Pub Date : 2023-09-05DOI: 10.3390/pollutants3030029
A. Jakubowska
The aim of the research presented here is to assess the magnitude of the burden of health limitations due to air pollution on the world’s economies. This burden was determined by the estimated number of premature years of life lost (YLLs) or years of health lost (YLDs) due to air-pollution-related diseases in the working-age population. Attention was drawn to the problem of existing inequalities in the global burden between economies with different income levels. The hypothesis of persistently high levels of inequality was tested by analysing the convergence process in a group of 204 countries over the period 1990–2019. The results indicate a high degree of variation in the level of health problems caused by air pollution. The analysis of the catching-up process of the most disadvantaged countries (with the highest level of health impacts from air pollution) did not show a positive convergence effect in the study group.
{"title":"The Burden of Air Pollution: A Perspective on Global Health Inequalities","authors":"A. Jakubowska","doi":"10.3390/pollutants3030029","DOIUrl":"https://doi.org/10.3390/pollutants3030029","url":null,"abstract":"The aim of the research presented here is to assess the magnitude of the burden of health limitations due to air pollution on the world’s economies. This burden was determined by the estimated number of premature years of life lost (YLLs) or years of health lost (YLDs) due to air-pollution-related diseases in the working-age population. Attention was drawn to the problem of existing inequalities in the global burden between economies with different income levels. The hypothesis of persistently high levels of inequality was tested by analysing the convergence process in a group of 204 countries over the period 1990–2019. The results indicate a high degree of variation in the level of health problems caused by air pollution. The analysis of the catching-up process of the most disadvantaged countries (with the highest level of health impacts from air pollution) did not show a positive convergence effect in the study group.","PeriodicalId":20301,"journal":{"name":"Pollutants","volume":"535 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77450522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-04DOI: 10.3390/pollutants3030028
C. Yap, Sarini Ahmad Wakid, Jia Ming Chew, Jumria Sutra, W. M. Syazwan, Nor Azwady Abd Aziz, Muskhazli Mustafa, R. Nulit, Hideo Okamura, Y. Horie, Meng Chuan Ong, M. S. Ismail, Ahmad Dwi Setyawan, K. Kumar, Hesham M. H. Zakaly, W. Cheng
The green-lipped mussel Perna viridis’ sensitive nature and characteristic as a benthos organism that filters the sediment in its environment make it one of the possible bioindicators for pollution in the aquatic ecosystem. The present study aimed to determine the percentages of total shell deformities in comparison to the past data in the coastal waters of Peninsular Malaysia. It was found that several types of discontinuous, continuous, and unexplained shell abnormalities contributed to the overall range of shell deformities of 15.8–87.5%, which was greater in comparison to that (0.0–36.8%). The present study showed that the highest overall proportion of shell abnormalities occurred in Teluk Jawa, whereas the lowest percentages were found in Kampung (Kg.) Pasir Puteh. The regulative mechanisms at the well-known polluted sites at Kg. Pasir Puteh could be the explanation. Further research should be conducted to determine the degree of heavy metal that may be the source of these malformations in the mussel shells.
{"title":"Shell Deformities in the Green-Lipped Mussel Perna viridis: Occurrence and Potential Environmental Stresses on the West Coast of Peninsular Malaysia","authors":"C. Yap, Sarini Ahmad Wakid, Jia Ming Chew, Jumria Sutra, W. M. Syazwan, Nor Azwady Abd Aziz, Muskhazli Mustafa, R. Nulit, Hideo Okamura, Y. Horie, Meng Chuan Ong, M. S. Ismail, Ahmad Dwi Setyawan, K. Kumar, Hesham M. H. Zakaly, W. Cheng","doi":"10.3390/pollutants3030028","DOIUrl":"https://doi.org/10.3390/pollutants3030028","url":null,"abstract":"The green-lipped mussel Perna viridis’ sensitive nature and characteristic as a benthos organism that filters the sediment in its environment make it one of the possible bioindicators for pollution in the aquatic ecosystem. The present study aimed to determine the percentages of total shell deformities in comparison to the past data in the coastal waters of Peninsular Malaysia. It was found that several types of discontinuous, continuous, and unexplained shell abnormalities contributed to the overall range of shell deformities of 15.8–87.5%, which was greater in comparison to that (0.0–36.8%). The present study showed that the highest overall proportion of shell abnormalities occurred in Teluk Jawa, whereas the lowest percentages were found in Kampung (Kg.) Pasir Puteh. The regulative mechanisms at the well-known polluted sites at Kg. Pasir Puteh could be the explanation. Further research should be conducted to determine the degree of heavy metal that may be the source of these malformations in the mussel shells.","PeriodicalId":20301,"journal":{"name":"Pollutants","volume":"75 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83224340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-27DOI: 10.3390/pollutants3030027
P. Parmar, H. Niculita‐Hirzel
Biofilms play a crucial role in absorbing various metals from water, including copper, lead, iron, chromium, nickel, zinc, cadmium, and barium. While their presence was revealed in shower system biofilms, the factors affecting metal accumulation in shower system biofilms were poorly explored. This study aimed to investigate the capacity of shower hose biofilms to accumulate heavy metals, in particular in biofilms growing in energy-efficient showerhead systems, and evaluate the potential emission in water and aerosols of metal pollutants during showering. The adsorption efficiency of various metals in biofilms was assessed by ICP/MS and revealed that biofilms accumulate metals as they age and as biofilm biomass increases, indicating a potential influence of heavy metals on biofilm ecology. Furthermore, the study examined the emission of heavy metals during showering and found that it was sporadic and limited primarily to copper and zinc. These findings raise concerns regarding the role of biofilms in both retaining and releasing metal contaminants in water distribution systems, as well as the associated risk of inhalation during showering. By shedding light on the accumulation dynamics of heavy metals in shower hose biofilms and their potential emission patterns, this research highlights the need for further investigation into the impact of biofilms on water quality and human exposure to metal pollutants. The findings underscore the importance of considering biofilm-related processes when addressing the overall management of heavy metal contamination in shower systems and its potential implications for public health.
{"title":"The Accumulation of Heavy Metals in Shower System Biofilms: Implications for Emissions and Indoor Human Exposure","authors":"P. Parmar, H. Niculita‐Hirzel","doi":"10.3390/pollutants3030027","DOIUrl":"https://doi.org/10.3390/pollutants3030027","url":null,"abstract":"Biofilms play a crucial role in absorbing various metals from water, including copper, lead, iron, chromium, nickel, zinc, cadmium, and barium. While their presence was revealed in shower system biofilms, the factors affecting metal accumulation in shower system biofilms were poorly explored. This study aimed to investigate the capacity of shower hose biofilms to accumulate heavy metals, in particular in biofilms growing in energy-efficient showerhead systems, and evaluate the potential emission in water and aerosols of metal pollutants during showering. The adsorption efficiency of various metals in biofilms was assessed by ICP/MS and revealed that biofilms accumulate metals as they age and as biofilm biomass increases, indicating a potential influence of heavy metals on biofilm ecology. Furthermore, the study examined the emission of heavy metals during showering and found that it was sporadic and limited primarily to copper and zinc. These findings raise concerns regarding the role of biofilms in both retaining and releasing metal contaminants in water distribution systems, as well as the associated risk of inhalation during showering. By shedding light on the accumulation dynamics of heavy metals in shower hose biofilms and their potential emission patterns, this research highlights the need for further investigation into the impact of biofilms on water quality and human exposure to metal pollutants. The findings underscore the importance of considering biofilm-related processes when addressing the overall management of heavy metal contamination in shower systems and its potential implications for public health.","PeriodicalId":20301,"journal":{"name":"Pollutants","volume":"50 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91138128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-15DOI: 10.3390/pollutants3030026
Md. Shareful Hassan, Reeju F. L. Gomes, M. A. H. Bhuiyan, M. T. Rahman
The major industrial cities of Bangladesh are experiencing significant air-pollution-related problems due to the increased trend of particulate matter (PM2.5) and other pollutants. This paper aimed to investigate and understand the relationship between PM2.5 and land use and climatic variables to identify the riskiest areas and population groups using a geographic information system and regression analysis. The results show that about 41% of PM2.5 concentration (μg/m3) increased within 19 years (2002–2021) in the study area, while the highest concentration of PM2.5 was found from 2012 to 2021. The concentrations of PM2.5 were higher over barren lands, forests, croplands, and urban areas. From 2002–2021, the concentration increased by about 64%, 62.7%, 57%, and 55% (μg/m3) annually over barren lands, forests, cropland, and urban regions. The highest concentration level of PM2.5 (84 μg/m3) among other land use classes was found in urban areas in 2021. The regression analysis shows that air pressure (hPa) (r2 = −0.26), evaporation (kg m−2) (r2 = −0.01), humidity (kg m−2) (r2 = −0.22), rainfall (mm/h) (r2 = −0.20), and water vapor (kg m−2) (r2 = −0.03) were negatively correlated with PM2.5. On the other hand, air temperature (k) (r2 = 0.24), ground heat (W m−2) (r2 = 0.60), and wind speed (m s−1) (r2 = 0.34) were positively correlated with PM2.5. More than 60 Upazilas were included in the most polluted areas, with a total population of 11,260,162 in the high-risk/hotspot zone (1,948,029 aged 0–5, 485,407 aged 50–69). Governmental departments along with policymakers, stainable development practitioners, academicians, and others may use the main results of the paper for integrated air pollution mitigation and management in Bangladesh as well as in other geographical settings worldwide.
{"title":"Land Use and the Climatic Determinants of Population Exposure to PM2.5 in Central Bangladesh","authors":"Md. Shareful Hassan, Reeju F. L. Gomes, M. A. H. Bhuiyan, M. T. Rahman","doi":"10.3390/pollutants3030026","DOIUrl":"https://doi.org/10.3390/pollutants3030026","url":null,"abstract":"The major industrial cities of Bangladesh are experiencing significant air-pollution-related problems due to the increased trend of particulate matter (PM2.5) and other pollutants. This paper aimed to investigate and understand the relationship between PM2.5 and land use and climatic variables to identify the riskiest areas and population groups using a geographic information system and regression analysis. The results show that about 41% of PM2.5 concentration (μg/m3) increased within 19 years (2002–2021) in the study area, while the highest concentration of PM2.5 was found from 2012 to 2021. The concentrations of PM2.5 were higher over barren lands, forests, croplands, and urban areas. From 2002–2021, the concentration increased by about 64%, 62.7%, 57%, and 55% (μg/m3) annually over barren lands, forests, cropland, and urban regions. The highest concentration level of PM2.5 (84 μg/m3) among other land use classes was found in urban areas in 2021. The regression analysis shows that air pressure (hPa) (r2 = −0.26), evaporation (kg m−2) (r2 = −0.01), humidity (kg m−2) (r2 = −0.22), rainfall (mm/h) (r2 = −0.20), and water vapor (kg m−2) (r2 = −0.03) were negatively correlated with PM2.5. On the other hand, air temperature (k) (r2 = 0.24), ground heat (W m−2) (r2 = 0.60), and wind speed (m s−1) (r2 = 0.34) were positively correlated with PM2.5. More than 60 Upazilas were included in the most polluted areas, with a total population of 11,260,162 in the high-risk/hotspot zone (1,948,029 aged 0–5, 485,407 aged 50–69). Governmental departments along with policymakers, stainable development practitioners, academicians, and others may use the main results of the paper for integrated air pollution mitigation and management in Bangladesh as well as in other geographical settings worldwide.","PeriodicalId":20301,"journal":{"name":"Pollutants","volume":"26 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81881804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-01DOI: 10.3390/pollutants3030025
P. Prakash, S. S
Heavy metal pollution is one of the major global issues arising from various anthropogenic activities. The natural habitat and human health may be at peril from heavy metal exposure since they are tenacious, bio-accumulative, and non-biodegradable. Therefore, eradicating heavy metals from the soil ecosystem is a crucial responsibility to create a secure, viable, and zero-waste ecosystem. There are numerous techniques for eliminating heavy metals from the environment, but each has its own benefits and drawbacks. When a biological agent is used to degrade pollutants, this process is called bioremediation. Nano-phytoremediation, an emerging bioremediation approach in the field of nanotechnology, uses biosynthesized nanoparticles and plant species for the removal of toxic heavy metals from the environment. It is an efficient, economical, and environmentally friendly technique. The adverse consequences of metal exposure on different plant species have been discovered to be greatly reduced by engineered nanomaterials. Because of their tiny dimensions and huge surface area, nanomaterials have an attraction towards metals and can thus quickly enter the contaminated zone of ecosystems that are metal-challenged. The current review provides an overview of various aspects of nano-phytoremediation for heavy metal remediation.
{"title":"Nano-Phytoremediation of Heavy Metals from Soil: A Critical Review","authors":"P. Prakash, S. S","doi":"10.3390/pollutants3030025","DOIUrl":"https://doi.org/10.3390/pollutants3030025","url":null,"abstract":"Heavy metal pollution is one of the major global issues arising from various anthropogenic activities. The natural habitat and human health may be at peril from heavy metal exposure since they are tenacious, bio-accumulative, and non-biodegradable. Therefore, eradicating heavy metals from the soil ecosystem is a crucial responsibility to create a secure, viable, and zero-waste ecosystem. There are numerous techniques for eliminating heavy metals from the environment, but each has its own benefits and drawbacks. When a biological agent is used to degrade pollutants, this process is called bioremediation. Nano-phytoremediation, an emerging bioremediation approach in the field of nanotechnology, uses biosynthesized nanoparticles and plant species for the removal of toxic heavy metals from the environment. It is an efficient, economical, and environmentally friendly technique. The adverse consequences of metal exposure on different plant species have been discovered to be greatly reduced by engineered nanomaterials. Because of their tiny dimensions and huge surface area, nanomaterials have an attraction towards metals and can thus quickly enter the contaminated zone of ecosystems that are metal-challenged. The current review provides an overview of various aspects of nano-phytoremediation for heavy metal remediation.","PeriodicalId":20301,"journal":{"name":"Pollutants","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90073100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-26DOI: 10.3390/pollutants3030024
R. Jiménez-Ballesta, F. García-Navarro, J. Amorós, C. Pérez-de-los-Reyes, S. Bravo
Arsenic (As), a widely distributed metalloid in the Earth’s crust, constitutes one of the most significant environmental contaminants today. This study was carried out to determine As concentrations in the soils of a Castilla La Mancha (CLM; Spain) benchmark collection that represents all the soil orders (soil taxonomy) in this territory. It also examined vine plant tolerance to As in relation to soil concentration. For this purpose, soils and leaves from vineyards were collected from 10 locations in the CLM community. The bioconcentration factor (BCF) of As in vineyards was assessed. The results of the present study show that As content in soils is widely variable, and is fundamentally related to soil type and parent material. The most surprising point is that, although some vineyards have been treated with As derivatives, the vast majority of them do not accumulate any amount of As. This important finding must be used to enhance the quality of the final obtained product: wine. In other words, CLM wines are not at risk of As contamination and must, therefore, be clean wines. Our results suggest that CLM vineyards are clean of contamination by As because this element in leaves reveals null vine capacity to accumulate As, a process that derives from scarce As in soils and the traditional practices carried out by winegrowers.
砷(As)是一种广泛分布于地壳中的类金属,是当今最重要的环境污染物之一。本研究对卡斯蒂亚拉曼查(Castilla La Mancha, CLM)土壤中的砷含量进行了测定;西班牙)代表该地区所有土壤分类(土壤分类)的基准收集。它还研究了葡萄植株对砷的耐受性与土壤浓度的关系。为此,从CLM社区的10个地点收集了葡萄园的土壤和叶子。测定了砷在葡萄园中的生物富集系数(BCF)。研究结果表明,土壤中砷的含量变化很大,并与土壤类型和母质有关。最令人惊讶的一点是,尽管一些葡萄园已经使用了As衍生物,但绝大多数葡萄园并没有积累任何数量的As。这一重要发现必须用于提高最终获得的产品:葡萄酒的质量。换句话说,CLM葡萄酒没有砷污染的风险,因此必须是干净的葡萄酒。我们的研究结果表明,CLM葡萄园没有受到砷的污染,因为叶片中的砷元素表明葡萄树没有积累砷的能力,这一过程源于土壤中砷的稀缺和葡萄种植者的传统做法。
{"title":"On the Scarce Occurrence of Arsenic in Vineyard Soils of Castilla La Mancha: Between the Null Tolerance of Vine Plants and Clean Vineyards","authors":"R. Jiménez-Ballesta, F. García-Navarro, J. Amorós, C. Pérez-de-los-Reyes, S. Bravo","doi":"10.3390/pollutants3030024","DOIUrl":"https://doi.org/10.3390/pollutants3030024","url":null,"abstract":"Arsenic (As), a widely distributed metalloid in the Earth’s crust, constitutes one of the most significant environmental contaminants today. This study was carried out to determine As concentrations in the soils of a Castilla La Mancha (CLM; Spain) benchmark collection that represents all the soil orders (soil taxonomy) in this territory. It also examined vine plant tolerance to As in relation to soil concentration. For this purpose, soils and leaves from vineyards were collected from 10 locations in the CLM community. The bioconcentration factor (BCF) of As in vineyards was assessed. The results of the present study show that As content in soils is widely variable, and is fundamentally related to soil type and parent material. The most surprising point is that, although some vineyards have been treated with As derivatives, the vast majority of them do not accumulate any amount of As. This important finding must be used to enhance the quality of the final obtained product: wine. In other words, CLM wines are not at risk of As contamination and must, therefore, be clean wines. Our results suggest that CLM vineyards are clean of contamination by As because this element in leaves reveals null vine capacity to accumulate As, a process that derives from scarce As in soils and the traditional practices carried out by winegrowers.","PeriodicalId":20301,"journal":{"name":"Pollutants","volume":"812 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88829640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-06DOI: 10.3390/pollutants3030023
S. Fränzle
Analyses of mosses and lichens provide some information on the contents of both particulate and dissolved (from hydrometeors including snow and flooding) metal ions and other elements like As and Sb in the local environment. However, this information is compromised by rarity (and thus duly legal protection) of suitable species (particularly lichens) for regular sampling and also by poorly understood mechanisms of binding. Hence, it is crucial to find an alternative that does not harm or kill rare and/or protected organisms for sampling purposes while providing data that can be traced to environmental levels (e.g., metal ions in water) in a comprehensible way. Studying the coordination of aq. metal ions on some biogenic surface which can form ligating bonds to these ions provides such information. The most abundant and thus cheap such biopolymer acting as both a possible ligand and a water- (or environment-)biomass interface is chitin. Data from chitin exposed in either water, common sandy sediments, and ferric gels delivered by Fe-oxidizing bacteria are processed to understand adsorption in quantitative terms depending on local conditions, accounting for observed BCFs >> 1 for certain elements (Bi, V, LREEs). Slopes of functions that describe the increase of retention of some element upon increasing aq. concentrations allow us to construct (a) some function giving BCF by numerical integration, (b) predict the behavior of other elements for which certain parameters guiding complex formation are known as well. It turns out that top sensitivities (maximum BCF- or partition factor) values are reached with different elements depending on the environment the chitin sample was exposed to. PF can extend the detection and determination of many elements below levels directly observable in water or sediments. The detection of fallout radionuclides on chitin is even more sensitive (by a factor of 20–25) because of omitting dilution in workup by direct observation of γ radiation.
{"title":"Metal Ions, Element Speciation Forms Retained on Wet Chitin: Quantitative Aspects of Adsorption and Implications for Biomonitoring and Environmental Technology","authors":"S. Fränzle","doi":"10.3390/pollutants3030023","DOIUrl":"https://doi.org/10.3390/pollutants3030023","url":null,"abstract":"Analyses of mosses and lichens provide some information on the contents of both particulate and dissolved (from hydrometeors including snow and flooding) metal ions and other elements like As and Sb in the local environment. However, this information is compromised by rarity (and thus duly legal protection) of suitable species (particularly lichens) for regular sampling and also by poorly understood mechanisms of binding. Hence, it is crucial to find an alternative that does not harm or kill rare and/or protected organisms for sampling purposes while providing data that can be traced to environmental levels (e.g., metal ions in water) in a comprehensible way. Studying the coordination of aq. metal ions on some biogenic surface which can form ligating bonds to these ions provides such information. The most abundant and thus cheap such biopolymer acting as both a possible ligand and a water- (or environment-)biomass interface is chitin. Data from chitin exposed in either water, common sandy sediments, and ferric gels delivered by Fe-oxidizing bacteria are processed to understand adsorption in quantitative terms depending on local conditions, accounting for observed BCFs >> 1 for certain elements (Bi, V, LREEs). Slopes of functions that describe the increase of retention of some element upon increasing aq. concentrations allow us to construct (a) some function giving BCF by numerical integration, (b) predict the behavior of other elements for which certain parameters guiding complex formation are known as well. It turns out that top sensitivities (maximum BCF- or partition factor) values are reached with different elements depending on the environment the chitin sample was exposed to. PF can extend the detection and determination of many elements below levels directly observable in water or sediments. The detection of fallout radionuclides on chitin is even more sensitive (by a factor of 20–25) because of omitting dilution in workup by direct observation of γ radiation.","PeriodicalId":20301,"journal":{"name":"Pollutants","volume":"18 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89389504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-05DOI: 10.3390/pollutants3030022
R. Vermeulen, L. Petrick, M.A.A.M. van Gerwen, Andrea De Giovanni, V. Iannuzzi, Gianni Gallello, C. Giuliani, M. Marini, M. L. Cervera, D. Luiselli
Seafood constitutes the primary source of exposure to the organic form of mercury in the general population, and the Trieste Gulf is considered a hotspot of mercury contamination. We used a newly developed quantitative food frequency questionnaire to obtain an estimation of the intake of mercury through seafood consumption in a sample of 32 individuals from Trieste. Then, we validated the results obtained from the questionnaire against those of the analysis of total mercury measured in the hair of the same individuals through Spearman rank correlation coefficients, Cohen’s weighted Kappa statistic, and a Bland–Altman plot. The Spearman rank correlation coefficient and Cohen’s weighted Kappa statistic were 0.76 and 0.69, respectively. In the Bland–Altman plot, 93.75% of the data points lay within the acceptability range. The plot revealed an ever-increasing overestimation of mercury intake by the questionnaires as the hair mercury increased. By applying a standardized filtering procedure to the results of the questionnaires, we obtained a Spearman rank correlation coefficient and Cohen’s weighted Kappa statistic of 0.69 and 0.57, respectively. In this Bland–Altman plot, 93.75% of the data points lay within the acceptability range. In this latter plot, the proportionality between the mean difference and the magnitude of the measurement was more subtle compared to that observed in the plot built upon the non-filtered questionnaires. This preliminary study shows the high accuracy of the reported questionnaire in the estimation of habitual mercury intake, similar to the one measured through the analysis of hair.
{"title":"Mercury Intake Estimation in Adult Individuals from Trieste, Italy: Hair Mercury Assessment and Validation of a Newly Developed Food Frequency Questionnaire","authors":"R. Vermeulen, L. Petrick, M.A.A.M. van Gerwen, Andrea De Giovanni, V. Iannuzzi, Gianni Gallello, C. Giuliani, M. Marini, M. L. Cervera, D. Luiselli","doi":"10.3390/pollutants3030022","DOIUrl":"https://doi.org/10.3390/pollutants3030022","url":null,"abstract":"Seafood constitutes the primary source of exposure to the organic form of mercury in the general population, and the Trieste Gulf is considered a hotspot of mercury contamination. We used a newly developed quantitative food frequency questionnaire to obtain an estimation of the intake of mercury through seafood consumption in a sample of 32 individuals from Trieste. Then, we validated the results obtained from the questionnaire against those of the analysis of total mercury measured in the hair of the same individuals through Spearman rank correlation coefficients, Cohen’s weighted Kappa statistic, and a Bland–Altman plot. The Spearman rank correlation coefficient and Cohen’s weighted Kappa statistic were 0.76 and 0.69, respectively. In the Bland–Altman plot, 93.75% of the data points lay within the acceptability range. The plot revealed an ever-increasing overestimation of mercury intake by the questionnaires as the hair mercury increased. By applying a standardized filtering procedure to the results of the questionnaires, we obtained a Spearman rank correlation coefficient and Cohen’s weighted Kappa statistic of 0.69 and 0.57, respectively. In this Bland–Altman plot, 93.75% of the data points lay within the acceptability range. In this latter plot, the proportionality between the mean difference and the magnitude of the measurement was more subtle compared to that observed in the plot built upon the non-filtered questionnaires. This preliminary study shows the high accuracy of the reported questionnaire in the estimation of habitual mercury intake, similar to the one measured through the analysis of hair.","PeriodicalId":20301,"journal":{"name":"Pollutants","volume":"21 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85192404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This state-of-the-art review is designed to provide a factual analysis of indoor air pollution in Pakistan. Primarily, the main sources of indoor air pollution and related air pollutants were analyzed. Key sources of indoor air pollution include household energy sources (biomass, wood, coal, tobacco, and low temperatures) producing particulate matter (PM), dust particles, smoke, COx, noxious gases, bioaerosols, airborne microflora, and flame retardants. According to the literature, rural regions of Pakistan using biomass indoor fuels have a high indoor PM concentration in the range of 4000–9000 μg/m3. In rural/urban regions, indoor smoking also leads to high PM2.5 levels of ~1800 μg/m3, which can cause pulmonary infections. In hospitals, PM concentrations were detected up to 1000 μg/m3, causing repeated infections in patients. Indoor ingestion of dust containing polychlorinated biphenyl concentrations was observed at high levels (~8.79–34.39 ng/g) in cities; this can cause serious health effects such as cancer risks and a loss of working productivity. Moreover, indoor microflora and bacteria (~10,000–15,000 cfu m−3) in urban/rural regions cause respiratory/cancer risks. In this context, indoor air quality (IAQ) monitoring and management strategies have been somewhat developed; however, their implementation in Pakistan’s rural/urban indoor environments is still needed. Various challenges were identified for monitoring/regulating IAQ. There is a firm need for industry–academia–research cooperation and for the involvement of government/agencies to support indoor air pollution control/management and for intervention strategies.
{"title":"Impact of Indoor Air Pollution in Pakistan—Causes and Management","authors":"Ayesha Kausar, Ishaq Ahmad, Tianle Zhu, Hassan Shahzad","doi":"10.3390/pollutants3020021","DOIUrl":"https://doi.org/10.3390/pollutants3020021","url":null,"abstract":"This state-of-the-art review is designed to provide a factual analysis of indoor air pollution in Pakistan. Primarily, the main sources of indoor air pollution and related air pollutants were analyzed. Key sources of indoor air pollution include household energy sources (biomass, wood, coal, tobacco, and low temperatures) producing particulate matter (PM), dust particles, smoke, COx, noxious gases, bioaerosols, airborne microflora, and flame retardants. According to the literature, rural regions of Pakistan using biomass indoor fuels have a high indoor PM concentration in the range of 4000–9000 μg/m3. In rural/urban regions, indoor smoking also leads to high PM2.5 levels of ~1800 μg/m3, which can cause pulmonary infections. In hospitals, PM concentrations were detected up to 1000 μg/m3, causing repeated infections in patients. Indoor ingestion of dust containing polychlorinated biphenyl concentrations was observed at high levels (~8.79–34.39 ng/g) in cities; this can cause serious health effects such as cancer risks and a loss of working productivity. Moreover, indoor microflora and bacteria (~10,000–15,000 cfu m−3) in urban/rural regions cause respiratory/cancer risks. In this context, indoor air quality (IAQ) monitoring and management strategies have been somewhat developed; however, their implementation in Pakistan’s rural/urban indoor environments is still needed. Various challenges were identified for monitoring/regulating IAQ. There is a firm need for industry–academia–research cooperation and for the involvement of government/agencies to support indoor air pollution control/management and for intervention strategies.","PeriodicalId":20301,"journal":{"name":"Pollutants","volume":"28 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81959222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-01DOI: 10.3390/pollutants3020020
Marina Ziliotto, Bruna Kulmann-Leal, Alice Roitman, J. A. Bogo Chies, J. Ellwanger
The Brazilian Pampa biome covers half of Rio Grande do Sul state, in the extreme south of Brazil, creating an ecotone zone with the Atlantic Forest and bordering Pampa’s territory belonging to Uruguay and Argentina. Pampa is a non-forest biome mainly composed of grasslands and mosaics of grassland-forest vegetation. This biome shows significant animal and plant diversity, contributing to the maintenance of important ecosystem services, including CO2 capture, pollination, and water cycle regulation. However, forestry plantations, inappropriate cattle ranching, mining activities, unplanned urbanization, and the cultivation of monocultures (soy, rice, tobacco, and other cash crops) significantly threaten the conservation of the Pampa biome. A major problem observed in the Pampa, due to the great connection of this biome with agricultural areas, is pesticide pollution, which significantly affects the health of humans and animals that occupy the region. A robust body of evidence indicates that aquatic and terrestrial ecosystems in the Brazilian Pampa are extensively contaminated with pesticides, as indicated by studies involving animal biomarkers and pesticide analyses performed on water and soil samples. Human studies also suggest that pesticides affect different body systems, facilitating the onset of various chronic diseases. Brazil’s conservation actions and policies have a special focus on forest ecosystems, neglecting non-forest biomes and thus aggravating the problems related to Pampa’s conservation. In this article, we discuss some problems caused by pesticide pollution in the Brazilian Pampa, drawing attention to the need for intensification of policies focused on the promotion of human and environmental health. Finally, we suggest the bioecological bioeconomy as an alternative for Rio Grande do Sul to progress its economic development but with less dependency on detrimental activities to the Pampa biome.
{"title":"Pesticide Pollution in the Brazilian Pampa: Detrimental Impacts on Ecosystems and Human Health in a Neglected Biome","authors":"Marina Ziliotto, Bruna Kulmann-Leal, Alice Roitman, J. A. Bogo Chies, J. Ellwanger","doi":"10.3390/pollutants3020020","DOIUrl":"https://doi.org/10.3390/pollutants3020020","url":null,"abstract":"The Brazilian Pampa biome covers half of Rio Grande do Sul state, in the extreme south of Brazil, creating an ecotone zone with the Atlantic Forest and bordering Pampa’s territory belonging to Uruguay and Argentina. Pampa is a non-forest biome mainly composed of grasslands and mosaics of grassland-forest vegetation. This biome shows significant animal and plant diversity, contributing to the maintenance of important ecosystem services, including CO2 capture, pollination, and water cycle regulation. However, forestry plantations, inappropriate cattle ranching, mining activities, unplanned urbanization, and the cultivation of monocultures (soy, rice, tobacco, and other cash crops) significantly threaten the conservation of the Pampa biome. A major problem observed in the Pampa, due to the great connection of this biome with agricultural areas, is pesticide pollution, which significantly affects the health of humans and animals that occupy the region. A robust body of evidence indicates that aquatic and terrestrial ecosystems in the Brazilian Pampa are extensively contaminated with pesticides, as indicated by studies involving animal biomarkers and pesticide analyses performed on water and soil samples. Human studies also suggest that pesticides affect different body systems, facilitating the onset of various chronic diseases. Brazil’s conservation actions and policies have a special focus on forest ecosystems, neglecting non-forest biomes and thus aggravating the problems related to Pampa’s conservation. In this article, we discuss some problems caused by pesticide pollution in the Brazilian Pampa, drawing attention to the need for intensification of policies focused on the promotion of human and environmental health. Finally, we suggest the bioecological bioeconomy as an alternative for Rio Grande do Sul to progress its economic development but with less dependency on detrimental activities to the Pampa biome.","PeriodicalId":20301,"journal":{"name":"Pollutants","volume":"9 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82629513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}