Continuous intraocular pressure (IOP) monitoring for improving glaucoma diagnosis and treatment has remained a challenge for the past 60 years because glaucoma is the second leading cause of irreversible blindness worldwide. Several devices with different measurement principles and recently developed biosensors with semiconductor materials offer exciting properties. However, none of these devices for continuous IOP monitoring have been fully integrated into clinical practice, primarily due to technical problems. This review summarizes state-of-the-art biosensors developed for IOP monitoring by explaining their basic functions and applications, the main technology (pressure transductors, piezoresistive sensors, capacitive sensors, and resonant sensors), measurement approach (noninvasive, minimally invasive or invasive (surgically implantable)), and telemetry characteristics. To provide updated information for clinicians and researchers, we also describe the advantages and limitations of the application of these new sensors to eye care management. Despite significant improvements in IOP biosensor technology, the accuracy of their measurements must be improved to obtain a clear equivalence with actual IOP (measured in units of mmHg) to facilitate their clinical application. In addition, telemetry systems may be simplified to prevent adverse outcomes for patients and to guarantee the safety of stored data.
Purpose: Multiwalled carbon nanotubes (MWCNTs) have been known to enter the circulatory system via the lungs from inhalation exposure; however, its carcinogenicity and subsequent accumulation in other organs have not been adequately reported in the literature. Moreover, the safety of MWCNTs as a biomaterial has remained a matter of debate, particularly when the material enters the circulatory system. To address these problems, we used carcinogenic rasH2 transgenic mice to intravenously administer highly dispersed MWCNTs and to evaluate their carcinogenicity and accumulation in the organs.
Methods: Two types of MWCNTs (thin- and thick-MWCNTs) were intravenously administered at a high dose (approximately 0.7 mg per kg body weight) and low dose (approximately 0.07 mg per kg body weight).
Results: MWCNTs showed pancreatic accumulation in 3.2% of mice administered with MWCNTs, but there was no accumulation in other organs. In addition, there was no significant difference in the incidence of tumor among the four MWCNTs-administered groups compared to the vehicle group without MWCNTs administration. Blood tests revealed elevated levels in mean red blood cell volume and mean red blood cell hemoglobin level for the MWCNTs-administered group, in addition to an increase in eotaxin.
Conclusion: The present study demonstrated that the use of current technology to sufficiently disperse MWCNTs resulted in minimal organ accumulation with no evidence of carcinogenicity.
Family educational involvement and parent-teacher relationships are important for supporting student outcomes and have unique implications for families of children with autism spectrum disorder (ASD). However, little research has examined child and family characteristics among families of children with ASD as predictors of family involvement and parent-teacher relationships. The present study examined child and family variables that may affect family involvement and parent-teacher relationships for families of children with ASD. Findings suggested (a) parents of children with higher developmental risk reported less family involvement and poorer relationships with their child's teacher and (b) family histories accessing services predicted family involvement and parent-teacher relationships. Limitations of the current study and implications for science and practice are discussed. (PsycINFO Database Record
Unfortunately, erroneous author affiliations were published in the article "Tomotherapy PET-guided dose escalation – A dosimetric feasibility study for patients with malignant pleural mesothelioma". The correct list of author affiliations reads as follows: Angelo Maggio 1, Claudia Cutaia 1, Amalia Di Dia 1, Sara Bresciani 1, Anna Miranti 1, Matteo Poli 1, Elena Delmastro 2, Elisabetta Garibaldi 2, Pietro Gabriele 2 and Michele Stasi 1. 1: Medical Physics Department, Candiolo Cancer Institute – FPO, IRCCS, Turin, Italy. 2: Radiotherapy Department, Candiolo Cancer Institute – FPO, IRCCS, Turin, Italy. We apologize for any inconveniences caused.
In this work, analytical models of the optical transfer function (OTF), noise power spectra (NPS), and detective quantum efficiency (DQE) are developed for two types of digital x-ray detectors. The two detector types are (1) energy integrating (EI), for which the point spread function (PSF) is interpreted as a weighting function for counting x-rays, and (2) photon counting (PC), for which the PSF is treated as a probability. The OTF is the Fourier transform of the PSF. The two detector types, having the same PSF, possess an equivalent OTF. NPS is the discrete space Fourier transform (DSFT) of the autocovariance of signal intensity. From first principles, it is shown that while covariance is equivalent for both detector types, variance is not. As a consequence, provided the two detector types have equivalent PSFs, a difference in NPS exists such that NPSPC ≥ NPSEI and hence DQEPC ≤ DQEEI. The necessary and sufficient condition for equality is that the PSF is either zero or unity everywhere. A PSF modeled as the convolution of a Lorentzian with a rect function is analyzed in order to illustrate the differences in NPS and DQE. The Lorentzian models the blurring of the x-ray converter, while the rect function reflects the sampling of the detector. The NPS difference between the two detector types is shown to increase with increasing PSF width. In conclusion, this work develops analytical models of OTF, NPS, and DQE for energy integrating and photon counting digital x-ray detectors.