commercial platform ANSYS-Fluent using a test geometry under different conditions. As an alternative, a new code based on Finite Element Methods (FEM) is introduced as well. This open-source code, called GridapMHD (<ext-link ext-link-type=\"uri\" xlink:href=\"https://github.com/gridapapps/GridapMHD.jl\">https://github.com/gridapapps/GridapMHD.jl</ext-link>), aims at solving the full set of MHD equations using a monolithic approach. GridapMHD is still in early stages of development but it has already shown promising results.","PeriodicalId":20239,"journal":{"name":"Plasma Physics and Controlled Fusion","volume":"14 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142227518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Machine learning aided line intensity ratio method for helium–hydrogen mixed recombining plasmas 氦氢混合重组等离子体的机器学习辅助线强度比方法
IF 2.2 2区 物理与天体物理 Q2 PHYSICS, FLUIDS & PLASMAS Pub Date : 2024-08-22 DOI: 10.1088/1361-6587/ad6a81
Shin Kajita, Daisuke Nishijima, Keisuke Fujii, Hirohiko Tanaka, Jordy Vernimmen, Hennie van der Meiden, Ivo Classen, Noriyasu Ohno
The helium line intensity ratio (LIR) with the help of a collisional radiative (CR) model has long been used to measure the electron density, ne, and temperature, Te, and its potential and limitations for fusion applications have been discussed. However, it has been reported that the CR model approach leads to deviations in helium–hydrogen mixed plasmas and/or recombining plasmas. In this study, a machine learning (ML) aided LIR method is used to measure ne and Te from spectroscopic data of helium–hydrogen mixed recombining plasmas in the divertor simulator Magnum-PSI. To analyze mixed plasmas, which have more complex spectral shapes, the spectroscopy data were used directly for training instead of separating the intensities of each line. It is shown that the ML approach can provide a robust and simpler analysis method to deduce ne and Te from the visible emissions in helium–hydrogen mixed plasmas.
长期以来,人们一直利用碰撞辐射(CR)模型的氦线强度比(LIR)来测量电子密度ne和温度Te,并讨论了其在核聚变应用中的潜力和局限性。然而,有报告称碰撞辐射模型方法会导致氦氢混合等离子体和/或重组等离子体出现偏差。本研究采用机器学习(ML)辅助 LIR 方法,从分流器模拟器 Magnum-PSI 中氦氢混合重组等离子体的光谱数据中测量 ne 和 Te。为了分析具有更复杂光谱形状的混合等离子体,直接使用光谱数据进行训练,而不是分离每条线的强度。结果表明,ML 方法可以提供一种稳健而简单的分析方法,从氦氢混合等离子体的可见光辐射中推断出氖和碲。
{"title":"Machine learning aided line intensity ratio method for helium–hydrogen mixed recombining plasmas","authors":"Shin Kajita, Daisuke Nishijima, Keisuke Fujii, Hirohiko Tanaka, Jordy Vernimmen, Hennie van der Meiden, Ivo Classen, Noriyasu Ohno","doi":"10.1088/1361-6587/ad6a81","DOIUrl":"https://doi.org/10.1088/1361-6587/ad6a81","url":null,"abstract":"The helium line intensity ratio (LIR) with the help of a collisional radiative (CR) model has long been used to measure the electron density, <inline-formula>\u0000<tex-math><?CDATA $n_textrm{e}$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:msub><mml:mi>n</mml:mi><mml:mtext>e</mml:mtext></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href=\"ppcfad6a81ieqn1.gif\"></inline-graphic></inline-formula>, and temperature, <inline-formula>\u0000<tex-math><?CDATA $T_textrm{e}$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:msub><mml:mi>T</mml:mi><mml:mtext>e</mml:mtext></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href=\"ppcfad6a81ieqn2.gif\"></inline-graphic></inline-formula>, and its potential and limitations for fusion applications have been discussed. However, it has been reported that the CR model approach leads to deviations in helium–hydrogen mixed plasmas and/or recombining plasmas. In this study, a machine learning (ML) aided LIR method is used to measure <inline-formula>\u0000<tex-math><?CDATA $n_textrm{e}$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:msub><mml:mi>n</mml:mi><mml:mtext>e</mml:mtext></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href=\"ppcfad6a81ieqn3.gif\"></inline-graphic></inline-formula> and <inline-formula>\u0000<tex-math><?CDATA $T_textrm{e}$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:msub><mml:mi>T</mml:mi><mml:mtext>e</mml:mtext></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href=\"ppcfad6a81ieqn4.gif\"></inline-graphic></inline-formula> from spectroscopic data of helium–hydrogen mixed recombining plasmas in the divertor simulator Magnum-PSI. To analyze mixed plasmas, which have more complex spectral shapes, the spectroscopy data were used directly for training instead of separating the intensities of each line. It is shown that the ML approach can provide a robust and simpler analysis method to deduce <inline-formula>\u0000<tex-math><?CDATA $n_textrm{e}$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:msub><mml:mi>n</mml:mi><mml:mtext>e</mml:mtext></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href=\"ppcfad6a81ieqn5.gif\"></inline-graphic></inline-formula> and <inline-formula>\u0000<tex-math><?CDATA $T_textrm{e}$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:msub><mml:mi>T</mml:mi><mml:mtext>e</mml:mtext></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href=\"ppcfad6a81ieqn6.gif\"></inline-graphic></inline-formula> from the visible emissions in helium–hydrogen mixed plasmas.","PeriodicalId":20239,"journal":{"name":"Plasma Physics and Controlled Fusion","volume":"41 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142223756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impurity transport in PISCES-RF* PISCES-RF* 中的杂质传输
IF 2.2 2区 物理与天体物理 Q2 PHYSICS, FLUIDS & PLASMAS Pub Date : 2024-08-14 DOI: 10.1088/1361-6587/ad6a85
G Dhamale, M J Baldwin, M S Islam, A Kumar, H M Meyer, D Nishijima, L Nuckols, M I Patino, W Tierens, G R Tynan, J Rapp
Linear plasma devices (LPD) utilizing a helicon plasma source, a high density light ion source, can generate impurities due to progressive erosion of the radio frequency (RF) transmission window caused by rectified sheath voltage. These source-born impurities can entrain and be transported by the plasma toward a target, affecting plasma-material interaction studies. Earlier work on material testing in Prototype-Materials Plasma Exposure eXperiment at ORNL revealed significant source impurity deposition on downstream targets. However, using a similar RF source, no target impurity deposition is observed in Plasma Interaction Surface Component Experimental Station (PISCES)-RF despite evidence of RF window erosion in the source region, thereby motivating the present work. Experimentally, using various magnetic field configurations upstream of the PISCES-RF plasma source and seeding titanium (Ti) impurities at various axial locations, impurity transport and deposition along the machine axis were investigated. It was found that Ti deposition was localized to the side of the plasma source where the Ti impurity was seeded. In contrast, aluminum (Al) deposition, originating from the sputtering of the helicon window, occurred predominantly upstream of the plasma source, suggesting an asymmetry in the axial transport of eroded RF window material. These observations suggest a stagnation of the parallel plasma flow immediately downstream of the plasma source, with impurity ions remaining unmagnetized near the source upstream. Al deposition in magnetic field-free regions in PISCES-RF indicates that sputtered Al impurities likely remained neutral due to their large ionization mean-free path under PISCES-RF conditions. Plasma modeling and simulation supported this, indicating that Al-neutrals transport toward the helicon source upstream for low electron density cases. It was found that the Larmor radius of the Al ions was greater than the plasma radius towards the source upstream and remained weakly magnetized in PISCES-RF, meaning that plasma source-born impurities are not efficiently entrained in the plasma flow. These findings provide critical insights into impurity transport in helicon plasma-based LPDs.
线性等离子体设备(LPD)采用了高密度光离子源--helicon 等离子体源,由于整流鞘电压会逐渐侵蚀射频(RF)传输窗口,因此会产生杂质。这些源生杂质会夹带等离子体并被等离子体输送到目标,从而影响等离子体与材料的相互作用研究。ORNL 的 "原型-材料等离子体暴露实验 "的早期材料测试工作显示,源杂质在下游靶上沉积严重。然而,在使用类似射频源的情况下,尽管在源区有射频窗口侵蚀的迹象,但在等离子体相互作用表面组件实验站(PISCES)-RF 中却没有观察到目标杂质沉积,从而激发了目前的工作。在实验中,使用 PISCES-RF 等离子源上游的各种磁场配置,并在不同的轴向位置播入钛(Ti)杂质,研究了杂质沿机器轴向的传输和沉积情况。研究发现,钛沉积集中在等离子源的一侧,而钛杂质则被播种在等离子源的另一侧。相反,源于螺旋窗溅射的铝(Al)沉积主要发生在等离子源的上游,这表明侵蚀射频窗材料的轴向传输不对称。这些观察结果表明,紧靠等离子源下游的平行等离子体流出现了停滞,而上游等离子源附近的杂质离子仍未被磁化。PISCES-RF 中无磁场区域的铝沉积表明,溅射的铝杂质由于在 PISCES-RF 条件下具有较大的电离平均无磁路,很可能保持中性。等离子体建模和模拟证实了这一点,表明在电子密度较低的情况下,铝中性杂质会向上游的螺旋子源迁移。研究发现,铝离子的拉莫尔半径大于等离子体对上游源的半径,并且在 PISCES-RF 中保持弱磁化,这意味着等离子体源产生的杂质不能有效地夹带在等离子体流中。这些发现为基于螺旋等离子体的 LPD 中的杂质传输提供了重要启示。
{"title":"Impurity transport in PISCES-RF*","authors":"G Dhamale, M J Baldwin, M S Islam, A Kumar, H M Meyer, D Nishijima, L Nuckols, M I Patino, W Tierens, G R Tynan, J Rapp","doi":"10.1088/1361-6587/ad6a85","DOIUrl":"https://doi.org/10.1088/1361-6587/ad6a85","url":null,"abstract":"Linear plasma devices (LPD) utilizing a helicon plasma source, a high density light ion source, can generate impurities due to progressive erosion of the radio frequency (RF) transmission window caused by rectified sheath voltage. These source-born impurities can entrain and be transported by the plasma toward a target, affecting plasma-material interaction studies. Earlier work on material testing in Prototype-Materials Plasma Exposure eXperiment at ORNL revealed significant source impurity deposition on downstream targets. However, using a similar RF source, no target impurity deposition is observed in Plasma Interaction Surface Component Experimental Station (PISCES)-RF despite evidence of RF window erosion in the source region, thereby motivating the present work. Experimentally, using various magnetic field configurations upstream of the PISCES-RF plasma source and seeding titanium (Ti) impurities at various axial locations, impurity transport and deposition along the machine axis were investigated. It was found that Ti deposition was localized to the side of the plasma source where the Ti impurity was seeded. In contrast, aluminum (Al) deposition, originating from the sputtering of the helicon window, occurred predominantly upstream of the plasma source, suggesting an asymmetry in the axial transport of eroded RF window material. These observations suggest a stagnation of the parallel plasma flow immediately downstream of the plasma source, with impurity ions remaining unmagnetized near the source upstream. Al deposition in magnetic field-free regions in PISCES-RF indicates that sputtered Al impurities likely remained neutral due to their large ionization mean-free path under PISCES-RF conditions. Plasma modeling and simulation supported this, indicating that Al-neutrals transport toward the helicon source upstream for low electron density cases. It was found that the Larmor radius of the Al ions was greater than the plasma radius towards the source upstream and remained weakly magnetized in PISCES-RF, meaning that plasma source-born impurities are not efficiently entrained in the plasma flow. These findings provide critical insights into impurity transport in helicon plasma-based LPDs.","PeriodicalId":20239,"journal":{"name":"Plasma Physics and Controlled Fusion","volume":"11 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142181246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
State-selective electron capture in Ar 16++H (1s) collisions for charge-exchange recombination spectroscopy 氩 16++H(1s)碰撞中的状态选择性电子俘获,用于电荷交换重组光谱分析
IF 2.2 2区 物理与天体物理 Q2 PHYSICS, FLUIDS & PLASMAS Pub Date : 2024-08-14 DOI: 10.1088/1361-6587/ad6a86
A M Kotian, N W Antonio, O Marchuk, A S Kadyrov
State-selective electron capture in collisions of Ar16+ ions with ground-state hydrogen atoms has been modeled using the two-center wave-packet convergent close-coupling approach. The partially stripped He-like projectile ion is represented using a model potential. Experimental measurements are not available for this collision system and to date, only the classical trajectory Monte Carlo (CTMC) method has been applied to calculate cross sections. The calculated total electron-capture cross section (TECS) is in good agreement with the previous CTMC results at the low energies but slightly larger at higher energies. This is likely because, in this work, we account for capture into highly excited states, which contribute significantly to the TECS at the intermediate energies. The n-resolved electron-capture cross sections have also been presented for capture into states with n=619, where n is the final-state principal quantum number. The most important of these are the cross sections for capture into the n=1417 states, which are used in charge-exchange recombination spectroscopy techniques. For these cross sections, a significant difference is observed between the present and previously published data. The cross sections differ by an order of magnitude in the 10−60 keV u−1 energy range. The agreement between the calculations is observed at the energies above 70 keV u−1. The n-resolved electron-capture cross sections have also been presented at 15, 60, 100 and 200 keV u−1 projectile energies, where is the final-state angular momentum quantum number.
利用双中心波包收敛紧密耦合方法模拟了 Ar16+ 离子与基态氢原子碰撞中的状态选择性电子俘获。部分剥离的类 He 射弹离子使用模型电势表示。该碰撞系统没有实验测量数据,因此迄今为止只能采用经典轨迹蒙特卡罗(CTMC)方法来计算截面。计算得出的电子捕获总截面(TECS)在低能量时与之前的 CTMC 结果非常吻合,但在高能量时则略有增大。这可能是因为在这项工作中,我们考虑到了高激发态的俘获,而高激发态在中间能量时对 TECS 有很大影响。对于俘获到 n=6-19 态(n 为最终态的主量子数)的电子俘获截面,我们也给出了 n 分辨电子俘获截面。其中最重要的是俘获到 n=14-17 态的截面,它用于电荷交换重组光谱技术。就这些截面而言,目前公布的数据与之前公布的数据存在显著差异。在 10-60 keV u-1 能量范围内,截面相差一个数量级。而在 70 keV u-1 以上的能量范围内,计算结果则趋于一致。在 15、60、100 和 200 keV u-1 的射弹能量下,nℓ 分辨的电子捕获截面也得到了展示,其中 ℓ 是终态角动量量子数。
{"title":"State-selective electron capture in Ar 16++H (1s) collisions for charge-exchange recombination spectroscopy","authors":"A M Kotian, N W Antonio, O Marchuk, A S Kadyrov","doi":"10.1088/1361-6587/ad6a86","DOIUrl":"https://doi.org/10.1088/1361-6587/ad6a86","url":null,"abstract":"State-selective electron capture in collisions of Ar<sup>16+</sup> ions with ground-state hydrogen atoms has been modeled using the two-center wave-packet convergent close-coupling approach. The partially stripped He-like projectile ion is represented using a model potential. Experimental measurements are not available for this collision system and to date, only the classical trajectory Monte Carlo (CTMC) method has been applied to calculate cross sections. The calculated total electron-capture cross section (TECS) is in good agreement with the previous CTMC results at the low energies but slightly larger at higher energies. This is likely because, in this work, we account for capture into highly excited states, which contribute significantly to the TECS at the intermediate energies. The <italic toggle=\"yes\">n</italic>-resolved electron-capture cross sections have also been presented for capture into states with <inline-formula>\u0000<tex-math><?CDATA $n = 6-19$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:mi>n</mml:mi><mml:mo>=</mml:mo><mml:mn>6</mml:mn><mml:mo>−</mml:mo><mml:mn>19</mml:mn></mml:mrow></mml:math><inline-graphic xlink:href=\"ppcfad6a86ieqn3.gif\"></inline-graphic></inline-formula>, where <italic toggle=\"yes\">n</italic> is the final-state principal quantum number. The most important of these are the cross sections for capture into the <inline-formula>\u0000<tex-math><?CDATA $n = 14-17$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:mi>n</mml:mi><mml:mo>=</mml:mo><mml:mn>14</mml:mn><mml:mo>−</mml:mo><mml:mn>17</mml:mn></mml:mrow></mml:math><inline-graphic xlink:href=\"ppcfad6a86ieqn4.gif\"></inline-graphic></inline-formula> states, which are used in charge-exchange recombination spectroscopy techniques. For these cross sections, a significant difference is observed between the present and previously published data. The cross sections differ by an order of magnitude in the 10−60 keV u<sup>−1</sup> energy range. The agreement between the calculations is observed at the energies above 70 keV u<sup>−1</sup>. The <inline-formula>\u0000<tex-math><?CDATA $nell$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:mi>n</mml:mi><mml:mi>ℓ</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href=\"ppcfad6a86ieqn5.gif\"></inline-graphic></inline-formula>-resolved electron-capture cross sections have also been presented at 15, 60, 100 and 200 keV u<sup>−1</sup> projectile energies, where <inline-formula>\u0000<tex-math><?CDATA $ell$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:mi>ℓ</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href=\"ppcfad6a86ieqn6.gif\"></inline-graphic></inline-formula> is the final-state angular momentum quantum number.","PeriodicalId":20239,"journal":{"name":"Plasma Physics and Controlled Fusion","volume":"86 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142181247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Plasma Physics and Controlled Fusion
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1