Pub Date : 2021-07-05DOI: 10.3390/POLLUTANTS1030012
Munshi Md. Shafwat Yazdan, Md Tanvir Ahad, Zayed Mallick, S. Mallick, I. Jahan, Mozammel Mazumder
Numerous micropollutants, especially endocrine-disrupting compounds (EDCs), can pollute natural aquatic environments causing great concern for human and ecosystem health. While most of the conversation revolves around estrogen and androgen, glucocorticoids (GCs) are also prevalent in natural waters. Despite the fact that GCs play a crucial role in both inflammatory and immunologic development activities, they are also detected in natural waters and considered as one of the EDCs. Although many researchers have mentioned the adverse effect of GCs on aquatic organisms, a complete management technology to remove these pollutants from surface and coastal waters is yet to be established. In the current study, six glucocorticoids (prednisone, prednisolone, cortisone, cortisol, dexamethasone, and 6R-methylprednisolone) have been selected according to their higher detection frequency in environmental waters. The concentration of selected GCs ranged from 0.05 ng/L to 433 ng/L and their removal efficiency ranged from 10% to 99% depending on the water source and associated removal technologies. Although advanced technologies are available for achieving successful removal of GCs, associated operational and economic considerations make implementation of these processes unsustainable. Further studies are necessary to resolve the entry routes of GCs compounds into the surface water or drinking water permanently as well as employ sustainable detection and removal technologies.
{"title":"An Overview of the Glucocorticoids’ Pathways in the Environment and Their Removal Using Conventional Wastewater Treatment Systems","authors":"Munshi Md. Shafwat Yazdan, Md Tanvir Ahad, Zayed Mallick, S. Mallick, I. Jahan, Mozammel Mazumder","doi":"10.3390/POLLUTANTS1030012","DOIUrl":"https://doi.org/10.3390/POLLUTANTS1030012","url":null,"abstract":"Numerous micropollutants, especially endocrine-disrupting compounds (EDCs), can pollute natural aquatic environments causing great concern for human and ecosystem health. While most of the conversation revolves around estrogen and androgen, glucocorticoids (GCs) are also prevalent in natural waters. Despite the fact that GCs play a crucial role in both inflammatory and immunologic development activities, they are also detected in natural waters and considered as one of the EDCs. Although many researchers have mentioned the adverse effect of GCs on aquatic organisms, a complete management technology to remove these pollutants from surface and coastal waters is yet to be established. In the current study, six glucocorticoids (prednisone, prednisolone, cortisone, cortisol, dexamethasone, and 6R-methylprednisolone) have been selected according to their higher detection frequency in environmental waters. The concentration of selected GCs ranged from 0.05 ng/L to 433 ng/L and their removal efficiency ranged from 10% to 99% depending on the water source and associated removal technologies. Although advanced technologies are available for achieving successful removal of GCs, associated operational and economic considerations make implementation of these processes unsustainable. Further studies are necessary to resolve the entry routes of GCs compounds into the surface water or drinking water permanently as well as employ sustainable detection and removal technologies.","PeriodicalId":20301,"journal":{"name":"Pollutants","volume":"167 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87936948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-07-01DOI: 10.3390/pollutants1030011
Manoj Hari, R. Sahu, B. Tyagi, Ravi Kaushik
The north Indian states of Haryana and Punjab are believed to be the key sources of air pollution in the National Capital Region due to massive agricultural waste burning in crop harvesting seasons. However, with the pandemic COVID-19 hitting the country, the usual practices were disrupted. COVID-19 preventive lockdown led to restricted vehicular and industrial emissions and caused the labours to leave the agricultural business in Haryana and Punjab. With the changed scenario of 2020, the present study investigates the variations in air quality over the Haryana and Punjab, and their relative impact on the air quality of Delhi. The work attempts to understand the change in agricultural waste burning during 2020 and its implication on the local air quality over both the states and the transported pollution on the national capital Delhi. The study utilises in-situ data for the year 2019–2020 with satellite observations of MODIS aqua/terra for fire counts, aerosol optical depth (AOD) and back-trajectories run by the hybrid single-particle Lagrangian integrated trajectory model (HYSPLIT).
{"title":"Reviewing the Crop Residual Burning and Aerosol Variations during the COVID-19 Pandemic Hit Year 2020 over North India","authors":"Manoj Hari, R. Sahu, B. Tyagi, Ravi Kaushik","doi":"10.3390/pollutants1030011","DOIUrl":"https://doi.org/10.3390/pollutants1030011","url":null,"abstract":"The north Indian states of Haryana and Punjab are believed to be the key sources of air pollution in the National Capital Region due to massive agricultural waste burning in crop harvesting seasons. However, with the pandemic COVID-19 hitting the country, the usual practices were disrupted. COVID-19 preventive lockdown led to restricted vehicular and industrial emissions and caused the labours to leave the agricultural business in Haryana and Punjab. With the changed scenario of 2020, the present study investigates the variations in air quality over the Haryana and Punjab, and their relative impact on the air quality of Delhi. The work attempts to understand the change in agricultural waste burning during 2020 and its implication on the local air quality over both the states and the transported pollution on the national capital Delhi. The study utilises in-situ data for the year 2019–2020 with satellite observations of MODIS aqua/terra for fire counts, aerosol optical depth (AOD) and back-trajectories run by the hybrid single-particle Lagrangian integrated trajectory model (HYSPLIT).","PeriodicalId":20301,"journal":{"name":"Pollutants","volume":"82 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86902005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-23DOI: 10.3390/pollutants1030010
Nnanake-Abasi O. Offiong, E. Inam, H. Etuk, G. Ebong, Akwaowo I. Inyangudoh, Francis Addison
Biochar utilization for environmental remediation applications has become very popular. We investigated the trace metal levels and soil nutrient characteristics of a biochar–humus sediment slurry treatment of a simulated crude oil-contaminated soil in the present work. The results revealed that biochar prepared at moderate pyrolysis temperature (500 °C) could still retain a significantly higher nutrient content than those prepared at high temperatures (700 and 900 °C). Despite the suitability for soil treatment, one-pot treatment studies seem not to be very effective for monitoring trace metal sorption to biochar because trace metals do not biodegrade and remain in the system.
{"title":"Trace Metal Levels and Nutrient Characteristics of Crude Oil-Contaminated Soil Amended with Biochar–Humus Sediment Slurry","authors":"Nnanake-Abasi O. Offiong, E. Inam, H. Etuk, G. Ebong, Akwaowo I. Inyangudoh, Francis Addison","doi":"10.3390/pollutants1030010","DOIUrl":"https://doi.org/10.3390/pollutants1030010","url":null,"abstract":"Biochar utilization for environmental remediation applications has become very popular. We investigated the trace metal levels and soil nutrient characteristics of a biochar–humus sediment slurry treatment of a simulated crude oil-contaminated soil in the present work. The results revealed that biochar prepared at moderate pyrolysis temperature (500 °C) could still retain a significantly higher nutrient content than those prepared at high temperatures (700 and 900 °C). Despite the suitability for soil treatment, one-pot treatment studies seem not to be very effective for monitoring trace metal sorption to biochar because trace metals do not biodegrade and remain in the system.","PeriodicalId":20301,"journal":{"name":"Pollutants","volume":"27 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89911968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-18DOI: 10.3390/pollutants1020009
N. Chaukura, K. Kefeni, I. Chikurunhe, I. Nyambiya, W. Gwenzi, Welldone Moyo, T. Nkambule, B. Mamba, F. Abulude
Microplastics are discharged into the environment through human activities and are persistent in the environment. With the prevalent use of plastic-based personal protective equipment in the prevention of the spread of the COVID-19 virus, the concentration of microplastics in the environment is envisaged to increase. Potential ecological and health risks emanate from their potential to adsorb and transport toxic chemicals, and ease of absorption into the cells of living organisms and interfering with physiological processes. This review (1) discusses sources and pathways through which microplastics enter the environment, (2) evaluates the fate and behavior of microplastics, (3) discusses microplastics in African aquatic systems, and (4) identifies research gaps and recommends remediation strategies. Importantly, while there is significant microplastics pollution in the aquatic environment, pollution in terrestrial systems are not widely studied. Besides, there is a dearth of information on microplastics in African aquatic systems. The paper recommends that the governments and non-governmental organizations should fund research to address knowledge gaps, which include: (1) the environmental fate of microplastics, (2) conducting toxicological studies under environmentally relevant conditions, (3) investigating toxicity mechanisms to biota, and developing mitigation measures to safeguard human health, and (4) investigating pollutants transported by microplastics. Moreover, regulatory measures, along with the circular economy strategies, may help reduce microplastic pollution.
{"title":"Microplastics in the Aquatic Environment—The Occurrence, Sources, Ecological Impacts, Fate, and Remediation Challenges","authors":"N. Chaukura, K. Kefeni, I. Chikurunhe, I. Nyambiya, W. Gwenzi, Welldone Moyo, T. Nkambule, B. Mamba, F. Abulude","doi":"10.3390/pollutants1020009","DOIUrl":"https://doi.org/10.3390/pollutants1020009","url":null,"abstract":"Microplastics are discharged into the environment through human activities and are persistent in the environment. With the prevalent use of plastic-based personal protective equipment in the prevention of the spread of the COVID-19 virus, the concentration of microplastics in the environment is envisaged to increase. Potential ecological and health risks emanate from their potential to adsorb and transport toxic chemicals, and ease of absorption into the cells of living organisms and interfering with physiological processes. This review (1) discusses sources and pathways through which microplastics enter the environment, (2) evaluates the fate and behavior of microplastics, (3) discusses microplastics in African aquatic systems, and (4) identifies research gaps and recommends remediation strategies. Importantly, while there is significant microplastics pollution in the aquatic environment, pollution in terrestrial systems are not widely studied. Besides, there is a dearth of information on microplastics in African aquatic systems. The paper recommends that the governments and non-governmental organizations should fund research to address knowledge gaps, which include: (1) the environmental fate of microplastics, (2) conducting toxicological studies under environmentally relevant conditions, (3) investigating toxicity mechanisms to biota, and developing mitigation measures to safeguard human health, and (4) investigating pollutants transported by microplastics. Moreover, regulatory measures, along with the circular economy strategies, may help reduce microplastic pollution.","PeriodicalId":20301,"journal":{"name":"Pollutants","volume":"150 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78435190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-05-12DOI: 10.3390/POLLUTANTS1020008
I. Rashid, M. I. Rather, S. Khanday
Globally, the frequency of fishkill episodes is increasing, owing to natural and human-induced modification of aquatic ecosystems. A massive fishkill took place on 22 October 2017 along an approximately 1.5 km stretch of the Jhelum River in Srinagar City, India. Thousands of fish died during this specific event, not lasting more than three hours, creating chaos and panic among the local population and government circles. In this context, affected fish were assessed for three morphological parameters, which include skin color, eye appearance, and skin texture. To back our findings, three critical water-quality parameters, including pH, water temperature, and dissolved oxygen essential for the survival of fishes were assessed in the affected river stretch. This study assumes importance given that water-quality observation stations for monitoring the health of the Jhelum River are lacking in the highly urbanized Srinagar City. The morphological examination of fish samples revealed discoloration, bulging eyes, and rough skin texture, indicating chemical contamination of waters in the affected river stretch. The water quality analysis revealed neutral pH (7.2), normal temperature (15.6 °C), and mildly depleted dissolved oxygen (6 mg L−1) levels. While the morphological examination of the affected fish indicated chemical contamination, the physicochemical parameters exhibited a typical scenario of river water. For avoiding any such further incident and to precisely ascertain the cause of such fishkill episodes in future, it is suggested that a few continuous water-quality monitoring sites along Jhelum River should be set up, supplemented with robust ecological modeling simulations.
{"title":"Investigating the 2017 Erratic Fishkill Episode in the Jhelum River, Kashmir Himalaya","authors":"I. Rashid, M. I. Rather, S. Khanday","doi":"10.3390/POLLUTANTS1020008","DOIUrl":"https://doi.org/10.3390/POLLUTANTS1020008","url":null,"abstract":"Globally, the frequency of fishkill episodes is increasing, owing to natural and human-induced modification of aquatic ecosystems. A massive fishkill took place on 22 October 2017 along an approximately 1.5 km stretch of the Jhelum River in Srinagar City, India. Thousands of fish died during this specific event, not lasting more than three hours, creating chaos and panic among the local population and government circles. In this context, affected fish were assessed for three morphological parameters, which include skin color, eye appearance, and skin texture. To back our findings, three critical water-quality parameters, including pH, water temperature, and dissolved oxygen essential for the survival of fishes were assessed in the affected river stretch. This study assumes importance given that water-quality observation stations for monitoring the health of the Jhelum River are lacking in the highly urbanized Srinagar City. The morphological examination of fish samples revealed discoloration, bulging eyes, and rough skin texture, indicating chemical contamination of waters in the affected river stretch. The water quality analysis revealed neutral pH (7.2), normal temperature (15.6 °C), and mildly depleted dissolved oxygen (6 mg L−1) levels. While the morphological examination of the affected fish indicated chemical contamination, the physicochemical parameters exhibited a typical scenario of river water. For avoiding any such further incident and to precisely ascertain the cause of such fishkill episodes in future, it is suggested that a few continuous water-quality monitoring sites along Jhelum River should be set up, supplemented with robust ecological modeling simulations.","PeriodicalId":20301,"journal":{"name":"Pollutants","volume":"86 1","pages":"87-94"},"PeriodicalIF":0.0,"publicationDate":"2021-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76215192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-04-23DOI: 10.3390/POLLUTANTS1020007
Simone Varisco, G. Beretta, L. Raffaelli, Paola Raimondi, D. Pedretti
Groundwater table rising (GTR) represents a well-known issue that affects several urban and agricultural areas of the world. This work addresses the link between GTR and the formation of solute plumes from contaminant sources that are located in the vadose zone, and that water table rising may help mobilize with time. A case study is analyzed in the stratified pyroclastic-alluvial aquifer near Naples (Italy), which is notoriously affected by GTR. A dismissed chemical factory generated a solute plume, which was hydraulically confined by a pump-and-treat (P&T) system. Since 2011, aqueous concentrations of 1,1-dichloroethene (1,1-DCE) have been found to exceed regulatory maximum concentration levels in monitoring wells. It has been hypothesized that a 1,1-DCE source may occur as buried waste that has been flushed with time under GTR. To elucidate this hypothesis and reoptimize the P&T system, flow and transport numerical modeling analysis was developed using site-specific data. The results indicated that the formulated hypothesis is indeed plausible. The model shows that water table peaks were reached in 2011 and 2017, which agree with the 1,1-DCE concentration peaks observed in the site. The model was also able to capture the simultaneous decrease in the water table levels and concentrations between 2011 and 2014. Scenario-based analysis suggests that lowering the water table below the elevation of the hypothesized source is potentially a cost-effective strategy to reschedule the pumping rates of the P&T system.
{"title":"Model-Based Analysis of the Link between Groundwater Table Rising and the Formation of Solute Plumes in a Shallow Stratified Aquifer","authors":"Simone Varisco, G. Beretta, L. Raffaelli, Paola Raimondi, D. Pedretti","doi":"10.3390/POLLUTANTS1020007","DOIUrl":"https://doi.org/10.3390/POLLUTANTS1020007","url":null,"abstract":"Groundwater table rising (GTR) represents a well-known issue that affects several urban and agricultural areas of the world. This work addresses the link between GTR and the formation of solute plumes from contaminant sources that are located in the vadose zone, and that water table rising may help mobilize with time. A case study is analyzed in the stratified pyroclastic-alluvial aquifer near Naples (Italy), which is notoriously affected by GTR. A dismissed chemical factory generated a solute plume, which was hydraulically confined by a pump-and-treat (P&T) system. Since 2011, aqueous concentrations of 1,1-dichloroethene (1,1-DCE) have been found to exceed regulatory maximum concentration levels in monitoring wells. It has been hypothesized that a 1,1-DCE source may occur as buried waste that has been flushed with time under GTR. To elucidate this hypothesis and reoptimize the P&T system, flow and transport numerical modeling analysis was developed using site-specific data. The results indicated that the formulated hypothesis is indeed plausible. The model shows that water table peaks were reached in 2011 and 2017, which agree with the 1,1-DCE concentration peaks observed in the site. The model was also able to capture the simultaneous decrease in the water table levels and concentrations between 2011 and 2014. Scenario-based analysis suggests that lowering the water table below the elevation of the hypothesized source is potentially a cost-effective strategy to reschedule the pumping rates of the P&T system.","PeriodicalId":20301,"journal":{"name":"Pollutants","volume":"104 1","pages":"66-86"},"PeriodicalIF":0.0,"publicationDate":"2021-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80853435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-02-21DOI: 10.3390/POLLUTANTS1010004
K. Forsythe, D. Ford, C. Marvin, R. Shaker, Michael W. MacDonald, R. Wilkinson
Lead sediment contamination in Lake Erie stems from a long history of natural and synthetic resource production. Sediment samples with variable sampling densities were collected by the Canada Centre for Inland Waters in 1971, 1997/1998, and 2014. The kriging interpolation method was used to create continuous sediment contamination surfaces for time/space comparisons. Change detection analyses identified an overall decreasing trend in high lead pollution levels from 1971 to 2014, while sediments with the lowest concentrations increased in surface area. Lake-wide circulation patterns and bathymetric data were added to interpolated contamination surfaces to enhance the understanding of interrelated hydrodynamic processes and geophysical features in the movement of contaminated sediments. Utilizing visualization tools in Esri’s ArcScene, bathymetric data were employed to enhance the geographic context of contamination maps. The physical barriers to sediment transportation created by bathymetric features can be visualized in three-dimensions. Elevated features between lake basins are easily recognized as impedances to lake currents when circulation directions are draped over the bathymetric model. By using illumination tools and techniques, geovisualizations of lead sediment contamination throughout Lake Erie create a scientific communication tool for a wide audience to use in multiple-criteria decision making for environmental remediation of sediment contamination.
{"title":"Multivariable 3D Geovisualization of Historic and Contemporary Lead Sediment Contamination in Lake Erie","authors":"K. Forsythe, D. Ford, C. Marvin, R. Shaker, Michael W. MacDonald, R. Wilkinson","doi":"10.3390/POLLUTANTS1010004","DOIUrl":"https://doi.org/10.3390/POLLUTANTS1010004","url":null,"abstract":"Lead sediment contamination in Lake Erie stems from a long history of natural and synthetic resource production. Sediment samples with variable sampling densities were collected by the Canada Centre for Inland Waters in 1971, 1997/1998, and 2014. The kriging interpolation method was used to create continuous sediment contamination surfaces for time/space comparisons. Change detection analyses identified an overall decreasing trend in high lead pollution levels from 1971 to 2014, while sediments with the lowest concentrations increased in surface area. Lake-wide circulation patterns and bathymetric data were added to interpolated contamination surfaces to enhance the understanding of interrelated hydrodynamic processes and geophysical features in the movement of contaminated sediments. Utilizing visualization tools in Esri’s ArcScene, bathymetric data were employed to enhance the geographic context of contamination maps. The physical barriers to sediment transportation created by bathymetric features can be visualized in three-dimensions. Elevated features between lake basins are easily recognized as impedances to lake currents when circulation directions are draped over the bathymetric model. By using illumination tools and techniques, geovisualizations of lead sediment contamination throughout Lake Erie create a scientific communication tool for a wide audience to use in multiple-criteria decision making for environmental remediation of sediment contamination.","PeriodicalId":20301,"journal":{"name":"Pollutants","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89901020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-06DOI: 10.3390/POLLUTANTS1010002
Zhongzhi Chen, B. Eaton, J. Davies
Canada’s oil sands mining activity produces large volumes of oil sands process-affected water (OSPW), and there have been increasing concerns regarding the potential environmental impacts associated with this material. Developing an understanding of the toxicity of OSPW is critical to anticipating and mitigating the potential risks and effects of the oil sands industry on surrounding ecosystems. The composition of OSPW is highly variable and is influenced by a range of factors. While numerous research projects have been conducted on the toxicity of OSPW, much remains unknown about its impact on various biota. Freshwater gastropods (snails and slugs) are an ecologically crucial aquatic group, and members of this taxa have been used as bioindicators in a range of ecological settings. The literature suggests freshwater snails could be used as an indicator of toxicity in monitoring programs associated with oil sands development. This mini-review explores the use of snails as bioindicators in aquatic systems affected by oil sands development, focusing on how snails may respond to potential constituents of concern in systems exposed to OSPW.
{"title":"The Appropriateness of Using Aquatic Snails as Bioindicators of Toxicity for Oil Sands Process-Affected Water","authors":"Zhongzhi Chen, B. Eaton, J. Davies","doi":"10.3390/POLLUTANTS1010002","DOIUrl":"https://doi.org/10.3390/POLLUTANTS1010002","url":null,"abstract":"Canada’s oil sands mining activity produces large volumes of oil sands process-affected water (OSPW), and there have been increasing concerns regarding the potential environmental impacts associated with this material. Developing an understanding of the toxicity of OSPW is critical to anticipating and mitigating the potential risks and effects of the oil sands industry on surrounding ecosystems. The composition of OSPW is highly variable and is influenced by a range of factors. While numerous research projects have been conducted on the toxicity of OSPW, much remains unknown about its impact on various biota. Freshwater gastropods (snails and slugs) are an ecologically crucial aquatic group, and members of this taxa have been used as bioindicators in a range of ecological settings. The literature suggests freshwater snails could be used as an indicator of toxicity in monitoring programs associated with oil sands development. This mini-review explores the use of snails as bioindicators in aquatic systems affected by oil sands development, focusing on how snails may respond to potential constituents of concern in systems exposed to OSPW.","PeriodicalId":20301,"journal":{"name":"Pollutants","volume":"146 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88638028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-12-24DOI: 10.3390/pollutants1010001
M. Jafarova, A. Vannini, F. Monaci, S. Loppi
This study investigated whether moderate soil contamination by Cd and Pb may negatively affect seed germination, photosynthesis and foliar accumulation in the medicinal plant Hypericum perforatum. Seeds were incubated with Cd and Pb solutions of 10 and 100 µM, and two-month-old plants were watered weekly for three weeks with the same solutions. Control samples were treated with deionized water. The percentage of seed germination and seedling length, as well as chlorophyll content, chlorophyll fluorescence and foliar reflectance, were measured, along with the foliar Cd and Pb concentrations. The results indicated that seed germination is not affected, while seedling length is decreased by approximately 81% by high Cd levels. Cadmium was subjected to foliar translocation from the soil depending on the supplied concentration, thus causing reductions in the chlorophyll content (−24%). It is of interest that foliar Cd levels in Cd-treated plants were close to or above the limit for the European Pharmacopoeia. Negative effects of Pb were not detected, but accumulation and blockage of this metal at the root level, although not approached experimentally, cannot be ruled out.
{"title":"Influence of Moderate Cd and Pb Soil Pollution on Seed Development, Photosynthetic Performance and Foliar Accumulation in the Medicinal Plant Hypericum perforatum","authors":"M. Jafarova, A. Vannini, F. Monaci, S. Loppi","doi":"10.3390/pollutants1010001","DOIUrl":"https://doi.org/10.3390/pollutants1010001","url":null,"abstract":"This study investigated whether moderate soil contamination by Cd and Pb may negatively affect seed germination, photosynthesis and foliar accumulation in the medicinal plant Hypericum perforatum. Seeds were incubated with Cd and Pb solutions of 10 and 100 µM, and two-month-old plants were watered weekly for three weeks with the same solutions. Control samples were treated with deionized water. The percentage of seed germination and seedling length, as well as chlorophyll content, chlorophyll fluorescence and foliar reflectance, were measured, along with the foliar Cd and Pb concentrations. The results indicated that seed germination is not affected, while seedling length is decreased by approximately 81% by high Cd levels. Cadmium was subjected to foliar translocation from the soil depending on the supplied concentration, thus causing reductions in the chlorophyll content (−24%). It is of interest that foliar Cd levels in Cd-treated plants were close to or above the limit for the European Pharmacopoeia. Negative effects of Pb were not detected, but accumulation and blockage of this metal at the root level, although not approached experimentally, cannot be ruled out.","PeriodicalId":20301,"journal":{"name":"Pollutants","volume":"27 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81746743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-11-21DOI: 10.7287/PEERJ.PREPRINTS.27372V1
T. Walker
To curb greenhouse gas emissions and reduce concentrations of toxic substances in Canada’s atmosphere, many pieces of environment legislation are targeted at reducing industrial emissions. Traditional regulation prescribes penalties through fines to discourage industries from polluting, but in the past two decades, alternative forms of environmental regulation like the National Pollutant Release Inventory (NPRI) have been introduced. NPRI is an information management tool which requires industries to self-report emissions data based on a set of guidelines determined by Environment and Climate Change Canada, a federal agency. The tool works to inform the public regarding industry emissions and provides a large database that can be analyzed by researchers and regulators to inform emissions trends in Canada. These tools have seen some success in other jurisdictions (e.g., United States and Australia). However, some research assessing the U.S Toxic Release Inventory suggests there are fundamental weaknesses in the self-reported nature of the data, and incidences of under-reporting. This preliminary study aimed to explore NPRI in Canada and test its effectiveness against the National Air Pollutant Surveillance Network (NAPS), an air quality monitoring program administered by the federal government. While instances of under-reporting were undetected, their study identified areas of weakness in the NPRI tool and instances of increasing emissions across various industrial sectors in Canada.
为了遏制温室气体排放和降低加拿大大气中有毒物质的浓度,许多环境立法都以减少工业排放为目标。传统的监管规定通过罚款来阻止工业污染,但在过去二十年中,引入了其他形式的环境监管,如国家污染物排放清单(NPRI)。NPRI是一种信息管理工具,它要求各行业根据联邦机构加拿大环境与气候变化局(Environment and Climate Change Canada)制定的一套指导方针自行报告排放数据。该工具旨在向公众提供有关工业排放的信息,并提供一个大型数据库,供研究人员和监管机构分析,以了解加拿大的排放趋势。这些工具在其他司法管辖区(例如美国和澳大利亚)取得了一些成功。然而,一些评估美国有毒物质释放清单的研究表明,在数据的自我报告性质和低报发生率方面存在根本性的弱点。这项初步研究旨在探索加拿大的NPRI,并测试其对国家空气污染物监测网(nap)的有效性,nap是由联邦政府管理的空气质量监测计划。虽然未发现漏报的情况,但他们的研究发现了NPRI工具的薄弱环节,以及加拿大各工业部门排放增加的情况。
{"title":"Effectiveness of the national pollutant release inventory as a policy tool to curb atmospheric industrial emissions in Canada","authors":"T. Walker","doi":"10.7287/PEERJ.PREPRINTS.27372V1","DOIUrl":"https://doi.org/10.7287/PEERJ.PREPRINTS.27372V1","url":null,"abstract":"To curb greenhouse gas emissions and reduce concentrations of toxic substances in Canada’s atmosphere, many pieces of environment legislation are targeted at reducing industrial emissions. Traditional regulation prescribes penalties through fines to discourage industries from polluting, but in the past two decades, alternative forms of environmental regulation like the National Pollutant Release Inventory (NPRI) have been introduced. NPRI is an information management tool which requires industries to self-report emissions data based on a set of guidelines determined by Environment and Climate Change Canada, a federal agency. The tool works to inform the public regarding industry emissions and provides a large database that can be analyzed by researchers and regulators to inform emissions trends in Canada. These tools have seen some success in other jurisdictions (e.g., United States and Australia). However, some research assessing the U.S Toxic Release Inventory suggests there are fundamental weaknesses in the self-reported nature of the data, and incidences of under-reporting. This preliminary study aimed to explore NPRI in Canada and test its effectiveness against the National Air Pollutant Surveillance Network (NAPS), an air quality monitoring program administered by the federal government. While instances of under-reporting were undetected, their study identified areas of weakness in the NPRI tool and instances of increasing emissions across various industrial sectors in Canada.","PeriodicalId":20301,"journal":{"name":"Pollutants","volume":"2 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79704528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}