Plant phenotype detection plays a crucial role in understanding and studying plant biology, agriculture, and ecology. It involves the quantification and analysis of various physical traits and characteristics of plants, such as plant height, leaf shape, angle, number, and growth trajectory. By accurately detecting and measuring these phenotypic traits, researchers can gain insights into plant growth, development, stress tolerance, and the influence of environmental factors, which has important implications for crop breeding. Among these phenotypic characteristics, the number of leaves and growth trajectory of the plant are most accessible. Nonetheless, obtaining these phenotypes is labor intensive and financially demanding. With the rapid development of computer vision technology and artificial intelligence, using maize field images to fully analyze plant-related information can greatly eliminate repetitive labor and enhance the efficiency of plant breeding. However, it is still difficult to apply deep learning methods in field environments to determine the number and growth trajectory of leaves and stalks due to the complex backgrounds and serious occlusion problems of crops in field environments. To preliminarily explore the application of deep learning technology to the acquisition of the number of leaves and stalks and the tracking of growth trajectories in field agriculture, in this study, we developed a deep learning method called Point-Line Net, which is based on the Mask R-CNN framework, to automatically recognize maize field RGB images and determine the number and growth trajectory of leaves and stalks. The experimental results demonstrate that the object detection accuracy (mAP50) of our Point-Line Net can reach 81.5%. Moreover, to describe the position and growth of leaves and stalks, we introduced a new lightweight "keypoint" detection branch that achieved a magnitude of 33.5 using our custom distance verification index. Overall, these findings provide valuable insights for future field plant phenotype detection, particularly for datasets with dot and line annotations.
{"title":"Recognition and Localization of Maize Leaf and Stalk Trajectories in RGB Images Based on Point-Line Net.","authors":"Bingwen Liu, Jianye Chang, Dengfeng Hou, Yuchen Pan, Dengao Li, Jue Ruan","doi":"10.34133/plantphenomics.0199","DOIUrl":"10.34133/plantphenomics.0199","url":null,"abstract":"<p><p>Plant phenotype detection plays a crucial role in understanding and studying plant biology, agriculture, and ecology. It involves the quantification and analysis of various physical traits and characteristics of plants, such as plant height, leaf shape, angle, number, and growth trajectory. By accurately detecting and measuring these phenotypic traits, researchers can gain insights into plant growth, development, stress tolerance, and the influence of environmental factors, which has important implications for crop breeding. Among these phenotypic characteristics, the number of leaves and growth trajectory of the plant are most accessible. Nonetheless, obtaining these phenotypes is labor intensive and financially demanding. With the rapid development of computer vision technology and artificial intelligence, using maize field images to fully analyze plant-related information can greatly eliminate repetitive labor and enhance the efficiency of plant breeding. However, it is still difficult to apply deep learning methods in field environments to determine the number and growth trajectory of leaves and stalks due to the complex backgrounds and serious occlusion problems of crops in field environments. To preliminarily explore the application of deep learning technology to the acquisition of the number of leaves and stalks and the tracking of growth trajectories in field agriculture, in this study, we developed a deep learning method called Point-Line Net, which is based on the Mask R-CNN framework, to automatically recognize maize field RGB images and determine the number and growth trajectory of leaves and stalks. The experimental results demonstrate that the object detection accuracy (mAP50) of our Point-Line Net can reach 81.5%. Moreover, to describe the position and growth of leaves and stalks, we introduced a new lightweight \"keypoint\" detection branch that achieved a magnitude of 33.5 using our custom distance verification index. Overall, these findings provide valuable insights for future field plant phenotype detection, particularly for datasets with dot and line annotations.</p>","PeriodicalId":20318,"journal":{"name":"Plant Phenomics","volume":"6 ","pages":"0199"},"PeriodicalIF":7.6,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11651416/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142847180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-08eCollection Date: 2024-01-01DOI: 10.34133/plantphenomics.0200
Hengbiao Zheng, Weijie Tang, Tao Yang, Meng Zhou, Caili Guo, Tao Cheng, Weixing Cao, Yan Zhu, Yunhui Zhang, Xia Yao
Efficient and accurate acquisition of the rice grain protein content (GPC) is important for selecting high-quality rice varieties, and remote sensing technology is an attractive potential method for this task. However, the majority of multispectral sensors are poor predictors of GPC due to their broad spectral bands. Hyperspectral technology provides a new analytical technology for bridging the gap between phenomics and genomics. However, the small size of typical datasets is a constraint for model construction for estimating GPC, limiting their accuracy and reducing their ability to generalize to a wide range of varieties. In this study, we used hyperspectral data of rice grains from 515 japonica varieties and deep convolution generative adversarial networks (DCGANs) to generate simulated data to improve the model accuracy. Features sensitive to GPC were extracted after applying a continuous wavelet transform (CWT), and the estimated GPC model was constructed by partial least squares regression (PLSR). Finally, a genome-wide association study (GWAS) was applied to the measured and generated datasets to detect GPC loci. The results demonstrated that the simulated GPC values generated after 8,000 epochs were closest to the measured values. The wavelet feature (WF1743, 2), obtained from the data with the addition of 200 simulated samples, exhibited the highest GPC estimation accuracy (R2 = 0.58 and RRMSE = 6.70%). The GWAS analysis showed that the estimated values based on the simulated data detected the same loci as the measured values, including the OsmtSSB1L gene related to grain storage protein. This study provides a new technique for the efficient genetic study of phenotypic traits in rice based on hyperspectral technology.
{"title":"Grain Protein Content Phenotyping in Rice via Hyperspectral Imaging Technology and a Genome-Wide Association Study.","authors":"Hengbiao Zheng, Weijie Tang, Tao Yang, Meng Zhou, Caili Guo, Tao Cheng, Weixing Cao, Yan Zhu, Yunhui Zhang, Xia Yao","doi":"10.34133/plantphenomics.0200","DOIUrl":"10.34133/plantphenomics.0200","url":null,"abstract":"<p><p>Efficient and accurate acquisition of the rice grain protein content (GPC) is important for selecting high-quality rice varieties, and remote sensing technology is an attractive potential method for this task. However, the majority of multispectral sensors are poor predictors of GPC due to their broad spectral bands. Hyperspectral technology provides a new analytical technology for bridging the gap between phenomics and genomics. However, the small size of typical datasets is a constraint for model construction for estimating GPC, limiting their accuracy and reducing their ability to generalize to a wide range of varieties. In this study, we used hyperspectral data of rice grains from 515 japonica varieties and deep convolution generative adversarial networks (DCGANs) to generate simulated data to improve the model accuracy. Features sensitive to GPC were extracted after applying a continuous wavelet transform (CWT), and the estimated GPC model was constructed by partial least squares regression (PLSR). Finally, a genome-wide association study (GWAS) was applied to the measured and generated datasets to detect GPC loci. The results demonstrated that the simulated GPC values generated after 8,000 epochs were closest to the measured values. The wavelet feature (WF<sub>1743, 2</sub>), obtained from the data with the addition of 200 simulated samples, exhibited the highest GPC estimation accuracy (<i>R</i> <sup>2</sup> = 0.58 and RRMSE = 6.70%). The GWAS analysis showed that the estimated values based on the simulated data detected the same loci as the measured values, including the <i>OsmtSSB1L</i> gene related to grain storage protein. This study provides a new technique for the efficient genetic study of phenotypic traits in rice based on hyperspectral technology.</p>","PeriodicalId":20318,"journal":{"name":"Plant Phenomics","volume":"6 ","pages":"0200"},"PeriodicalIF":7.6,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11227985/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141559569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The pod and seed counts are important yield-related traits in soybean. High-precision soybean breeders face the major challenge of accurately phenotyping the number of pods and seeds in a high-throughput manner. Recent advances in artificial intelligence, especially deep learning (DL) models, have provided new avenues for high-throughput phenotyping of crop traits with increased precision. However, the available DL models are less effective for phenotyping pods that are densely packed and overlap in in situ soybean plants; thus, accurate phenotyping of the number of pods and seeds in soybean plant is an important challenge. To address this challenge, the present study proposed a bottom-up model, DEKR-SPrior (disentangled keypoint regression with structural prior), for in situ soybean pod phenotyping, which considers soybean pods and seeds analogous to human people and joints, respectively. In particular, we designed a novel structural prior (SPrior) module that utilizes cosine similarity to improve feature discrimination, which is important for differentiating closely located seeds from highly similar seeds. To further enhance the accuracy of pod location, we cropped full-sized images into smaller and high-resolution subimages for analysis. The results on our image datasets revealed that DEKR-SPrior outperformed multiple bottom-up models, viz., Lightweight-OpenPose, OpenPose, HigherHRNet, and DEKR, reducing the mean absolute error from 25.81 (in the original DEKR) to 21.11 (in the DEKR-SPrior) in pod phenotyping. This paper demonstrated the great potential of DEKR-SPrior for plant phenotyping, and we hope that DEKR-SPrior will help future plant phenotyping.
{"title":"DEKR-SPrior: An Efficient Bottom-Up Keypoint Detection Model for Accurate Pod Phenotyping in Soybean.","authors":"Jingjing He, Lin Weng, Xiaogang Xu, Ruochen Chen, Bo Peng, Nannan Li, Zhengchao Xie, Lijian Sun, Qiang Han, Pengfei He, Fangfang Wang, Hui Yu, Javaid Akhter Bhat, Xianzhong Feng","doi":"10.34133/plantphenomics.0198","DOIUrl":"https://doi.org/10.34133/plantphenomics.0198","url":null,"abstract":"<p><p>The pod and seed counts are important yield-related traits in soybean. High-precision soybean breeders face the major challenge of accurately phenotyping the number of pods and seeds in a high-throughput manner. Recent advances in artificial intelligence, especially deep learning (DL) models, have provided new avenues for high-throughput phenotyping of crop traits with increased precision. However, the available DL models are less effective for phenotyping pods that are densely packed and overlap in in situ soybean plants; thus, accurate phenotyping of the number of pods and seeds in soybean plant is an important challenge. To address this challenge, the present study proposed a bottom-up model, DEKR-SPrior (disentangled keypoint regression with structural prior), for in situ soybean pod phenotyping, which considers soybean pods and seeds analogous to human people and joints, respectively. In particular, we designed a novel structural prior (SPrior) module that utilizes cosine similarity to improve feature discrimination, which is important for differentiating closely located seeds from highly similar seeds. To further enhance the accuracy of pod location, we cropped full-sized images into smaller and high-resolution subimages for analysis. The results on our image datasets revealed that DEKR-SPrior outperformed multiple bottom-up models, viz., Lightweight-OpenPose, OpenPose, HigherHRNet, and DEKR, reducing the mean absolute error from 25.81 (in the original DEKR) to 21.11 (in the DEKR-SPrior) in pod phenotyping. This paper demonstrated the great potential of DEKR-SPrior for plant phenotyping, and we hope that DEKR-SPrior will help future plant phenotyping.</p>","PeriodicalId":20318,"journal":{"name":"Plant Phenomics","volume":"6 ","pages":"0198"},"PeriodicalIF":7.6,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11209727/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141470375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-27eCollection Date: 2024-01-01DOI: 10.34133/plantphenomics.0202
Efrain Torres-Lomas, Jimena Lado-Bega, Guillermo Garcia-Zamora, Luis Diaz-Garcia
Grape cluster architecture and compactness are complex traits influencing disease susceptibility, fruit quality, and yield. Evaluation methods for these traits include visual scoring, manual methodologies, and computer vision, with the latter being the most scalable approach. Most of the existing computer vision approaches for processing cluster images often rely on conventional segmentation or machine learning with extensive training and limited generalization. The Segment Anything Model (SAM), a novel foundation model trained on a massive image dataset, enables automated object segmentation without additional training. This study demonstrates out-of-the-box SAM's high accuracy in identifying individual berries in 2-dimensional (2D) cluster images. Using this model, we managed to segment approximately 3,500 cluster images, generating over 150,000 berry masks, each linked with spatial coordinates within their clusters. The correlation between human-identified berries and SAM predictions was very strong (Pearson's r2 = 0.96). Although the visible berry count in images typically underestimates the actual cluster berry count due to visibility issues, we demonstrated that this discrepancy could be adjusted using a linear regression model (adjusted R2 = 0.87). We emphasized the critical importance of the angle at which the cluster is imaged, noting its substantial effect on berry counts and architecture. We proposed different approaches in which berry location information facilitated the calculation of complex features related to cluster architecture and compactness. Finally, we discussed SAM's potential integration into currently available pipelines for image generation and processing in vineyard conditions.
葡萄果穗结构和紧密度是影响疾病易感性、果实质量和产量的复杂性状。这些性状的评估方法包括视觉评分、人工方法和计算机视觉,其中计算机视觉是最具扩展性的方法。现有的大多数计算机视觉处理群集图像的方法通常都依赖于传统的分割或机器学习,这些方法都需要大量的训练,而且通用性有限。Segment Anything Model(SAM)是一种在海量图像数据集上训练的新型基础模型,无需额外训练即可实现自动物体分割。本研究证明,开箱即用的 SAM 在识别二维(2D)群集图像中的单个浆果方面具有很高的准确性。利用该模型,我们成功地分割了约 3,500 幅集群图像,生成了超过 150,000 个浆果掩码,每个掩码都与其集群内的空间坐标相关联。人类识别的浆果与 SAM 预测之间的相关性非常强(Pearson's r2 = 0.96)。虽然由于可见度问题,图像中的可见浆果数量通常会低估实际的群集浆果数量,但我们证明这种差异可以通过线性回归模型进行调整(调整后的 R 2 = 0.87)。我们强调了果穗成像角度的重要性,并指出它对浆果数量和结构有很大影响。我们提出了不同的方法,其中浆果位置信息有助于计算与果丛结构和紧凑程度相关的复杂特征。最后,我们讨论了将 SAM 集成到当前可用的葡萄园图像生成和处理管道中的可能性。
{"title":"Segment Anything for Comprehensive Analysis of Grapevine Cluster Architecture and Berry Properties.","authors":"Efrain Torres-Lomas, Jimena Lado-Bega, Guillermo Garcia-Zamora, Luis Diaz-Garcia","doi":"10.34133/plantphenomics.0202","DOIUrl":"https://doi.org/10.34133/plantphenomics.0202","url":null,"abstract":"<p><p>Grape cluster architecture and compactness are complex traits influencing disease susceptibility, fruit quality, and yield. Evaluation methods for these traits include visual scoring, manual methodologies, and computer vision, with the latter being the most scalable approach. Most of the existing computer vision approaches for processing cluster images often rely on conventional segmentation or machine learning with extensive training and limited generalization. The Segment Anything Model (SAM), a novel foundation model trained on a massive image dataset, enables automated object segmentation without additional training. This study demonstrates out-of-the-box SAM's high accuracy in identifying individual berries in 2-dimensional (2D) cluster images. Using this model, we managed to segment approximately 3,500 cluster images, generating over 150,000 berry masks, each linked with spatial coordinates within their clusters. The correlation between human-identified berries and SAM predictions was very strong (Pearson's <i>r<sup>2</sup></i> = 0.96). Although the visible berry count in images typically underestimates the actual cluster berry count due to visibility issues, we demonstrated that this discrepancy could be adjusted using a linear regression model (adjusted <i>R</i> <sup>2</sup> = 0.87). We emphasized the critical importance of the angle at which the cluster is imaged, noting its substantial effect on berry counts and architecture. We proposed different approaches in which berry location information facilitated the calculation of complex features related to cluster architecture and compactness. Finally, we discussed SAM's potential integration into currently available pipelines for image generation and processing in vineyard conditions.</p>","PeriodicalId":20318,"journal":{"name":"Plant Phenomics","volume":"6 ","pages":"0202"},"PeriodicalIF":7.6,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11208874/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141470376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-30eCollection Date: 2024-01-01DOI: 10.34133/plantphenomics.0189
Tong Lei, Jan Graefe, Ismael K Mayanja, Mason Earles, Brian N Bailey
Deep learning and multimodal remote and proximal sensing are widely used for analyzing plant and crop traits, but many of these deep learning models are supervised and necessitate reference datasets with image annotations. Acquiring these datasets often demands experiments that are both labor-intensive and time-consuming. Furthermore, extracting traits from remote sensing data beyond simple geometric features remains a challenge. To address these challenges, we proposed a radiative transfer modeling framework based on the Helios 3-dimensional (3D) plant modeling software designed for plant remote and proximal sensing image simulation. The framework has the capability to simulate RGB, multi-/hyperspectral, thermal, and depth cameras, and produce associated plant images with fully resolved reference labels such as plant physical traits, leaf chemical concentrations, and leaf physiological traits. Helios offers a simulated environment that enables generation of 3D geometric models of plants and soil with random variation, and specification or simulation of their properties and function. This approach differs from traditional computer graphics rendering by explicitly modeling radiation transfer physics, which provides a critical link to underlying plant biophysical processes. Results indicate that the framework is capable of generating high-quality, labeled synthetic plant images under given lighting scenarios, which can lessen or remove the need for manually collected and annotated data. Two example applications are presented that demonstrate the feasibility of using the model to enable unsupervised learning by training deep learning models exclusively with simulated images and performing prediction tasks using real images.
{"title":"Simulation of Automatically Annotated Visible and Multi-/Hyperspectral Images Using the Helios 3D Plant and Radiative Transfer Modeling Framework.","authors":"Tong Lei, Jan Graefe, Ismael K Mayanja, Mason Earles, Brian N Bailey","doi":"10.34133/plantphenomics.0189","DOIUrl":"10.34133/plantphenomics.0189","url":null,"abstract":"<p><p>Deep learning and multimodal remote and proximal sensing are widely used for analyzing plant and crop traits, but many of these deep learning models are supervised and necessitate reference datasets with image annotations. Acquiring these datasets often demands experiments that are both labor-intensive and time-consuming. Furthermore, extracting traits from remote sensing data beyond simple geometric features remains a challenge. To address these challenges, we proposed a radiative transfer modeling framework based on the Helios 3-dimensional (3D) plant modeling software designed for plant remote and proximal sensing image simulation. The framework has the capability to simulate RGB, multi-/hyperspectral, thermal, and depth cameras, and produce associated plant images with fully resolved reference labels such as plant physical traits, leaf chemical concentrations, and leaf physiological traits. Helios offers a simulated environment that enables generation of 3D geometric models of plants and soil with random variation, and specification or simulation of their properties and function. This approach differs from traditional computer graphics rendering by explicitly modeling radiation transfer physics, which provides a critical link to underlying plant biophysical processes. Results indicate that the framework is capable of generating high-quality, labeled synthetic plant images under given lighting scenarios, which can lessen or remove the need for manually collected and annotated data. Two example applications are presented that demonstrate the feasibility of using the model to enable unsupervised learning by training deep learning models exclusively with simulated images and performing prediction tasks using real images.</p>","PeriodicalId":20318,"journal":{"name":"Plant Phenomics","volume":"6 ","pages":"0189"},"PeriodicalIF":6.5,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11136674/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141180561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-30eCollection Date: 2024-01-01DOI: 10.34133/plantphenomics.0170
Mojdeh Saadati, Aditya Balu, Shivani Chiranjeevi, Talukder Zaki Jubery, Asheesh K Singh, Soumik Sarkar, Arti Singh, Baskar Ganapathysubramanian
Plants encounter a variety of beneficial and harmful insects during their growth cycle. Accurate identification (i.e., detecting insects' presence) and classification (i.e., determining the type or class) of these insect species is critical for implementing prompt and suitable mitigation strategies. Such timely actions carry substantial economic and environmental implications. Deep learning-based approaches have produced models with good insect classification accuracy. Researchers aim to implement identification and classification models in agriculture, facing challenges when input images markedly deviate from the training distribution (e.g., images like vehicles, humans, or a blurred image or insect class that is not yet trained on). Out-of-distribution (OOD) detection algorithms provide an exciting avenue to overcome these challenges as they ensure that a model abstains from making incorrect classification predictions on images that belong to non-insect and/or untrained insect classes. As far as we know, no prior in-depth exploration has been conducted on the role of the OOD detection algorithms in addressing agricultural issues. Here, we generate and evaluate the performance of state-of-the-art OOD algorithms on insect detection classifiers. These algorithms represent a diversity of methods for addressing an OOD problem. Specifically, we focus on extrusive algorithms, i.e., algorithms that wrap around a well-trained classifier without the need for additional co-training. We compared three OOD detection algorithms: (a) maximum softmax probability, which uses the softmax value as a confidence score; (b) Mahalanobis distance (MAH)-based algorithm, which uses a generative classification approach; and (c) energy-based algorithm, which maps the input data to a scalar value, called energy. We performed an extensive series of evaluations of these OOD algorithms across three performance axes: (a) Base model accuracy: How does the accuracy of the classifier impact OOD performance? (b) How does the level of dissimilarity to the domain impact OOD performance? (c) Data imbalance: How sensitive is OOD performance to the imbalance in per-class sample size? Evaluating OOD algorithms across these performance axes provides practical guidelines to ensure the robust performance of well-trained models in the wild, which is a key consideration for agricultural applications. Based on this analysis, we proposed the most effective OOD algorithm as wrapper for the insect classifier with highest accuracy. We presented the results of its OOD detection performance in the paper. Our results indicate that OOD detection algorithms can significantly enhance user trust in insect pest classification by abstaining classification under uncertain conditions.
{"title":"Out-of-Distribution Detection Algorithms for Robust Insect Classification.","authors":"Mojdeh Saadati, Aditya Balu, Shivani Chiranjeevi, Talukder Zaki Jubery, Asheesh K Singh, Soumik Sarkar, Arti Singh, Baskar Ganapathysubramanian","doi":"10.34133/plantphenomics.0170","DOIUrl":"https://doi.org/10.34133/plantphenomics.0170","url":null,"abstract":"<p><p>Plants encounter a variety of beneficial and harmful insects during their growth cycle. Accurate identification (i.e., detecting insects' presence) and classification (i.e., determining the type or class) of these insect species is critical for implementing prompt and suitable mitigation strategies. Such timely actions carry substantial economic and environmental implications. Deep learning-based approaches have produced models with good insect classification accuracy. Researchers aim to implement identification and classification models in agriculture, facing challenges when input images markedly deviate from the training distribution (e.g., images like vehicles, humans, or a blurred image or insect class that is not yet trained on). Out-of-distribution (OOD) detection algorithms provide an exciting avenue to overcome these challenges as they ensure that a model abstains from making incorrect classification predictions on images that belong to non-insect and/or untrained insect classes. As far as we know, no prior in-depth exploration has been conducted on the role of the OOD detection algorithms in addressing agricultural issues. Here, we generate and evaluate the performance of state-of-the-art OOD algorithms on insect detection classifiers. These algorithms represent a diversity of methods for addressing an OOD problem. Specifically, we focus on extrusive algorithms, i.e., algorithms that wrap around a well-trained classifier without the need for additional co-training. We compared three OOD detection algorithms: (a) maximum softmax probability, which uses the softmax value as a confidence score; (b) Mahalanobis distance (MAH)-based algorithm, which uses a generative classification approach; and (c) energy-based algorithm, which maps the input data to a scalar value, called energy. We performed an extensive series of evaluations of these OOD algorithms across three performance axes: (a) Base model accuracy: How does the accuracy of the classifier impact OOD performance? (b) How does the level of dissimilarity to the domain impact OOD performance? (c) Data imbalance: How sensitive is OOD performance to the imbalance in per-class sample size? Evaluating OOD algorithms across these performance axes provides practical guidelines to ensure the robust performance of well-trained models in the wild, which is a key consideration for agricultural applications. Based on this analysis, we proposed the most effective OOD algorithm as wrapper for the insect classifier with highest accuracy. We presented the results of its OOD detection performance in the paper. Our results indicate that OOD detection algorithms can significantly enhance user trust in insect pest classification by abstaining classification under uncertain conditions.</p>","PeriodicalId":20318,"journal":{"name":"Plant Phenomics","volume":"6 ","pages":"0170"},"PeriodicalIF":6.5,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11065417/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140854492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-29eCollection Date: 2024-01-01DOI: 10.34133/plantphenomics.0156
Gonzalo Villarino, Signe Dahlberg-Wright, Ling Zhang, Marianne Schaedel, Lin Wang, Karyssa Miller, Jack Bartlett, Albert Martin Dang Vu, Wolfgang Busch
The periderm is a vital protective tissue found in the roots, stems, and woody elements of diverse plant species. It plays an important function in these plants by assuming the role of the epidermis as the outermost layer. Despite its critical role for protecting plants from environmental stresses and pathogens, research on root periderm development has been limited due to its late formation during root development, its presence only in mature root regions, and its impermeability. One of the most straightforward measurements for comparing periderm formation between different genotypes and treatments is periderm (phellem) length. We have developed PAT (Periderm Assessment Toolkit), a high-throughput user-friendly pipeline that integrates an efficient staining protocol, automated imaging, and a deep-learning-based image analysis approach to accurately detect and measure periderm length in the roots of Arabidopsis thaliana. The reliability and reproducibility of our method was evaluated using a diverse set of 20 Arabidopsis natural accessions. Our automated measurements exhibited a strong correlation with human-expert-generated measurements, achieving a 94% efficiency in periderm length quantification. This robust PAT pipeline streamlines large-scale periderm measurements, thereby being able to facilitate comprehensive genetic studies and screens. Although PAT proves highly effective with automated digital microscopes in Arabidopsis roots, its application may pose challenges with nonautomated microscopy. Although the workflow and principles could be adapted for other plant species, additional optimization would be necessary. While we show that periderm length can be used to distinguish a mutant impaired in periderm development from wild type, we also find it is a plastic trait. Therefore, care must be taken to include sufficient repeats and controls, to minimize variation, and to ensure comparability of periderm length measurements between different genotypes and growth conditions.
表皮是一种重要的保护组织,存在于各种植物的根、茎和木质部。它在这些植物中发挥着重要的功能,扮演着表皮最外层的角色。尽管根外皮在保护植物免受环境压力和病原体侵袭方面起着至关重要的作用,但由于根外皮在根系发育过程中形成较晚,仅存在于成熟的根部区域,而且不透水,因此对根外皮发育的研究一直很有限。比较不同基因型和处理之间根外皮形成的最直接测量方法之一是根外皮(phellem)长度。我们开发了 PAT(外皮评估工具包),这是一个高通量的用户友好型管道,集成了高效染色方案、自动成像和基于深度学习的图像分析方法,可准确检测和测量拟南芥根部的外皮长度。我们使用 20 个拟南芥天然品种的不同集合评估了我们方法的可靠性和可重复性。我们的自动测量结果与人类专家生成的测量结果具有很强的相关性,外皮长度定量效率高达 94%。这种强大的 PAT 管道简化了大规模的外皮测量,从而能够促进全面的遗传研究和筛选。虽然拟南芥根的自动数字显微镜证明 PAT 非常有效,但它的应用可能会给非自动显微镜带来挑战。虽然工作流程和原理可以适用于其他植物物种,但还需要进一步优化。虽然我们证明了外皮长度可用于区分外皮发育受损的突变体与野生型,但我们也发现它是一种可塑性状。因此,必须注意包括足够的重复和对照,尽量减少变异,并确保不同基因型和生长条件下的外皮长度测量结果具有可比性。
{"title":"PAT (Periderm Assessment Toolkit): A Quantitative and Large-Scale Screening Method for Periderm Measurements.","authors":"Gonzalo Villarino, Signe Dahlberg-Wright, Ling Zhang, Marianne Schaedel, Lin Wang, Karyssa Miller, Jack Bartlett, Albert Martin Dang Vu, Wolfgang Busch","doi":"10.34133/plantphenomics.0156","DOIUrl":"10.34133/plantphenomics.0156","url":null,"abstract":"<p><p>The periderm is a vital protective tissue found in the roots, stems, and woody elements of diverse plant species. It plays an important function in these plants by assuming the role of the epidermis as the outermost layer. Despite its critical role for protecting plants from environmental stresses and pathogens, research on root periderm development has been limited due to its late formation during root development, its presence only in mature root regions, and its impermeability. One of the most straightforward measurements for comparing periderm formation between different genotypes and treatments is periderm (phellem) length. We have developed PAT (Periderm Assessment Toolkit), a high-throughput user-friendly pipeline that integrates an efficient staining protocol, automated imaging, and a deep-learning-based image analysis approach to accurately detect and measure periderm length in the roots of <i>Arabidopsis thaliana</i>. The reliability and reproducibility of our method was evaluated using a diverse set of 20 Arabidopsis natural accessions. Our automated measurements exhibited a strong correlation with human-expert-generated measurements, achieving a 94% efficiency in periderm length quantification. This robust PAT pipeline streamlines large-scale periderm measurements, thereby being able to facilitate comprehensive genetic studies and screens. Although PAT proves highly effective with automated digital microscopes in Arabidopsis roots, its application may pose challenges with nonautomated microscopy. Although the workflow and principles could be adapted for other plant species, additional optimization would be necessary. While we show that periderm length can be used to distinguish a mutant impaired in periderm development from wild type, we also find it is a plastic trait. Therefore, care must be taken to include sufficient repeats and controls, to minimize variation, and to ensure comparability of periderm length measurements between different genotypes and growth conditions.</p>","PeriodicalId":20318,"journal":{"name":"Plant Phenomics","volume":"6 ","pages":"0156"},"PeriodicalIF":6.5,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10981931/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140336642","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-22eCollection Date: 2023-01-01DOI: 10.34133/plantphenomics.0128
Guohui Ding, Liyan Shen, Jie Dai, Robert Jackson, Shuchen Liu, Mujahid Ali, Li Sun, Mingxing Wen, Jin Xiao, Greg Deakin, Dong Jiang, Xiu-E Wang, Ji Zhou
Inefficient nitrogen (N) utilization in agricultural production has led to many negative impacts such as excessive use of N fertilizers, redundant plant growth, greenhouse gases, long-lasting toxicity in ecosystem, and even effect on human health, indicating the importance to optimize N applications in cropping systems. Here, we present a multiseasonal study that focused on measuring phenotypic changes in wheat plants when they were responding to different N treatments under field conditions. Powered by drone-based aerial phenotyping and the AirMeasurer platform, we first quantified 6 N response-related traits as targets using plot-based morphological, spectral, and textural signals collected from 54 winter wheat varieties. Then, we developed dynamic phenotypic analysis using curve fitting to establish profile curves of the traits during the season, which enabled us to compute static phenotypes at key growth stages and dynamic phenotypes (i.e., phenotypic changes) during N response. After that, we combine 12 yield production and N-utilization indices manually measured to produce N efficiency comprehensive scores (NECS), based on which we classified the varieties into 4 N responsiveness (i.e., N-dependent yield increase) groups. The NECS ranking facilitated us to establish a tailored machine learning model for N responsiveness-related varietal classification just using N-response phenotypes with high accuracies. Finally, we employed the Wheat55K SNP Array to map single-nucleotide polymorphisms using N response-related static and dynamic phenotypes, helping us explore genetic components underlying N responsiveness in wheat. In summary, we believe that our work demonstrates valuable advances in N response-related plant research, which could have major implications for improving N sustainability in wheat breeding and production.
{"title":"The Dissection of Nitrogen Response Traits Using Drone Phenotyping and Dynamic Phenotypic Analysis to Explore N Responsiveness and Associated Genetic Loci in Wheat.","authors":"Guohui Ding, Liyan Shen, Jie Dai, Robert Jackson, Shuchen Liu, Mujahid Ali, Li Sun, Mingxing Wen, Jin Xiao, Greg Deakin, Dong Jiang, Xiu-E Wang, Ji Zhou","doi":"10.34133/plantphenomics.0128","DOIUrl":"10.34133/plantphenomics.0128","url":null,"abstract":"<p><p>Inefficient nitrogen (N) utilization in agricultural production has led to many negative impacts such as excessive use of N fertilizers, redundant plant growth, greenhouse gases, long-lasting toxicity in ecosystem, and even effect on human health, indicating the importance to optimize N applications in cropping systems. Here, we present a multiseasonal study that focused on measuring phenotypic changes in wheat plants when they were responding to different N treatments under field conditions. Powered by drone-based aerial phenotyping and the AirMeasurer platform, we first quantified 6 N response-related traits as targets using plot-based morphological, spectral, and textural signals collected from 54 winter wheat varieties. Then, we developed dynamic phenotypic analysis using curve fitting to establish profile curves of the traits during the season, which enabled us to compute static phenotypes at key growth stages and dynamic phenotypes (i.e., phenotypic changes) during N response. After that, we combine 12 yield production and N-utilization indices manually measured to produce N efficiency comprehensive scores (NECS), based on which we classified the varieties into 4 N responsiveness (i.e., N-dependent yield increase) groups. The NECS ranking facilitated us to establish a tailored machine learning model for N responsiveness-related varietal classification just using N-response phenotypes with high accuracies. Finally, we employed the Wheat55K SNP Array to map single-nucleotide polymorphisms using N response-related static and dynamic phenotypes, helping us explore genetic components underlying N responsiveness in wheat. In summary, we believe that our work demonstrates valuable advances in N response-related plant research, which could have major implications for improving N sustainability in wheat breeding and production.</p>","PeriodicalId":20318,"journal":{"name":"Plant Phenomics","volume":"5 ","pages":"0128"},"PeriodicalIF":6.5,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10750832/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139040396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-21eCollection Date: 2023-01-01DOI: 10.34133/plantphenomics.0127
Sriram Parasurama, Darshi Banan, Kyungdahm Yun, Sharon Doty, Soo-Hyung Kim
Root system architecture (RSA) is an important measure of how plants navigate and interact with the soil environment. However, current methods in studying RSA must make tradeoffs between precision of data and proximity to natural conditions, with root growth in germination papers providing accessibility and high data resolution. Functional-structural plant models (FSPMs) can overcome this tradeoff, though parameterization and evaluation of FSPMs are traditionally based in manual measurements and visual comparison. Here, we applied a germination paper system to study the adventitious RSA and root phenology of Populus trichocarpa stem cuttings using time-series image-based phenotyping augmented by FSPM. We found a significant correlation between timing of root initiation and thermal time at cutting collection (P value = 0.0061, R2 = 0.875), but little correlation with RSA. We also present a use of RhizoVision [1] for automatically extracting FSPM parameters from time series images and evaluating FSPM simulations. A high accuracy of the parameterization was achieved in predicting 2D growth with a sensitivity rate of 83.5%. This accuracy was lost when predicting 3D growth with sensitivity rates of 38.5% to 48.7%, while overall accuracy varied with phenotyping methods. Despite this loss in accuracy, the new method is amenable to high throughput FSPM parameterization and bridges the gap between advances in time-series phenotyping and FSPMs.
{"title":"Bridging Time-series Image Phenotyping and Functional-Structural Plant Modeling to Predict Adventitious Root System Architecture.","authors":"Sriram Parasurama, Darshi Banan, Kyungdahm Yun, Sharon Doty, Soo-Hyung Kim","doi":"10.34133/plantphenomics.0127","DOIUrl":"https://doi.org/10.34133/plantphenomics.0127","url":null,"abstract":"<p><p>Root system architecture (RSA) is an important measure of how plants navigate and interact with the soil environment. However, current methods in studying RSA must make tradeoffs between precision of data and proximity to natural conditions, with root growth in germination papers providing accessibility and high data resolution. Functional-structural plant models (FSPMs) can overcome this tradeoff, though parameterization and evaluation of FSPMs are traditionally based in manual measurements and visual comparison. Here, we applied a germination paper system to study the adventitious RSA and root phenology of <i>Populus trichocarpa</i> stem cuttings using time-series image-based phenotyping augmented by FSPM. We found a significant correlation between timing of root initiation and thermal time at cutting collection (<i>P</i> value = 0.0061, <i>R</i><sup>2</sup> = 0.875), but little correlation with RSA. We also present a use of RhizoVision [1] for automatically extracting FSPM parameters from time series images and evaluating FSPM simulations. A high accuracy of the parameterization was achieved in predicting 2D growth with a sensitivity rate of 83.5%. This accuracy was lost when predicting 3D growth with sensitivity rates of 38.5% to 48.7%, while overall accuracy varied with phenotyping methods. Despite this loss in accuracy, the new method is amenable to high throughput FSPM parameterization and bridges the gap between advances in time-series phenotyping and FSPMs.</p>","PeriodicalId":20318,"journal":{"name":"Plant Phenomics","volume":"5 ","pages":"0127"},"PeriodicalIF":6.5,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10739341/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139032468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}