首页 > 最新文献

Plant Phenomics最新文献

英文 中文
3D morphological features quantification and analysis of corn leaves 玉米叶片的三维形态特征量化与分析
IF 7.6 1区 农林科学 Q1 AGRONOMY Pub Date : 2024-07-22 DOI: 10.34133/plantphenomics.0225
Weiliang Wen, Jinglu Wang, Yanxin Zhao, Chuanyu Wang, Kai Liu, Bo Chen, Yuanqiao Wang, Minxiao Duan, Xinyu Guo
{"title":"3D morphological features quantification and analysis of corn leaves","authors":"Weiliang Wen, Jinglu Wang, Yanxin Zhao, Chuanyu Wang, Kai Liu, Bo Chen, Yuanqiao Wang, Minxiao Duan, Xinyu Guo","doi":"10.34133/plantphenomics.0225","DOIUrl":"https://doi.org/10.34133/plantphenomics.0225","url":null,"abstract":"","PeriodicalId":20318,"journal":{"name":"Plant Phenomics","volume":null,"pages":null},"PeriodicalIF":7.6,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141816165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Visualization and Quantitative Evaluation of Functional Structures of Soybean Root Nodules via Synchrotron X-ray Imaging. 通过同步辐射 X 射线成像对大豆根瘤的功能结构进行可视化和定量评估
IF 7.6 1区 农林科学 Q1 AGRONOMY Pub Date : 2024-07-17 eCollection Date: 2024-01-01 DOI: 10.34133/plantphenomics.0203
Alireza Nakhforoosh, Emil Hallin, Chithra Karunakaran, Malgorzata Korbas, Jarvis Stobbs, Leon Kochian

The efficiency of N2-fixation in legume-rhizobia symbiosis is a function of root nodule activity. Nodules consist of 2 functionally important tissues: (a) a central infected zone (CIZ), colonized by rhizobia bacteria, which serves as the site of N2-fixation, and (b) vascular bundles (VBs), serving as conduits for the transport of water, nutrients, and fixed nitrogen compounds between the nodules and plant. A quantitative evaluation of these tissues is essential to unravel their functional importance in N2-fixation. Employing synchrotron-based x-ray microcomputed tomography (SR-μCT) at submicron resolutions, we obtained high-quality tomograms of fresh soybean root nodules in a non-invasive manner. A semi-automated segmentation algorithm was employed to generate 3-dimensional (3D) models of the internal root nodule structure of the CIZ and VBs, and their volumes were quantified based on the reconstructed 3D structures. Furthermore, synchrotron x-ray fluorescence imaging revealed a distinctive localization of Fe within CIZ tissue and Zn within VBs, allowing for their visualization in 2 dimensions. This study represents a pioneer application of the SR-μCT technique for volumetric quantification of CIZ and VB tissues in fresh, intact soybean root nodules. The proposed methods enable the exploitation of root nodule's anatomical features as novel traits in breeding, aiming to enhance N2-fixation through improved root nodule activity.

豆科植物与根瘤菌共生过程中的氮固定效率是根瘤活性的一个函数。根瘤由两个功能重要的组织组成:(a) 中央感染区(CIZ),由根瘤菌定殖,是固定氮的场所;(b) 维管束(VB),是在根瘤和植物之间运输水分、养分和固定氮化合物的通道。对这些组织进行定量评估对于揭示它们在固定氮过程中的重要功能至关重要。利用亚微米分辨率的同步辐射 X 射线微计算机断层扫描(SR-μCT),我们以非侵入方式获得了新鲜大豆根瘤的高质量断层图像。采用半自动分割算法生成了 CIZ 和 VB 内部根瘤结构的三维(3D)模型,并根据重建的三维结构量化了它们的体积。此外,同步辐射 X 射线荧光成像显示了 CIZ 组织内铁和 VB 内锌的独特定位,从而实现了它们的二维可视化。这项研究开创性地将 SR-μCT 技术应用于新鲜、完整大豆根瘤中 CIZ 和 VB 组织的体积量化。所提出的方法可将根瘤的解剖特征作为育种中的新性状加以利用,目的是通过提高根瘤活性来增强 N2 固定。
{"title":"Visualization and Quantitative Evaluation of Functional Structures of Soybean Root Nodules via Synchrotron X-ray Imaging.","authors":"Alireza Nakhforoosh, Emil Hallin, Chithra Karunakaran, Malgorzata Korbas, Jarvis Stobbs, Leon Kochian","doi":"10.34133/plantphenomics.0203","DOIUrl":"10.34133/plantphenomics.0203","url":null,"abstract":"<p><p>The efficiency of N<sub>2</sub>-fixation in legume-rhizobia symbiosis is a function of root nodule activity. Nodules consist of 2 functionally important tissues: (a) a central infected zone (CIZ), colonized by rhizobia bacteria, which serves as the site of N<sub>2</sub>-fixation, and (b) vascular bundles (VBs), serving as conduits for the transport of water, nutrients, and fixed nitrogen compounds between the nodules and plant. A quantitative evaluation of these tissues is essential to unravel their functional importance in N<sub>2</sub>-fixation. Employing synchrotron-based x-ray microcomputed tomography (SR-μCT) at submicron resolutions, we obtained high-quality tomograms of fresh soybean root nodules in a non-invasive manner. A semi-automated segmentation algorithm was employed to generate 3-dimensional (3D) models of the internal root nodule structure of the CIZ and VBs, and their volumes were quantified based on the reconstructed 3D structures. Furthermore, synchrotron x-ray fluorescence imaging revealed a distinctive localization of Fe within CIZ tissue and Zn within VBs, allowing for their visualization in 2 dimensions. This study represents a pioneer application of the SR-μCT technique for volumetric quantification of CIZ and VB tissues in fresh, intact soybean root nodules. The proposed methods enable the exploitation of root nodule's anatomical features as novel traits in breeding, aiming to enhance N<sub>2</sub>-fixation through improved root nodule activity.</p>","PeriodicalId":20318,"journal":{"name":"Plant Phenomics","volume":null,"pages":null},"PeriodicalIF":7.6,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11254386/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141634323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Grain Protein Content Phenotyping in Rice via Hyperspectral Imaging Technology and a Genome-Wide Association Study. 通过高光谱成像技术和全基因组关联研究对水稻谷物蛋白质含量进行表型。
IF 7.6 1区 农林科学 Q1 AGRONOMY Pub Date : 2024-07-08 eCollection Date: 2024-01-01 DOI: 10.34133/plantphenomics.0200
Hengbiao Zheng, Weijie Tang, Tao Yang, Meng Zhou, Caili Guo, Tao Cheng, Weixing Cao, Yan Zhu, Yunhui Zhang, Xia Yao

Efficient and accurate acquisition of the rice grain protein content (GPC) is important for selecting high-quality rice varieties, and remote sensing technology is an attractive potential method for this task. However, the majority of multispectral sensors are poor predictors of GPC due to their broad spectral bands. Hyperspectral technology provides a new analytical technology for bridging the gap between phenomics and genomics. However, the small size of typical datasets is a constraint for model construction for estimating GPC, limiting their accuracy and reducing their ability to generalize to a wide range of varieties. In this study, we used hyperspectral data of rice grains from 515 japonica varieties and deep convolution generative adversarial networks (DCGANs) to generate simulated data to improve the model accuracy. Features sensitive to GPC were extracted after applying a continuous wavelet transform (CWT), and the estimated GPC model was constructed by partial least squares regression (PLSR). Finally, a genome-wide association study (GWAS) was applied to the measured and generated datasets to detect GPC loci. The results demonstrated that the simulated GPC values generated after 8,000 epochs were closest to the measured values. The wavelet feature (WF1743, 2), obtained from the data with the addition of 200 simulated samples, exhibited the highest GPC estimation accuracy (R 2 = 0.58 and RRMSE = 6.70%). The GWAS analysis showed that the estimated values based on the simulated data detected the same loci as the measured values, including the OsmtSSB1L gene related to grain storage protein. This study provides a new technique for the efficient genetic study of phenotypic traits in rice based on hyperspectral technology.

高效、准确地获取稻米籽粒蛋白质含量(GPC)对于选择优质稻米品种非常重要,而遥感技术是完成这项任务的一种极具吸引力的潜在方法。然而,由于光谱波段较宽,大多数多光谱传感器对 GPC 的预测能力较差。高光谱技术为缩小表型组学和基因组学之间的差距提供了一种新的分析技术。然而,典型数据集的规模较小,制约了用于估算 GPC 的模型的构建,限制了其准确性,并降低了其推广到广泛品种的能力。在本研究中,我们使用了来自 515 个粳稻品种的稻谷高光谱数据和深度卷积生成对抗网络(DCGAN)生成模拟数据,以提高模型的准确性。在应用连续小波变换(CWT)后提取了对 GPC 敏感的特征,并通过偏最小二乘回归(PLSR)构建了估计的 GPC 模型。最后,对测量和生成的数据集进行了全基因组关联研究(GWAS),以检测 GPC 基因位点。结果表明,8000 个历时后生成的模拟 GPC 值与测量值最为接近。在数据中加入 200 个模拟样本后得到的小波特征(WF1743, 2)显示出最高的 GPC 估计精度(R 2 = 0.58 和 RRMSE = 6.70%)。GWAS 分析表明,基于模拟数据的估计值检测到了与测量值相同的基因位点,包括与谷物储藏蛋白相关的 OsmtSSB1L 基因。该研究为基于高光谱技术的水稻表型性状的高效遗传研究提供了一种新技术。
{"title":"Grain Protein Content Phenotyping in Rice via Hyperspectral Imaging Technology and a Genome-Wide Association Study.","authors":"Hengbiao Zheng, Weijie Tang, Tao Yang, Meng Zhou, Caili Guo, Tao Cheng, Weixing Cao, Yan Zhu, Yunhui Zhang, Xia Yao","doi":"10.34133/plantphenomics.0200","DOIUrl":"10.34133/plantphenomics.0200","url":null,"abstract":"<p><p>Efficient and accurate acquisition of the rice grain protein content (GPC) is important for selecting high-quality rice varieties, and remote sensing technology is an attractive potential method for this task. However, the majority of multispectral sensors are poor predictors of GPC due to their broad spectral bands. Hyperspectral technology provides a new analytical technology for bridging the gap between phenomics and genomics. However, the small size of typical datasets is a constraint for model construction for estimating GPC, limiting their accuracy and reducing their ability to generalize to a wide range of varieties. In this study, we used hyperspectral data of rice grains from 515 japonica varieties and deep convolution generative adversarial networks (DCGANs) to generate simulated data to improve the model accuracy. Features sensitive to GPC were extracted after applying a continuous wavelet transform (CWT), and the estimated GPC model was constructed by partial least squares regression (PLSR). Finally, a genome-wide association study (GWAS) was applied to the measured and generated datasets to detect GPC loci. The results demonstrated that the simulated GPC values generated after 8,000 epochs were closest to the measured values. The wavelet feature (WF<sub>1743, 2</sub>), obtained from the data with the addition of 200 simulated samples, exhibited the highest GPC estimation accuracy (<i>R</i> <sup>2</sup> = 0.58 and RRMSE = 6.70%). The GWAS analysis showed that the estimated values based on the simulated data detected the same loci as the measured values, including the <i>OsmtSSB1L</i> gene related to grain storage protein. This study provides a new technique for the efficient genetic study of phenotypic traits in rice based on hyperspectral technology.</p>","PeriodicalId":20318,"journal":{"name":"Plant Phenomics","volume":null,"pages":null},"PeriodicalIF":7.6,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11227985/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141559569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DEKR-SPrior: An Efficient Bottom-Up Keypoint Detection Model for Accurate Pod Phenotyping in Soybean. DEKR-SPrior:用于精确大豆花苞表型的高效自下而上关键点检测模型
IF 7.6 1区 农林科学 Q1 AGRONOMY Pub Date : 2024-06-27 eCollection Date: 2024-01-01 DOI: 10.34133/plantphenomics.0198
Jingjing He, Lin Weng, Xiaogang Xu, Ruochen Chen, Bo Peng, Nannan Li, Zhengchao Xie, Lijian Sun, Qiang Han, Pengfei He, Fangfang Wang, Hui Yu, Javaid Akhter Bhat, Xianzhong Feng

The pod and seed counts are important yield-related traits in soybean. High-precision soybean breeders face the major challenge of accurately phenotyping the number of pods and seeds in a high-throughput manner. Recent advances in artificial intelligence, especially deep learning (DL) models, have provided new avenues for high-throughput phenotyping of crop traits with increased precision. However, the available DL models are less effective for phenotyping pods that are densely packed and overlap in in situ soybean plants; thus, accurate phenotyping of the number of pods and seeds in soybean plant is an important challenge. To address this challenge, the present study proposed a bottom-up model, DEKR-SPrior (disentangled keypoint regression with structural prior), for in situ soybean pod phenotyping, which considers soybean pods and seeds analogous to human people and joints, respectively. In particular, we designed a novel structural prior (SPrior) module that utilizes cosine similarity to improve feature discrimination, which is important for differentiating closely located seeds from highly similar seeds. To further enhance the accuracy of pod location, we cropped full-sized images into smaller and high-resolution subimages for analysis. The results on our image datasets revealed that DEKR-SPrior outperformed multiple bottom-up models, viz., Lightweight-OpenPose, OpenPose, HigherHRNet, and DEKR, reducing the mean absolute error from 25.81 (in the original DEKR) to 21.11 (in the DEKR-SPrior) in pod phenotyping. This paper demonstrated the great potential of DEKR-SPrior for plant phenotyping, and we hope that DEKR-SPrior will help future plant phenotyping.

豆荚数和种子数是大豆与产量相关的重要性状。高精度大豆育种人员面临的主要挑战是如何以高通量方式准确地对豆荚和种子数量进行表型。人工智能领域的最新进展,尤其是深度学习(DL)模型,为高通量、更精确的作物性状表型提供了新途径。然而,现有的深度学习模型对于原位大豆植株中密集重叠的豆荚表型效果较差;因此,准确表型大豆植株中的豆荚和种子数量是一项重要挑战。为解决这一难题,本研究提出了一种自下而上的大豆原位结荚表型模型 DEKR-SPrior(带结构先验的分离关键点回归),该模型将大豆的荚果和种子分别类比为人类的 "人 "和 "关节"。特别是,我们设计了一个新颖的结构先验(SPrior)模块,利用余弦相似性提高特征判别能力,这对于区分位置接近的种子和高度相似的种子非常重要。为了进一步提高豆荚定位的准确性,我们将全尺寸图像裁剪成更小的高分辨率子图像进行分析。对图像数据集的研究结果表明,DEKR-SPrior 的表现优于多种自下而上模型,即轻量级-OpenPose、OpenPose、HigherHRNet 和 DEKR,在豆荚表型分析中将平均绝对误差从 25.81(原始 DEKR)降低到 21.11(DEKR-SPrior)。本文展示了 DEKR-SPrior 在植物表型分析中的巨大潜力,我们希望 DEKR-SPrior 能为未来的植物表型分析提供帮助。
{"title":"DEKR-SPrior: An Efficient Bottom-Up Keypoint Detection Model for Accurate Pod Phenotyping in Soybean.","authors":"Jingjing He, Lin Weng, Xiaogang Xu, Ruochen Chen, Bo Peng, Nannan Li, Zhengchao Xie, Lijian Sun, Qiang Han, Pengfei He, Fangfang Wang, Hui Yu, Javaid Akhter Bhat, Xianzhong Feng","doi":"10.34133/plantphenomics.0198","DOIUrl":"https://doi.org/10.34133/plantphenomics.0198","url":null,"abstract":"<p><p>The pod and seed counts are important yield-related traits in soybean. High-precision soybean breeders face the major challenge of accurately phenotyping the number of pods and seeds in a high-throughput manner. Recent advances in artificial intelligence, especially deep learning (DL) models, have provided new avenues for high-throughput phenotyping of crop traits with increased precision. However, the available DL models are less effective for phenotyping pods that are densely packed and overlap in in situ soybean plants; thus, accurate phenotyping of the number of pods and seeds in soybean plant is an important challenge. To address this challenge, the present study proposed a bottom-up model, DEKR-SPrior (disentangled keypoint regression with structural prior), for in situ soybean pod phenotyping, which considers soybean pods and seeds analogous to human people and joints, respectively. In particular, we designed a novel structural prior (SPrior) module that utilizes cosine similarity to improve feature discrimination, which is important for differentiating closely located seeds from highly similar seeds. To further enhance the accuracy of pod location, we cropped full-sized images into smaller and high-resolution subimages for analysis. The results on our image datasets revealed that DEKR-SPrior outperformed multiple bottom-up models, viz., Lightweight-OpenPose, OpenPose, HigherHRNet, and DEKR, reducing the mean absolute error from 25.81 (in the original DEKR) to 21.11 (in the DEKR-SPrior) in pod phenotyping. This paper demonstrated the great potential of DEKR-SPrior for plant phenotyping, and we hope that DEKR-SPrior will help future plant phenotyping.</p>","PeriodicalId":20318,"journal":{"name":"Plant Phenomics","volume":null,"pages":null},"PeriodicalIF":7.6,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11209727/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141470375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Segment Anything for Comprehensive Analysis of Grapevine Cluster Architecture and Berry Properties. 用于全面分析葡萄藤簇结构和浆果特性的分段数据。
IF 7.6 1区 农林科学 Q1 AGRONOMY Pub Date : 2024-06-27 eCollection Date: 2024-01-01 DOI: 10.34133/plantphenomics.0202
Efrain Torres-Lomas, Jimena Lado-Bega, Guillermo Garcia-Zamora, Luis Diaz-Garcia

Grape cluster architecture and compactness are complex traits influencing disease susceptibility, fruit quality, and yield. Evaluation methods for these traits include visual scoring, manual methodologies, and computer vision, with the latter being the most scalable approach. Most of the existing computer vision approaches for processing cluster images often rely on conventional segmentation or machine learning with extensive training and limited generalization. The Segment Anything Model (SAM), a novel foundation model trained on a massive image dataset, enables automated object segmentation without additional training. This study demonstrates out-of-the-box SAM's high accuracy in identifying individual berries in 2-dimensional (2D) cluster images. Using this model, we managed to segment approximately 3,500 cluster images, generating over 150,000 berry masks, each linked with spatial coordinates within their clusters. The correlation between human-identified berries and SAM predictions was very strong (Pearson's r2 = 0.96). Although the visible berry count in images typically underestimates the actual cluster berry count due to visibility issues, we demonstrated that this discrepancy could be adjusted using a linear regression model (adjusted R 2 = 0.87). We emphasized the critical importance of the angle at which the cluster is imaged, noting its substantial effect on berry counts and architecture. We proposed different approaches in which berry location information facilitated the calculation of complex features related to cluster architecture and compactness. Finally, we discussed SAM's potential integration into currently available pipelines for image generation and processing in vineyard conditions.

葡萄果穗结构和紧密度是影响疾病易感性、果实质量和产量的复杂性状。这些性状的评估方法包括视觉评分、人工方法和计算机视觉,其中计算机视觉是最具扩展性的方法。现有的大多数计算机视觉处理群集图像的方法通常都依赖于传统的分割或机器学习,这些方法都需要大量的训练,而且通用性有限。Segment Anything Model(SAM)是一种在海量图像数据集上训练的新型基础模型,无需额外训练即可实现自动物体分割。本研究证明,开箱即用的 SAM 在识别二维(2D)群集图像中的单个浆果方面具有很高的准确性。利用该模型,我们成功地分割了约 3,500 幅集群图像,生成了超过 150,000 个浆果掩码,每个掩码都与其集群内的空间坐标相关联。人类识别的浆果与 SAM 预测之间的相关性非常强(Pearson's r2 = 0.96)。虽然由于可见度问题,图像中的可见浆果数量通常会低估实际的群集浆果数量,但我们证明这种差异可以通过线性回归模型进行调整(调整后的 R 2 = 0.87)。我们强调了果穗成像角度的重要性,并指出它对浆果数量和结构有很大影响。我们提出了不同的方法,其中浆果位置信息有助于计算与果丛结构和紧凑程度相关的复杂特征。最后,我们讨论了将 SAM 集成到当前可用的葡萄园图像生成和处理管道中的可能性。
{"title":"Segment Anything for Comprehensive Analysis of Grapevine Cluster Architecture and Berry Properties.","authors":"Efrain Torres-Lomas, Jimena Lado-Bega, Guillermo Garcia-Zamora, Luis Diaz-Garcia","doi":"10.34133/plantphenomics.0202","DOIUrl":"https://doi.org/10.34133/plantphenomics.0202","url":null,"abstract":"<p><p>Grape cluster architecture and compactness are complex traits influencing disease susceptibility, fruit quality, and yield. Evaluation methods for these traits include visual scoring, manual methodologies, and computer vision, with the latter being the most scalable approach. Most of the existing computer vision approaches for processing cluster images often rely on conventional segmentation or machine learning with extensive training and limited generalization. The Segment Anything Model (SAM), a novel foundation model trained on a massive image dataset, enables automated object segmentation without additional training. This study demonstrates out-of-the-box SAM's high accuracy in identifying individual berries in 2-dimensional (2D) cluster images. Using this model, we managed to segment approximately 3,500 cluster images, generating over 150,000 berry masks, each linked with spatial coordinates within their clusters. The correlation between human-identified berries and SAM predictions was very strong (Pearson's <i>r<sup>2</sup></i> = 0.96). Although the visible berry count in images typically underestimates the actual cluster berry count due to visibility issues, we demonstrated that this discrepancy could be adjusted using a linear regression model (adjusted <i>R</i> <sup>2</sup> = 0.87). We emphasized the critical importance of the angle at which the cluster is imaged, noting its substantial effect on berry counts and architecture. We proposed different approaches in which berry location information facilitated the calculation of complex features related to cluster architecture and compactness. Finally, we discussed SAM's potential integration into currently available pipelines for image generation and processing in vineyard conditions.</p>","PeriodicalId":20318,"journal":{"name":"Plant Phenomics","volume":null,"pages":null},"PeriodicalIF":7.6,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11208874/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141470376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simulation of Automatically Annotated Visible and Multi-/Hyperspectral Images Using the Helios 3D Plant and Radiative Transfer Modeling Framework. 利用 Helios 3D 植物和辐射传输建模框架模拟自动注释的可见光和多光谱/高光谱图像。
IF 6.5 1区 农林科学 Q1 Agricultural and Biological Sciences Pub Date : 2024-05-30 eCollection Date: 2024-01-01 DOI: 10.34133/plantphenomics.0189
Tong Lei, Jan Graefe, Ismael K Mayanja, Mason Earles, Brian N Bailey

Deep learning and multimodal remote and proximal sensing are widely used for analyzing plant and crop traits, but many of these deep learning models are supervised and necessitate reference datasets with image annotations. Acquiring these datasets often demands experiments that are both labor-intensive and time-consuming. Furthermore, extracting traits from remote sensing data beyond simple geometric features remains a challenge. To address these challenges, we proposed a radiative transfer modeling framework based on the Helios 3-dimensional (3D) plant modeling software designed for plant remote and proximal sensing image simulation. The framework has the capability to simulate RGB, multi-/hyperspectral, thermal, and depth cameras, and produce associated plant images with fully resolved reference labels such as plant physical traits, leaf chemical concentrations, and leaf physiological traits. Helios offers a simulated environment that enables generation of 3D geometric models of plants and soil with random variation, and specification or simulation of their properties and function. This approach differs from traditional computer graphics rendering by explicitly modeling radiation transfer physics, which provides a critical link to underlying plant biophysical processes. Results indicate that the framework is capable of generating high-quality, labeled synthetic plant images under given lighting scenarios, which can lessen or remove the need for manually collected and annotated data. Two example applications are presented that demonstrate the feasibility of using the model to enable unsupervised learning by training deep learning models exclusively with simulated images and performing prediction tasks using real images.

深度学习和多模态遥感与近距离传感被广泛用于分析植物和作物性状,但其中许多深度学习模型都是有监督的,需要有图像注释的参考数据集。获取这些数据集通常需要进行既耗费人力又耗费时间的实验。此外,从遥感数据中提取简单几何特征以外的特征仍然是一项挑战。为了应对这些挑战,我们提出了一个基于 Helios 三维(3D)植物建模软件的辐射传递建模框架,该软件专为植物遥感和近感图像模拟而设计。该框架能够模拟 RGB、多/高光谱、热和深度相机,并生成相关的植物图像,这些图像带有完全解析的参考标签,如植物物理特征、叶片化学浓度和叶片生理特征。Helios 提供的模拟环境可以生成具有随机变化的植物和土壤三维几何模型,并对其属性和功能进行规范或模拟。这种方法与传统的计算机图形渲染不同,它明确地模拟了辐射传递物理过程,这为潜在的植物生物物理过程提供了重要的联系。研究结果表明,该框架能够在给定的光照条件下生成高质量、有标记的合成植物图像,从而减少或消除对人工收集和注释数据的需求。本文还介绍了两个应用实例,展示了利用该模型通过完全使用模拟图像训练深度学习模型和使用真实图像执行预测任务来实现无监督学习的可行性。
{"title":"Simulation of Automatically Annotated Visible and Multi-/Hyperspectral Images Using the Helios 3D Plant and Radiative Transfer Modeling Framework.","authors":"Tong Lei, Jan Graefe, Ismael K Mayanja, Mason Earles, Brian N Bailey","doi":"10.34133/plantphenomics.0189","DOIUrl":"10.34133/plantphenomics.0189","url":null,"abstract":"<p><p>Deep learning and multimodal remote and proximal sensing are widely used for analyzing plant and crop traits, but many of these deep learning models are supervised and necessitate reference datasets with image annotations. Acquiring these datasets often demands experiments that are both labor-intensive and time-consuming. Furthermore, extracting traits from remote sensing data beyond simple geometric features remains a challenge. To address these challenges, we proposed a radiative transfer modeling framework based on the Helios 3-dimensional (3D) plant modeling software designed for plant remote and proximal sensing image simulation. The framework has the capability to simulate RGB, multi-/hyperspectral, thermal, and depth cameras, and produce associated plant images with fully resolved reference labels such as plant physical traits, leaf chemical concentrations, and leaf physiological traits. Helios offers a simulated environment that enables generation of 3D geometric models of plants and soil with random variation, and specification or simulation of their properties and function. This approach differs from traditional computer graphics rendering by explicitly modeling radiation transfer physics, which provides a critical link to underlying plant biophysical processes. Results indicate that the framework is capable of generating high-quality, labeled synthetic plant images under given lighting scenarios, which can lessen or remove the need for manually collected and annotated data. Two example applications are presented that demonstrate the feasibility of using the model to enable unsupervised learning by training deep learning models exclusively with simulated images and performing prediction tasks using real images.</p>","PeriodicalId":20318,"journal":{"name":"Plant Phenomics","volume":null,"pages":null},"PeriodicalIF":6.5,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11136674/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141180561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CucumberAI: Cucumber fruit morphology identification system based on artificial intelligence CucumberAI:基于人工智能的黄瓜果实形态识别系统
IF 6.5 1区 农林科学 Q1 Agricultural and Biological Sciences Pub Date : 2024-05-19 DOI: 10.34133/plantphenomics.0193
Wei Xue, Haifeng Ding, Tao Jin, Jialing Meng, Shiyou Wang, Zuo Liu, Xiupeng Ma, Ji Li
{"title":"CucumberAI: Cucumber fruit morphology identification system based on artificial intelligence","authors":"Wei Xue, Haifeng Ding, Tao Jin, Jialing Meng, Shiyou Wang, Zuo Liu, Xiupeng Ma, Ji Li","doi":"10.34133/plantphenomics.0193","DOIUrl":"https://doi.org/10.34133/plantphenomics.0193","url":null,"abstract":"","PeriodicalId":20318,"journal":{"name":"Plant Phenomics","volume":null,"pages":null},"PeriodicalIF":6.5,"publicationDate":"2024-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141124679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SCAG: A stratified, clustered, and growing-based algorithm for soybean branch angle extraction and ideal plant architecture evaluation SCAG:一种基于分层、聚类和生长的算法,用于大豆分枝角度提取和理想植株结构评估
IF 6.5 1区 农林科学 Q1 Agricultural and Biological Sciences Pub Date : 2024-05-19 DOI: 10.34133/plantphenomics.0190
Shichao Jin, Songyin Zhang, Yinmeng Song, Ran Ou, Yiqiang Liu, Shaochen Li, Xinlan Lu, Shan Xu, Yanjun Su, Jiang Dong, Yanfeng Ding, Haifeng Xia, Qinghua Guo, Jin Wu, Jiaoping Zhang
{"title":"SCAG: A stratified, clustered, and growing-based algorithm for soybean branch angle extraction and ideal plant architecture evaluation","authors":"Shichao Jin, Songyin Zhang, Yinmeng Song, Ran Ou, Yiqiang Liu, Shaochen Li, Xinlan Lu, Shan Xu, Yanjun Su, Jiang Dong, Yanfeng Ding, Haifeng Xia, Qinghua Guo, Jin Wu, Jiaoping Zhang","doi":"10.34133/plantphenomics.0190","DOIUrl":"https://doi.org/10.34133/plantphenomics.0190","url":null,"abstract":"","PeriodicalId":20318,"journal":{"name":"Plant Phenomics","volume":null,"pages":null},"PeriodicalIF":6.5,"publicationDate":"2024-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141124804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Out-of-Distribution Detection Algorithms for Robust Insect Classification. 用于昆虫稳健分类的分布外检测算法
IF 6.5 1区 农林科学 Q1 Agricultural and Biological Sciences Pub Date : 2024-04-30 eCollection Date: 2024-01-01 DOI: 10.34133/plantphenomics.0170
Mojdeh Saadati, Aditya Balu, Shivani Chiranjeevi, Talukder Zaki Jubery, Asheesh K Singh, Soumik Sarkar, Arti Singh, Baskar Ganapathysubramanian

Plants encounter a variety of beneficial and harmful insects during their growth cycle. Accurate identification (i.e., detecting insects' presence) and classification (i.e., determining the type or class) of these insect species is critical for implementing prompt and suitable mitigation strategies. Such timely actions carry substantial economic and environmental implications. Deep learning-based approaches have produced models with good insect classification accuracy. Researchers aim to implement identification and classification models in agriculture, facing challenges when input images markedly deviate from the training distribution (e.g., images like vehicles, humans, or a blurred image or insect class that is not yet trained on). Out-of-distribution (OOD) detection algorithms provide an exciting avenue to overcome these challenges as they ensure that a model abstains from making incorrect classification predictions on images that belong to non-insect and/or untrained insect classes. As far as we know, no prior in-depth exploration has been conducted on the role of the OOD detection algorithms in addressing agricultural issues. Here, we generate and evaluate the performance of state-of-the-art OOD algorithms on insect detection classifiers. These algorithms represent a diversity of methods for addressing an OOD problem. Specifically, we focus on extrusive algorithms, i.e., algorithms that wrap around a well-trained classifier without the need for additional co-training. We compared three OOD detection algorithms: (a) maximum softmax probability, which uses the softmax value as a confidence score; (b) Mahalanobis distance (MAH)-based algorithm, which uses a generative classification approach; and (c) energy-based algorithm, which maps the input data to a scalar value, called energy. We performed an extensive series of evaluations of these OOD algorithms across three performance axes: (a) Base model accuracy: How does the accuracy of the classifier impact OOD performance? (b) How does the level of dissimilarity to the domain impact OOD performance? (c) Data imbalance: How sensitive is OOD performance to the imbalance in per-class sample size? Evaluating OOD algorithms across these performance axes provides practical guidelines to ensure the robust performance of well-trained models in the wild, which is a key consideration for agricultural applications. Based on this analysis, we proposed the most effective OOD algorithm as wrapper for the insect classifier with highest accuracy. We presented the results of its OOD detection performance in the paper. Our results indicate that OOD detection algorithms can significantly enhance user trust in insect pest classification by abstaining classification under uncertain conditions.

植物在生长周期中会遇到各种益虫和害虫。准确识别(即检测昆虫的存在)和分类(即确定昆虫的类型或类别)这些昆虫物种对于实施及时和适当的缓解战略至关重要。这种及时的行动具有重大的经济和环境影响。基于深度学习的方法已经产生了具有良好昆虫分类准确性的模型。研究人员的目标是在农业领域实施识别和分类模型,但当输入图像明显偏离训练分布时(如车辆、人类等图像,或尚未训练的模糊图像或昆虫类别),他们就会面临挑战。分布外(OOD)检测算法为克服这些挑战提供了一个令人兴奋的途径,因为它能确保模型不会对属于非昆虫和/或未经训练的昆虫类别的图像做出错误的分类预测。据我们所知,此前还没有人对 OOD 检测算法在解决农业问题方面的作用进行过深入探讨。在此,我们生成并评估了昆虫检测分类器上最先进的 OOD 算法的性能。这些算法代表了解决 OOD 问题的多种方法。具体来说,我们关注的是外显算法,即围绕训练有素的分类器而无需额外协同训练的算法。我们比较了三种 OOD 检测算法:(a) 最大软最大概率,该算法使用软最大值作为置信度得分;(b) 基于马哈拉诺比距离 (MAH) 的算法,该算法使用生成分类方法;以及 (c) 基于能量的算法,该算法将输入数据映射为一个标量值,称为能量。我们在三个性能轴上对这些 OOD 算法进行了一系列广泛的评估:(a) 基本模型的准确性:分类器的准确性如何影响 OOD 性能?(b) 与领域的不相似程度如何影响 OOD 性能?(c) 数据不平衡:OOD 性能对每类样本大小的不平衡有多敏感?在这些性能轴上评估 OOD 算法为确保训练有素的模型在野生环境中的稳健性能提供了实用指南,而这正是农业应用的关键考虑因素。基于上述分析,我们提出了最有效的 OOD 算法,作为昆虫分类器的包装器,具有最高的准确率。我们在论文中介绍了其 OOD 检测性能的结果。我们的结果表明,OOD 检测算法可以在不确定条件下放弃分类,从而大大提高用户对害虫分类的信任度。
{"title":"Out-of-Distribution Detection Algorithms for Robust Insect Classification.","authors":"Mojdeh Saadati, Aditya Balu, Shivani Chiranjeevi, Talukder Zaki Jubery, Asheesh K Singh, Soumik Sarkar, Arti Singh, Baskar Ganapathysubramanian","doi":"10.34133/plantphenomics.0170","DOIUrl":"https://doi.org/10.34133/plantphenomics.0170","url":null,"abstract":"<p><p>Plants encounter a variety of beneficial and harmful insects during their growth cycle. Accurate identification (i.e., detecting insects' presence) and classification (i.e., determining the type or class) of these insect species is critical for implementing prompt and suitable mitigation strategies. Such timely actions carry substantial economic and environmental implications. Deep learning-based approaches have produced models with good insect classification accuracy. Researchers aim to implement identification and classification models in agriculture, facing challenges when input images markedly deviate from the training distribution (e.g., images like vehicles, humans, or a blurred image or insect class that is not yet trained on). Out-of-distribution (OOD) detection algorithms provide an exciting avenue to overcome these challenges as they ensure that a model abstains from making incorrect classification predictions on images that belong to non-insect and/or untrained insect classes. As far as we know, no prior in-depth exploration has been conducted on the role of the OOD detection algorithms in addressing agricultural issues. Here, we generate and evaluate the performance of state-of-the-art OOD algorithms on insect detection classifiers. These algorithms represent a diversity of methods for addressing an OOD problem. Specifically, we focus on extrusive algorithms, i.e., algorithms that wrap around a well-trained classifier without the need for additional co-training. We compared three OOD detection algorithms: (a) maximum softmax probability, which uses the softmax value as a confidence score; (b) Mahalanobis distance (MAH)-based algorithm, which uses a generative classification approach; and (c) energy-based algorithm, which maps the input data to a scalar value, called energy. We performed an extensive series of evaluations of these OOD algorithms across three performance axes: (a) Base model accuracy: How does the accuracy of the classifier impact OOD performance? (b) How does the level of dissimilarity to the domain impact OOD performance? (c) Data imbalance: How sensitive is OOD performance to the imbalance in per-class sample size? Evaluating OOD algorithms across these performance axes provides practical guidelines to ensure the robust performance of well-trained models in the wild, which is a key consideration for agricultural applications. Based on this analysis, we proposed the most effective OOD algorithm as wrapper for the insect classifier with highest accuracy. We presented the results of its OOD detection performance in the paper. Our results indicate that OOD detection algorithms can significantly enhance user trust in insect pest classification by abstaining classification under uncertain conditions.</p>","PeriodicalId":20318,"journal":{"name":"Plant Phenomics","volume":null,"pages":null},"PeriodicalIF":6.5,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11065417/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140854492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From neglecting to including cultivar-specific per se temperature responses: Extending the concept of thermal time in field crops 从忽略到纳入栽培品种特有的温度反应:扩展大田作物的热时间概念
IF 6.5 1区 农林科学 Q1 Agricultural and Biological Sciences Pub Date : 2024-04-12 DOI: 10.34133/plantphenomics.0185
Lukas Roth, Martina Binder, N. Kirchgessner, Flavian Tschurr, Steven Yates, A. Hund, Lukas Kronenberg, Achim Walter
{"title":"From neglecting to including cultivar-specific per se temperature responses: Extending the concept of thermal time in field crops","authors":"Lukas Roth, Martina Binder, N. Kirchgessner, Flavian Tschurr, Steven Yates, A. Hund, Lukas Kronenberg, Achim Walter","doi":"10.34133/plantphenomics.0185","DOIUrl":"https://doi.org/10.34133/plantphenomics.0185","url":null,"abstract":"","PeriodicalId":20318,"journal":{"name":"Plant Phenomics","volume":null,"pages":null},"PeriodicalIF":6.5,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140711534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Plant Phenomics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1