首页 > 最新文献

Powder Diffraction最新文献

英文 中文
Possibilities of the X-ray diffraction data processing method for detecting reflections with intensity below the background noise component X 射线衍射数据处理方法检测强度低于背景噪声分量的反射的可能性
IF 0.5 4区 材料科学 Q2 Physics and Astronomy Pub Date : 2024-05-22 DOI: 10.1017/s0885715624000241
S. Gabielkov, I. Zhyganiuk, A. Skorbun, V. Kudlai, B.S. Savchenko, P. Parkhomchuk, S. Chikolovets
The values of the signal-to-noise ratio are determined, at which the method of processing X-ray diffraction data reveals reflections with intensity less than the noise component of the background. The possibilities of the method are demonstrated on weak reflections of α-quartz. The method of processing X-ray diffraction data makes it possible to increase the possibilities of X-ray phase analysis in determining the qualitative phase composition of multiphase materials with a small (down to 0.1 wt.%) content of several (up to eight) phases.
确定了信噪比的数值,在此数值下,处理 X 射线衍射数据的方法可显示强度小于背景噪声分量的反射。在 α-石英的微弱反射上演示了该方法的可能性。这种处理 X 射线衍射数据的方法提高了 X 射线相分析在确定多相材料的定性相组成方面的可能性,这些多相材料含有少量(低至 0.1 wt.%)几种(最多八种)相。
{"title":"Possibilities of the X-ray diffraction data processing method for detecting reflections with intensity below the background noise component","authors":"S. Gabielkov, I. Zhyganiuk, A. Skorbun, V. Kudlai, B.S. Savchenko, P. Parkhomchuk, S. Chikolovets","doi":"10.1017/s0885715624000241","DOIUrl":"https://doi.org/10.1017/s0885715624000241","url":null,"abstract":"The values of the signal-to-noise ratio are determined, at which the method of processing X-ray diffraction data reveals reflections with intensity less than the noise component of the background. The possibilities of the method are demonstrated on weak reflections of α-quartz. The method of processing X-ray diffraction data makes it possible to increase the possibilities of X-ray phase analysis in determining the qualitative phase composition of multiphase materials with a small (down to 0.1 wt.%) content of several (up to eight) phases.","PeriodicalId":20333,"journal":{"name":"Powder Diffraction","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141112337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Crystal structure of rilpivirine hydrochloride, N6H19C22Cl 盐酸利匹韦林(N6H19C22Cl)的晶体结构
IF 0.5 4区 材料科学 Q2 Physics and Astronomy Pub Date : 2024-05-20 DOI: 10.1017/s0885715624000228
Petr A. Buikin, Alexander Korlyukov, Elizaveta Kulikova, Roman Novikov, A. Vologzhanina
A monoclinic C form of rilpivirine hydrochloride, (N6H19C22)Cl, has been obtained and characterized using solid-state 15N, 13C, and 35Cl NMR spectroscopy and multitemperature synchrotron X-ray powder diffraction. The title compound crystallizes in the monoclinic system (space group C2/c, #15) at both room (295.0(2) K) and low (100.0(2) K) temperatures. At room temperature, the following parameters are a = 19.43051(3), b = 13.09431(14), c = 17.10254(18) Å, β = 109.3937(7), V = 4104.48(9) Å3, and Z = 8. The folded molecular conformation of the cation is similar with that of free base rilpivirine with the exception of cyanovinyl group disposition. The anion links cations to infinite chains parallel to the crystallographic c axis using N–H⋯Cl bonds where both amino groups and the protonated pyrimidine ring take part in the H-bonding. The powder patterns have been submitted to the ICDD for inclusion in the Powder Diffraction File™ (PDF®).
利用固态 15N、13C 和 35Cl NMR 光谱以及多温同步 X 射线粉末衍射技术,我们获得了盐酸利匹韦林的单斜 C 型 (N6H19C22)Cl,并对其进行了表征。标题化合物在室温(295.0(2) K)和低温(100.0(2) K)下均为单斜晶系(空间群 C2/c,#15)结晶。在室温下,其参数如下:a = 19.43051(3),b = 13.09431(14),c = 17.10254(18)埃,β = 109.3937(7),V = 4104.48(9)埃3,Z = 8。阳离子的折叠分子构象与游离碱基 rilpivirine 相似,但氰基乙烯基的布局除外。阴离子利用 N-H⋯Cl 键将阳离子连接到平行于晶体学 c 轴的无限链上,其中氨基和质子化的嘧啶环都参与了 H 键连接。粉末图样已提交给国际粉末衍射中心(ICDD),以便纳入粉末衍射文件™ (PDF®)。
{"title":"Crystal structure of rilpivirine hydrochloride, N6H19C22Cl","authors":"Petr A. Buikin, Alexander Korlyukov, Elizaveta Kulikova, Roman Novikov, A. Vologzhanina","doi":"10.1017/s0885715624000228","DOIUrl":"https://doi.org/10.1017/s0885715624000228","url":null,"abstract":"A monoclinic C form of rilpivirine hydrochloride, (N6H19C22)Cl, has been obtained and characterized using solid-state 15N, 13C, and 35Cl NMR spectroscopy and multitemperature synchrotron X-ray powder diffraction. The title compound crystallizes in the monoclinic system (space group C2/c, #15) at both room (295.0(2) K) and low (100.0(2) K) temperatures. At room temperature, the following parameters are a = 19.43051(3), b = 13.09431(14), c = 17.10254(18) Å, β = 109.3937(7), V = 4104.48(9) Å3, and Z = 8. The folded molecular conformation of the cation is similar with that of free base rilpivirine with the exception of cyanovinyl group disposition. The anion links cations to infinite chains parallel to the crystallographic c axis using N–H⋯Cl bonds where both amino groups and the protonated pyrimidine ring take part in the H-bonding. The powder patterns have been submitted to the ICDD for inclusion in the Powder Diffraction File™ (PDF®).","PeriodicalId":20333,"journal":{"name":"Powder Diffraction","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141120704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Crystal structure of alectinib hydrochloride Type I, C30H35N4O2Cl 阿来替尼盐酸盐 I 型 C30H35N4O2Cl 的晶体结构
IF 0.5 4区 材料科学 Q2 Physics and Astronomy Pub Date : 2024-05-20 DOI: 10.1017/s0885715624000204
J. A. Kaduk, Megan M. Rost, A. Dosen, T. Blanton
The crystal structure of alectinib hydrochloride has been solved and refined using synchrotron X-ray powder diffraction data and optimized using density functional theory techniques. Alectinib hydrochloride crystallizes in space group P21/n (#14) with the following parameters: a = 12.67477(7), b = 10.44076(5), c = 20.38501(12) Å, β = 93.1438(7)°, V = 2693.574(18) Å3, and Z = 4 at 295 K. The crystal structure consists of stacks of molecules along the b-axis, and the stacks contain chains of strong N–H⋯Cl hydrogen bonds. One density functional theory calculation moved a proton from an N atom to the Cl, but another calculation yielded a more chemically reasonable result. The powder pattern has been submitted to ICDD for inclusion in the Powder Diffraction File™ (PDF®)
利用同步辐射 X 射线粉末衍射数据解决并完善了盐酸阿来替尼的晶体结构,并利用密度泛函理论技术对其进行了优化。阿来替尼盐酸盐在空间群 P21/n (#14) 中结晶,参数如下:a = 12.67477(7),b = 10.44076(5),c = 20.38501(12)埃,β = 93.1438(7)°,V = 2693.574(18)埃3,Z = 4,结晶温度为 295 K。一种密度泛函理论计算将一个质子从 N 原子移到了 Cl 原子上,但另一种计算得出的结果在化学上更为合理。该粉末图样已提交给 ICDD,以便纳入粉末衍射文件™ (PDF®) 中。
{"title":"Crystal structure of alectinib hydrochloride Type I, C30H35N4O2Cl","authors":"J. A. Kaduk, Megan M. Rost, A. Dosen, T. Blanton","doi":"10.1017/s0885715624000204","DOIUrl":"https://doi.org/10.1017/s0885715624000204","url":null,"abstract":"The crystal structure of alectinib hydrochloride has been solved and refined using synchrotron X-ray powder diffraction data and optimized using density functional theory techniques. Alectinib hydrochloride crystallizes in space group P21/n (#14) with the following parameters: a = 12.67477(7), b = 10.44076(5), c = 20.38501(12) Å, β = 93.1438(7)°, V = 2693.574(18) Å3, and Z = 4 at 295 K. The crystal structure consists of stacks of molecules along the b-axis, and the stacks contain chains of strong N–H⋯Cl hydrogen bonds. One density functional theory calculation moved a proton from an N atom to the Cl, but another calculation yielded a more chemically reasonable result. The powder pattern has been submitted to ICDD for inclusion in the Powder Diffraction File™ (PDF®)","PeriodicalId":20333,"journal":{"name":"Powder Diffraction","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141118915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Crystal structures and X-ray powder diffraction data for AAlGe2O6 synthetic leucite analogs (A = K, Rb, Cs) AAlGe2O6 合成白铁矿类似物(A = K、Rb、Cs)的晶体结构和 X 射线粉末衍射数据
IF 0.5 4区 材料科学 Q2 Physics and Astronomy Pub Date : 2024-05-16 DOI: 10.1017/s088571562400023x
Anthony M. T. Bell
Leucites are tetrahedrally coordinated silicate framework structures with some of the silicon framework cations that are partially replaced by divalent or trivalent cations. These structures have general formulae A2BSi5O12 and ACSi2O6, where A is a monovalent alkali metal cation, B is a divalent cation, and C is a trivalent cation. There are also leucite analogs with analogous tetrahedrally coordinated germanate framework structures. These have general formulae A2BGe5O12 and ACGe2O6. In this paper, the Rietveld refinements of three synthetic Ge-leucite analogs with stoichiometries of AAlGe2O6 (A = K, Rb, Cs) are discussed. KAlGe2O6 is I41/a tetragonal and is isostructural with KAlSi2O6. RbAlGe2O6 and CsAlGe2O6 are $Ibar{4}3d$ cubic and are isostructural with KBSi2O6.
白云石是四面体配位的硅酸盐框架结构,其中部分硅框架阳离子被二价或三价阳离子取代。这些结构的通式为 A2BSi5O12 和 ACSi2O6,其中 A 是一价碱金属阳离子,B 是二价阳离子,C 是三价阳离子。还有一些白榴石类似物具有类似的四面体配位锗酸盐框架结构。它们的通式为 A2BGe5O12 和 ACGe2O6。本文讨论了具有 AAlGe2O6(A = K、Rb、Cs)化学计量学的三种合成锗白铁矿类似物的里特维尔德精炼。KAlGe2O6 是 I41/a 四边形,与 KAlSi2O6 结构相同。RbAlGe2O6 和 CsAlGe2O6 是 $Ibar{4}3d$ 立方体,与 KBSi2O6 结构相同。
{"title":"Crystal structures and X-ray powder diffraction data for AAlGe2O6 synthetic leucite analogs (A = K, Rb, Cs)","authors":"Anthony M. T. Bell","doi":"10.1017/s088571562400023x","DOIUrl":"https://doi.org/10.1017/s088571562400023x","url":null,"abstract":"Leucites are tetrahedrally coordinated silicate framework structures with some of the silicon framework cations that are partially replaced by divalent or trivalent cations. These structures have general formulae <jats:italic>A</jats:italic><jats:sub>2</jats:sub><jats:italic>B</jats:italic>Si<jats:sub>5</jats:sub>O<jats:sub>12</jats:sub> and <jats:italic>AC</jats:italic>Si<jats:sub>2</jats:sub>O<jats:sub>6</jats:sub>, where <jats:italic>A</jats:italic> is a monovalent alkali metal cation, <jats:italic>B</jats:italic> is a divalent cation, and <jats:italic>C</jats:italic> is a trivalent cation. There are also leucite analogs with analogous tetrahedrally coordinated germanate framework structures. These have general formulae <jats:italic>A</jats:italic><jats:sub>2</jats:sub><jats:italic>B</jats:italic>Ge<jats:sub>5</jats:sub>O<jats:sub>12</jats:sub> and <jats:italic>AC</jats:italic>Ge<jats:sub>2</jats:sub>O<jats:sub>6</jats:sub>. In this paper, the Rietveld refinements of three synthetic Ge-leucite analogs with stoichiometries of <jats:italic>A</jats:italic>AlGe<jats:sub>2</jats:sub>O<jats:sub>6</jats:sub> (<jats:italic>A</jats:italic> = K, Rb, Cs) are discussed. KAlGe<jats:sub>2</jats:sub>O<jats:sub>6</jats:sub> is <jats:italic>I</jats:italic>4<jats:sub>1</jats:sub><jats:italic>/a</jats:italic> tetragonal and is isostructural with KAlSi<jats:sub>2</jats:sub>O<jats:sub>6</jats:sub>. RbAlGe<jats:sub>2</jats:sub>O<jats:sub>6</jats:sub> and CsAlGe<jats:sub>2</jats:sub>O<jats:sub>6</jats:sub> are <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S088571562400023X_inline1.png\"/> <jats:tex-math>$Ibar{4}3d$</jats:tex-math> </jats:alternatives> </jats:inline-formula> cubic and are isostructural with KBSi<jats:sub>2</jats:sub>O<jats:sub>6</jats:sub>.","PeriodicalId":20333,"journal":{"name":"Powder Diffraction","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141060512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NIST Workshop: Integrating Crystallographic and Computational Approaches to Carbon-Capture Materials for the Mitigation of Climate Change (October 31–November 1, 2023) NIST 研讨会:整合晶体学和计算方法,开发碳捕集材料,减缓气候变化(2023 年 10 月 31 日至 11 月 1 日)
IF 0.5 4区 材料科学 Q2 Physics and Astronomy Pub Date : 2024-05-15 DOI: 10.1017/s0885715624000162
W. Wong-Ng, Eric Cockayne, Austin McDannald, Yu-Sheng Chen, Craig Brown, T. Runčevski, I. Levin
The NIST Workshop: Integrating Crystallographic and Computational Approaches to Carbon-Capture Materials for the Mitigation of Climate Change took place from October 31–November 1, 2023 at the National Cybersecurity Center of Excellence (NCCoE) Compound in Rockville, MD, which is an off-campus NIST facility. This workshop provided a forum for experimentalists and theorists working on the structural aspects of CO2 capture and sequestration materials to review the current state of the art in this field and discuss opportunities for collaborative research required to develop tools for rapid determination of the structure and its effect on the direct air capture performance in porous solid sorbents. We had a total of 33 international participants (18 invited speakers) from 17 institutions who were experimentalists and theorists from academia, government, and industry. The workshop was a great success.
NIST 研讨会:2023 年 10 月 31 日至 11 月 1 日,在位于马里兰州罗克维尔的国家网络安全卓越中心 (NCCoE) 大院(NIST 校外设施)举办了 "整合晶体学和计算方法,研究用于减缓气候变化的碳捕集材料 "研讨会。这次研讨会为研究二氧化碳捕获和封存材料结构方面的实验人员和理论人员提供了一个论坛,让他们回顾该领域的技术现状,并讨论合作研究的机会,这些合作研究需要开发工具来快速确定多孔固体吸附剂的结构及其对直接空气捕获性能的影响。共有来自 17 个机构的 33 位国际与会者(18 位特邀发言人)参加了此次研讨会,他们分别是来自学术界、政府和工业界的实验人员和理论人员。研讨会取得了圆满成功。
{"title":"NIST Workshop: Integrating Crystallographic and Computational Approaches to Carbon-Capture Materials for the Mitigation of Climate Change (October 31–November 1, 2023)","authors":"W. Wong-Ng, Eric Cockayne, Austin McDannald, Yu-Sheng Chen, Craig Brown, T. Runčevski, I. Levin","doi":"10.1017/s0885715624000162","DOIUrl":"https://doi.org/10.1017/s0885715624000162","url":null,"abstract":"The NIST Workshop: Integrating Crystallographic and Computational Approaches to Carbon-Capture Materials for the Mitigation of Climate Change took place from October 31–November 1, 2023 at the National Cybersecurity Center of Excellence (NCCoE) Compound in Rockville, MD, which is an off-campus NIST facility. This workshop provided a forum for experimentalists and theorists working on the structural aspects of CO2 capture and sequestration materials to review the current state of the art in this field and discuss opportunities for collaborative research required to develop tools for rapid determination of the structure and its effect on the direct air capture performance in porous solid sorbents. We had a total of 33 international participants (18 invited speakers) from 17 institutions who were experimentalists and theorists from academia, government, and industry. The workshop was a great success.","PeriodicalId":20333,"journal":{"name":"Powder Diffraction","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140972400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Crystal structure of brimonidine hydrogen tartrate, (C11H11BrN5)(HC4H4O6) 酒石酸溴莫尼定晶体结构,(C11H11BrN5)(HC4H4O6)
IF 0.5 4区 材料科学 Q2 Physics and Astronomy Pub Date : 2024-05-06 DOI: 10.1017/s0885715624000174
James A. Kaduk, Anja Dosen, Thomas N. Blanton

The crystal structure of brimonidine hydrogen tartrate has been solved and refined using synchrotron X-ray powder diffraction data and optimized using density functional techniques. Brimonidine hydrogen tartrate crystallizes in space group P21 (#4) with a = 7.56032(2), b = 7.35278(2), c = 30.10149(9) Å, β = 90.1992(2)°, V = 1673.312(10) Å3, and Z = 4 at 295 K. The crystal structure consists of alternating layers of cations and anions parallel to the ab-plane. Each of the hydrogen tartrate anions is linked to itself by very strong charge-assisted O–H⋯O hydrogen bonds into chains along the a-axis. Each hydroxyl group of each tartrate acts as a donor in an O–H⋯O or O–H⋯N hydrogen bond. One of these is intramolecular, but the other three are intermolecular. These hydrogen bonds link the hydrogen tartrate anions into layers parallel to the ab-plane and also link the anion–cation layers. The protonated N atoms act as donors in N–H⋯O or N–H⋯N hydrogen bonds to the carboxyl groups of the tartrates and to a ring nitrogen atom. These link the cations and anions, as well as providing cation–cation links. The amino N atoms of the cations form N–H⋯O hydrogen bonds to hydroxyl groups of the anions. The powder pattern has been submitted to ICDD for inclusion in the Powder Diffraction File™ (PDF®)

利用同步辐射 X 射线粉末衍射数据解决和完善了酒石酸溴莫尼定的晶体结构,并利用密度泛函技术对其进行了优化。酒石酸溴莫尼定在 295 K 时结晶于空间群 P21(#4),a = 7.56032(2),b = 7.35278(2),c = 30.10149(9)埃,β = 90.1992(2)°,V = 1673.312(10)埃3,Z = 4。每个酒石酸氢阴离子都通过非常强的电荷辅助 O-H⋯O 氢键沿 a 轴连接成链。每个酒石酸盐的羟基都是 O-H⋯O 或 O-H⋯N 氢键的供体。其中一个是分子内氢键,其他三个是分子间氢键。这些氢键将酒石酸氢阴离子连接成平行于 ab 平面的层,同时也将阴离子-阳离子层连接起来。质子化的 N 原子在 N-H⋯O 或 N-H⋯N 氢键中充当供体,与酒石酸盐的羧基和一个环状氮原子结合。这些氢键连接阳离子和阴离子,并提供阳离子-阳离子连接。阳离子的氨基 N 原子与阴离子的羟基形成 N-H⋯O 氢键。粉末图样已提交给国际粉末衍射中心(ICDD),以便纳入粉末衍射文件™ (PDF®)
{"title":"Crystal structure of brimonidine hydrogen tartrate, (C11H11BrN5)(HC4H4O6)","authors":"James A. Kaduk, Anja Dosen, Thomas N. Blanton","doi":"10.1017/s0885715624000174","DOIUrl":"https://doi.org/10.1017/s0885715624000174","url":null,"abstract":"<p>The crystal structure of brimonidine hydrogen tartrate has been solved and refined using synchrotron X-ray powder diffraction data and optimized using density functional techniques. Brimonidine hydrogen tartrate crystallizes in space group <span>P2<span>1</span></span> (#4) with <span>a</span> = 7.56032(2), <span>b</span> = 7.35278(2), <span>c</span> = 30.10149(9) Å, <span>β</span> = 90.1992(2)°, <span>V</span> = 1673.312(10) Å<span>3</span>, and <span>Z</span> = 4 at 295 K. The crystal structure consists of alternating layers of cations and anions parallel to the <span>ab</span>-plane. Each of the hydrogen tartrate anions is linked to itself by very strong charge-assisted O–H⋯O hydrogen bonds into chains along the <span>a</span>-axis. Each hydroxyl group of each tartrate acts as a donor in an O–H⋯O or O–H⋯N hydrogen bond. One of these is intramolecular, but the other three are intermolecular. These hydrogen bonds link the hydrogen tartrate anions into layers parallel to the <span>ab</span>-plane and also link the anion–cation layers. The protonated N atoms act as donors in N–H⋯O or N–H⋯N hydrogen bonds to the carboxyl groups of the tartrates and to a ring nitrogen atom. These link the cations and anions, as well as providing cation–cation links. The amino N atoms of the cations form N–H⋯O hydrogen bonds to hydroxyl groups of the anions. The powder pattern has been submitted to ICDD for inclusion in the Powder Diffraction File™ (PDF®)</p>","PeriodicalId":20333,"journal":{"name":"Powder Diffraction","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140883157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Crystal structure of valbenazine, C24H38N2O4 缬苯嗪(C24H38N2O4)的晶体结构
IF 0.5 4区 材料科学 Q2 Physics and Astronomy Pub Date : 2024-05-06 DOI: 10.1017/s0885715624000198
Tawnee M. Ens, James A. Kaduk, Megan M. Rost, Anja Dosen, Thomas N. Blanton

The crystal structure of valbenazine has been solved and refined using synchrotron X-ray powder diffraction data and optimized using density functional theory techniques. Valbenazine crystallizes in space group P212121 (#19) with a = 5.260267(17), b = 17.77028(7), c = 26.16427(9) Å, V = 2445.742(11) Å3, and Z = 4 at 295 K. The crystal structure consists of discrete molecules and the mean plane of the molecules is approximately (8,−2,15). There are no obvious strong intermolecular interactions. There is only one weak classical hydrogen bond in the structure, from the amino group to the ether oxygen atom. Two intramolecular and one intermolecular C–H⋯O hydrogen bonds also contribute to the lattice energy. The powder pattern has been submitted to ICDD for inclusion in the Powder Diffraction File™ (PDF®)

我们利用同步辐射 X 射线粉末衍射数据解决并完善了缬苄嗪的晶体结构,并利用密度泛函理论技术对其进行了优化。在 295 K 时,缬苯嗪在空间群 P212121 (#19) 中结晶,a = 5.260267(17),b = 17.77028(7),c = 26.16427(9)埃,V = 2445.742(11)埃3,Z = 4。分子间没有明显的强相互作用。结构中只有一个从氨基到醚氧原子的弱经典氢键。两个分子内氢键和一个分子间 C-H⋯O 氢键也对晶格能有贡献。该粉末图样已提交给 ICDD,以便纳入粉末衍射文件™ (PDF®) 中。
{"title":"Crystal structure of valbenazine, C24H38N2O4","authors":"Tawnee M. Ens, James A. Kaduk, Megan M. Rost, Anja Dosen, Thomas N. Blanton","doi":"10.1017/s0885715624000198","DOIUrl":"https://doi.org/10.1017/s0885715624000198","url":null,"abstract":"<p>The crystal structure of valbenazine has been solved and refined using synchrotron X-ray powder diffraction data and optimized using density functional theory techniques. Valbenazine crystallizes in space group <span>P2<span>1</span>2<span>1</span>2<span>1</span></span> (#19) with <span>a</span> = 5.260267(17), <span>b</span> = 17.77028(7), <span>c</span> = 26.16427(9) Å, <span>V</span> = 2445.742(11) Å<span>3</span>, and <span>Z</span> = 4 at 295 K. The crystal structure consists of discrete molecules and the mean plane of the molecules is approximately (8,−2,15). There are no obvious strong intermolecular interactions. There is only one weak classical hydrogen bond in the structure, from the amino group to the ether oxygen atom. Two intramolecular and one intermolecular C–H⋯O hydrogen bonds also contribute to the lattice energy. The powder pattern has been submitted to ICDD for inclusion in the Powder Diffraction File™ (PDF®)</p>","PeriodicalId":20333,"journal":{"name":"Powder Diffraction","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140883154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Powder X-ray diffraction of nintedanib esylate hemihydrate, (C31H33N5O4)(C2H5O3S)(H2O)0.5 宁替尼酯半水合物(C31H33N5O4)(C2H5O3S)(H2O)0.5的粉末 X 射线衍射
IF 0.5 4区 材料科学 Q2 Physics and Astronomy Pub Date : 2024-05-03 DOI: 10.1017/s0885715624000186
Tawnee M. Ens, James A. Kaduk, Anja Dosen, Thomas N. Blanton
The crystal structure of nintedanib esylate hemihydrate was refined using synchrotron X-ray powder diffraction data and optimized using density functional theory techniques. Nintedanib esylate hemihydrate crystallizes in space group P-1 (#2) with a = 11.5137(1), b = 16.3208(4), c = 19.1780(5) Å, α = 69.0259(12), β = 84.4955(8), γ = 89.8319(6)°, V = 3347.57(3) Å3, and Z = 4 at 295 K. Hydrogen bonds are prominent in the crystal structure. The water molecule forms two medium-strength O–H⋯O hydrogen bonds to one of the esylate anions. The protonated nitrogen atom in each cation forms a N–H⋯O hydrogen bond to an esylate anion. The ring N–H groups form strong intramolecular N–H⋯O hydrogen bonds to carbonyl groups. The ring N–H groups form intramolecular N–H⋯O hydrogen bonds to esylate anions. Many C–H⋅⋅⋅O hydrogen bonds (and one C–H⋯N hydrogen bond), with aromatic C–H, methylene groups and methyl groups as donors, are present. The hydrogen bonding patterns of the two cations differ considerably. The powder pattern has been submitted to ICDD for inclusion in the Powder Diffraction File™ (PDF®)
利用同步辐射 X 射线粉末衍射数据完善了宁替尼酯半水合物的晶体结构,并利用密度泛函理论技术对其进行了优化。在 295 K 时,该晶体结构中的氢键非常突出。水分子与其中一个酯阴离子形成两个中等强度的 O-H⋯O 氢键。每个阳离子中质子化的氮原子与一个酯阴离子形成一个 N-H⋯O 氢键。环状 N-H 基团与羰基形成强分子内 N-H⋯O 氢键。环 N-H 基团与酯阴离子形成分子内 N-H⋯O 氢键。存在许多以芳香族 C-H、亚甲基和甲基为供体的 C-H⋅⋅O 氢键(和一个 C-H⋯N 氢键)。两种阳离子的氢键模式差别很大。该粉末图样已提交给 ICDD,以便纳入粉末衍射文件™ (PDF®) 中。
{"title":"Powder X-ray diffraction of nintedanib esylate hemihydrate, (C31H33N5O4)(C2H5O3S)(H2O)0.5","authors":"Tawnee M. Ens, James A. Kaduk, Anja Dosen, Thomas N. Blanton","doi":"10.1017/s0885715624000186","DOIUrl":"https://doi.org/10.1017/s0885715624000186","url":null,"abstract":"The crystal structure of nintedanib esylate hemihydrate was refined using synchrotron X-ray powder diffraction data and optimized using density functional theory techniques. Nintedanib esylate hemihydrate crystallizes in space group <jats:italic>P-1</jats:italic> (#2) with <jats:italic>a</jats:italic> = 11.5137(1), <jats:italic>b</jats:italic> = 16.3208(4), <jats:italic>c</jats:italic> = 19.1780(5) Å, <jats:italic>α</jats:italic> = 69.0259(12), <jats:italic>β</jats:italic> = 84.4955(8), <jats:italic>γ</jats:italic> = 89.8319(6)°, <jats:italic>V</jats:italic> = 3347.57(3) Å<jats:sup>3</jats:sup>, and <jats:italic>Z</jats:italic> = 4 at 295 K. Hydrogen bonds are prominent in the crystal structure. The water molecule forms two medium-strength O–H⋯O hydrogen bonds to one of the esylate anions. The protonated nitrogen atom in each cation forms a N–H⋯O hydrogen bond to an esylate anion. The ring N–H groups form strong intramolecular N–H⋯O hydrogen bonds to carbonyl groups. The ring N–H groups form intramolecular N–H⋯O hydrogen bonds to esylate anions. Many C–H⋅⋅⋅O hydrogen bonds (and one C–H⋯N hydrogen bond), with aromatic C–H, methylene groups and methyl groups as donors, are present. The hydrogen bonding patterns of the two cations differ considerably. The powder pattern has been submitted to ICDD for inclusion in the Powder Diffraction File™ (PDF®)","PeriodicalId":20333,"journal":{"name":"Powder Diffraction","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140826711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PDF-5+: a comprehensive powder diffraction file™ for materials characterization PDF-5+:用于材料表征的综合粉末衍射文件
IF 0.5 4区 材料科学 Q2 Physics and Astronomy Pub Date : 2024-04-15 DOI: 10.1017/s0885715624000150
Soorya N. Kabekkodu, Anja Dosen, Thomas N. Blanton
For more than 80 years, the scientific community has extensively used International Centre for Diffraction Data's (ICDD®) Powder Diffraction File (PDF®) for material characterization, including powder X-ray diffraction analysis. Historically, PDF was made available for two major material types: one for inorganic analysis and the other for organic analysis. In the early years of the PDF, this two-material approach was implemented due to limited computer capabilities. With Release 2024, ICDD provides a comprehensive database consisting of the entire PDF in one database called PDF-5+, comprised of more than one million entries (1,061,898). The PDF-5+ with a relational database (RDB) construct houses extensive chemical, physical, bibliographic, and crystallographic data, including atomic coordinates and raw data, enabling qualitative and quantitative phase analysis. This wealth of information in one database is advantageous for phase identification, materials characterization, and several data mining applications in materials science. A database of this size needs rigorous data curation and structural and chemical classifications to optimize pattern search/match and characterization methods. Each entry in the PDF has an editorially assigned quality mark. An editorial comment will describe the reason if an entry does not meet the top-quality mark. The editorial processes of ICDD's quality management system are unique in that they are ISO 9001:2015 certified. Among several classifications implemented in PDF-5+, subfiles (such as Bioactive, Pharmaceuticals, Minerals, etc.) directly impact the search/match in minimizing false positives. Scientists with specific field expertise continuously review these subfiles to maintain their quality. This paper describes the features of PDF with an emphasis on the newly released PDF-5+.
80 多年来,科学界广泛使用国际衍射数据中心 (ICDD®) 的粉末衍射文件 (PDF®) 进行材料表征,包括粉末 X 射线衍射分析。从历史上看,PDF 可用于两大类材料:一类用于无机分析,另一类用于有机分析。在 PDF 推出的最初几年,由于计算机能力有限,只能采用双材料方法。随着 2024 版的发布,ICDD 提供了一个全面的数据库,该数据库将整个 PDF 包含在一个名为 PDF-5+ 的数据库中,包含 100 多万个条目(1,061,898)。带有关系数据库 (RDB) 结构的 PDF-5+ 包含大量化学、物理、文献和晶体学数据,包括原子坐标和原始数据,可进行定性和定量相分析。在一个数据库中包含如此丰富的信息,对于材料科学中的相识别、材料表征和一些数据挖掘应用非常有利。如此规模的数据库需要严格的数据整理以及结构和化学分类,以优化模式搜索/匹配和表征方法。PDF 中的每个条目都有编辑指定的质量标记。如果某个条目未达到最高质量标识,编辑评论将说明原因。ICDD 质量管理系统的编辑流程独一无二,已通过 ISO 9001:2015 认证。在 PDF-5+ 中实施的若干分类中,子文件(如生物活性、制药、矿物等)直接影响搜索/匹配,从而最大限度地减少误报。具有特定领域专业知识的科学家会不断审查这些子文件,以保持其质量。本文介绍了 PDF 的功能,重点是新发布的 PDF-5+。
{"title":"PDF-5+: a comprehensive powder diffraction file™ for materials characterization","authors":"Soorya N. Kabekkodu, Anja Dosen, Thomas N. Blanton","doi":"10.1017/s0885715624000150","DOIUrl":"https://doi.org/10.1017/s0885715624000150","url":null,"abstract":"For more than 80 years, the scientific community has extensively used International Centre for Diffraction Data's (ICDD®) Powder Diffraction File (PDF®) for material characterization, including powder X-ray diffraction analysis. Historically, PDF was made available for two major material types: one for inorganic analysis and the other for organic analysis. In the early years of the PDF, this two-material approach was implemented due to limited computer capabilities. With Release 2024, ICDD provides a comprehensive database consisting of the entire PDF in one database called PDF-5+, comprised of more than one million entries (1,061,898). The PDF-5+ with a relational database (RDB) construct houses extensive chemical, physical, bibliographic, and crystallographic data, including atomic coordinates and raw data, enabling qualitative and quantitative phase analysis. This wealth of information in one database is advantageous for phase identification, materials characterization, and several data mining applications in materials science. A database of this size needs rigorous data curation and structural and chemical classifications to optimize pattern search/match and characterization methods. Each entry in the PDF has an editorially assigned quality mark. An editorial comment will describe the reason if an entry does not meet the top-quality mark. The editorial processes of ICDD's quality management system are unique in that they are ISO 9001:2015 certified. Among several classifications implemented in PDF-5+, subfiles (such as Bioactive, Pharmaceuticals, Minerals, etc.) directly impact the search/match in minimizing false positives. Scientists with specific field expertise continuously review these subfiles to maintain their quality. This paper describes the features of PDF with an emphasis on the newly released PDF-5+.","PeriodicalId":20333,"journal":{"name":"Powder Diffraction","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140601681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Crystal structure of nicarbazin, (C13H10N4O5)(C6H8N2O) 尼卡巴嗪(C13H10N4O5)(C6H8N2O)的晶体结构
IF 0.5 4区 材料科学 Q2 Physics and Astronomy Pub Date : 2024-03-18 DOI: 10.1017/s0885715624000125
James A. Kaduk, A. Dosen, Thomas N. Blanton

The crystal structure of nicarbazin has been solved and refined using synchrotron X-ray powder diffraction data and optimized using density functional theory techniques. Nicarbazin is a co-crystal of 4,4′-dinitrocarbanilide (DNC) and 2-hydroxy-4,6-dimethylpyrimidine (HDP) molecules. Nicarbazin crystallizes in space group P-1 (#2) with a = 6.90659(8), b = 12.0794(4), c = 13.5040(7) Å, α = 115.5709(11), β = 102.3658(6), γ = 91.9270(4)°, V = 982.466(5) Å3, and Z = 2. The DNC and HDP molecules are linked by two strong N–H⋯O and N–H⋯N hydrogen bonds, and the HDP molecules are linked into centrosymmetric dimers by another N–H⋯O hydrogen bond. These strong hydrogen bonds link the molecules into layers parallel to the ab-plane and parallel stacking of both DNC and HDP molecules is prominent in the structure. The powder pattern has been submitted to ICDD for inclusion in the Powder Diffraction File™ (PDF®).

利用同步辐射 X 射线粉末衍射数据解决和完善了尼卡巴嗪的晶体结构,并利用密度泛函理论技术对其进行了优化。尼卡巴嗪是 4,4′-二硝基卡巴内酯(DNC)和 2-羟基-4,6-二甲基嘧啶(HDP)分子的共晶体。尼卡巴嗪在空间群 P-1 (#2) 中结晶,a = 6.90659(8),b = 12.0794(4),c = 13.5040(7) Å,α = 115.5709(11),β = 102.3658(6),γ = 91.9270(4)°,V = 982.466(5) Å3,Z = 2。DNC 和 HDP 分子通过两个强 N-H⋯O 和 N-H⋯N 氢键连接,HDP 分子通过另一个 N-H⋯O 氢键连接成中心对称的二聚体。这些强氢键将分子连接成平行于 ab 平面的层,DNC 和 HDP 分子的平行堆积在该结构中非常突出。该粉末图样已提交给 ICDD,以便纳入粉末衍射文件™ (PDF®)。
{"title":"Crystal structure of nicarbazin, (C13H10N4O5)(C6H8N2O)","authors":"James A. Kaduk, A. Dosen, Thomas N. Blanton","doi":"10.1017/s0885715624000125","DOIUrl":"https://doi.org/10.1017/s0885715624000125","url":null,"abstract":"<p>The crystal structure of nicarbazin has been solved and refined using synchrotron X-ray powder diffraction data and optimized using density functional theory techniques. Nicarbazin is a co-crystal of 4,4′-dinitrocarbanilide (DNC) and 2-hydroxy-4,6-dimethylpyrimidine (HDP) molecules. Nicarbazin crystallizes in space group <span>P-1</span> (#2) with <span>a</span> = 6.90659(8), <span>b</span> = 12.0794(4), <span>c</span> = 13.5040(7) Å, <span>α</span> = 115.5709(11), <span>β</span> = 102.3658(6), <span>γ</span> = 91.9270(4)°, <span>V</span> = 982.466(5) Å<span>3</span>, and <span>Z</span> = 2. The DNC and HDP molecules are linked by two strong N–H⋯O and N–H⋯N hydrogen bonds, and the HDP molecules are linked into centrosymmetric dimers by another N–H⋯O hydrogen bond. These strong hydrogen bonds link the molecules into layers parallel to the <span>ab</span>-plane and parallel stacking of both DNC and HDP molecules is prominent in the structure. The powder pattern has been submitted to ICDD for inclusion in the Powder Diffraction File™ (PDF®).</p>","PeriodicalId":20333,"journal":{"name":"Powder Diffraction","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140147353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Powder Diffraction
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1