Pub Date : 2016-11-16DOI: 10.1080/10826068.2015.1135462
Gui-Ming Fu, Ru-Yi Li, Kai-Min Li, Ming Hu, Xiao-Qiang Yuan, Bin Li, Feng-Xue Wang, Cheng-Mei Liu, Yin Wan
This study aimed to obtain strains with high glyphosate-degrading ability and improve the ability of glyphosate degradation enzyme by the optimization of fermentation conditions. Spore from Aspergillus oryzae A-F02 was subjected to ultraviolet mutagenesis. Single-factor experiment and response surface methodology were used to optimize glyphosate degradation enzyme production from mutant strain by liquid-state fermentation. Four mutant strains were obtained and named as FUJX 001, FUJX 002, FUJX 003, and FUJX 004, in which FUJX 001 gave the highest total enzyme activity. Starch concentration at 0.56%, GP concentration at 1,370 mg/l, initial pH at 6.8, and temperature at 30°C were the optimum conditions for the improved glyphosate degradation endoenzyme production of A. oryzae FUJX 001. Under these conditions, the experimental endoenzyme activity was 784.15 U/100 ml fermentation liquor. The result (784.15 U/100 ml fermentation liquor) was approximately 14-fold higher than that of the original strain. The result highlights the potential of glyphosate degradation enzyme to degrade glyphosate.
{"title":"Optimization of liquid-state fermentation conditions for the glyphosate degradation enzyme production of strain Aspergillus oryzae by ultraviolet mutagenesis.","authors":"Gui-Ming Fu, Ru-Yi Li, Kai-Min Li, Ming Hu, Xiao-Qiang Yuan, Bin Li, Feng-Xue Wang, Cheng-Mei Liu, Yin Wan","doi":"10.1080/10826068.2015.1135462","DOIUrl":"10.1080/10826068.2015.1135462","url":null,"abstract":"<p><p>This study aimed to obtain strains with high glyphosate-degrading ability and improve the ability of glyphosate degradation enzyme by the optimization of fermentation conditions. Spore from Aspergillus oryzae A-F02 was subjected to ultraviolet mutagenesis. Single-factor experiment and response surface methodology were used to optimize glyphosate degradation enzyme production from mutant strain by liquid-state fermentation. Four mutant strains were obtained and named as FUJX 001, FUJX 002, FUJX 003, and FUJX 004, in which FUJX 001 gave the highest total enzyme activity. Starch concentration at 0.56%, GP concentration at 1,370 mg/l, initial pH at 6.8, and temperature at 30°C were the optimum conditions for the improved glyphosate degradation endoenzyme production of A. oryzae FUJX 001. Under these conditions, the experimental endoenzyme activity was 784.15 U/100 ml fermentation liquor. The result (784.15 U/100 ml fermentation liquor) was approximately 14-fold higher than that of the original strain. The result highlights the potential of glyphosate degradation enzyme to degrade glyphosate.</p>","PeriodicalId":20393,"journal":{"name":"Preparative Biochemistry and Biotechnology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/10826068.2015.1135462","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79555014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-11-16DOI: 10.1080/10826068.2015.1135446
Yucong Geng, Yuanjie Deng, Feilong Chen, Hong Jin, T. Hou, Ke Tao
ABSTRACT A three-phase bed bioreactor including a mix of immobilized microbes was used to degrade isopropanol (IPA). The immobilization method was studied and cells immobilized with calcium alginate, polyvinyl alcohol, activated carbon, and SiO2 were demonstrated to be the best immobilization method for the degradation of 90% of 2 g/L IPA in just 4 days, 1 day earlier than with free cells. Acetone was monitored as an indicator of microbial IPA utilization as the major intermediate of aerobic IPA biodegradation. The bioreactor was operated at hydraulic retention time (HRT) values of 32, 24, 16, 12, and 10 hr, which correspond to membrane fluxes of 0.03, 0.04, 0.06, 0.08, and 0.10 L/m2/hr, respectively. The chemical oxygen demand (COD) removal efficiencies were maintained at 98.0, 97.8, 89.1, 80.6, and 71.1% at a HRT of 32, 24, 16, 12, and 10 hr, respectively, while the IPA degradations were 98.6, 98.3, 90.3, 81.6, and 73.3%, respectively. With a comprehensive consideration of COD removal and economy, the optimal HRT was 24 hr. The results demonstrate the potential of immobilized mixed bacterial consortium in a three-phase fluidized bed reactor system for the aerobic treatment of wastewater containing IPA.
{"title":"Isopropanol biodegradation by immobilized Paracoccus denitrificans in a three-phase fluidized bed reactor","authors":"Yucong Geng, Yuanjie Deng, Feilong Chen, Hong Jin, T. Hou, Ke Tao","doi":"10.1080/10826068.2015.1135446","DOIUrl":"https://doi.org/10.1080/10826068.2015.1135446","url":null,"abstract":"ABSTRACT A three-phase bed bioreactor including a mix of immobilized microbes was used to degrade isopropanol (IPA). The immobilization method was studied and cells immobilized with calcium alginate, polyvinyl alcohol, activated carbon, and SiO2 were demonstrated to be the best immobilization method for the degradation of 90% of 2 g/L IPA in just 4 days, 1 day earlier than with free cells. Acetone was monitored as an indicator of microbial IPA utilization as the major intermediate of aerobic IPA biodegradation. The bioreactor was operated at hydraulic retention time (HRT) values of 32, 24, 16, 12, and 10 hr, which correspond to membrane fluxes of 0.03, 0.04, 0.06, 0.08, and 0.10 L/m2/hr, respectively. The chemical oxygen demand (COD) removal efficiencies were maintained at 98.0, 97.8, 89.1, 80.6, and 71.1% at a HRT of 32, 24, 16, 12, and 10 hr, respectively, while the IPA degradations were 98.6, 98.3, 90.3, 81.6, and 73.3%, respectively. With a comprehensive consideration of COD removal and economy, the optimal HRT was 24 hr. The results demonstrate the potential of immobilized mixed bacterial consortium in a three-phase fluidized bed reactor system for the aerobic treatment of wastewater containing IPA.","PeriodicalId":20393,"journal":{"name":"Preparative Biochemistry and Biotechnology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83829528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-10-02DOI: 10.1080/10826068.2015.1135458
Kunal Kumar, P. D. Belur
ABSTRACT Oxalate oxidase (EC 1.2.3.4) catalyzes the oxidative cleavage of oxalate to carbon dioxide with the reduction of molecular oxygen to hydrogen peroxide. Oxalate oxidase found its application in clinical assay for oxalate in blood and urine. This study describes the purification and biochemical characterization of an oxalate oxidase produced from an endophytic bacterium, Ochrobactrum intermedium CL6. The cell-free fermentation broth was subjected to two-step enzyme purification, which resulted in a 58.74-fold purification with 83% recovery. Specific activity of the final purified enzyme was 26.78 U mg−1 protein. The enzyme displayed an optimum pH and temperature of 3.8 and 80°C, respectively, and high stability at 4–80°C for 6 h. The enzymatic activity was not influenced by metal ions and chemical agents (K+, Na+, Zn2+, Fe3+, Mn2+, Mg2+, glucose, urea, lactate) commonly found in serum and urine, with Cu2+ being the exception. The enzyme appears to be a metalloprotein stimulated by Ca2+ and Fe2+. Its Km and Kcat for oxalate were found to be 0.45 mM and 85 s−1, respectively. This enzyme is the only known oxalate oxidase which did not show substrate inhibition up to a substrate concentration of 50 mM. Thermostability, kinetic properties, and the absence of substrate inhibition make this enzyme an ideal candidate for clinical applications.
{"title":"New extracellular thermostable oxalate oxidase produced from endophytic Ochrobactrum intermedium CL6: Purification and biochemical characterization","authors":"Kunal Kumar, P. D. Belur","doi":"10.1080/10826068.2015.1135458","DOIUrl":"https://doi.org/10.1080/10826068.2015.1135458","url":null,"abstract":"ABSTRACT Oxalate oxidase (EC 1.2.3.4) catalyzes the oxidative cleavage of oxalate to carbon dioxide with the reduction of molecular oxygen to hydrogen peroxide. Oxalate oxidase found its application in clinical assay for oxalate in blood and urine. This study describes the purification and biochemical characterization of an oxalate oxidase produced from an endophytic bacterium, Ochrobactrum intermedium CL6. The cell-free fermentation broth was subjected to two-step enzyme purification, which resulted in a 58.74-fold purification with 83% recovery. Specific activity of the final purified enzyme was 26.78 U mg−1 protein. The enzyme displayed an optimum pH and temperature of 3.8 and 80°C, respectively, and high stability at 4–80°C for 6 h. The enzymatic activity was not influenced by metal ions and chemical agents (K+, Na+, Zn2+, Fe3+, Mn2+, Mg2+, glucose, urea, lactate) commonly found in serum and urine, with Cu2+ being the exception. The enzyme appears to be a metalloprotein stimulated by Ca2+ and Fe2+. Its Km and Kcat for oxalate were found to be 0.45 mM and 85 s−1, respectively. This enzyme is the only known oxalate oxidase which did not show substrate inhibition up to a substrate concentration of 50 mM. Thermostability, kinetic properties, and the absence of substrate inhibition make this enzyme an ideal candidate for clinical applications.","PeriodicalId":20393,"journal":{"name":"Preparative Biochemistry and Biotechnology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82769483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-10-02DOI: 10.1080/10826068.2015.1135460
Thunyaporn Viriyayingsiri, Pantaporn Sittplangkoon, S. Powtongsook, Kasidit Nootong
ABSTRACT Continuous production of diatom Entomonies sp. was performed in mechanically stirred tank and flat-panel airlift photobioreactors (FPAP). The maximum specific growth rate of diatom from the batch experiment was 0.98 d−1. A series of dilution rate and macronutrient concentration adjustments were performed in a stirred tank photobioreactor and found that the dilution rate ranged from 0.7 to 0.8 d−1 and modified F/2 growth media containing nitrate at 3.09 mg N/L, phosphate at 2.24 mg P/L, and silicate at 11.91 mg Si/L yielded the maximum cell number density. Finally, the continuous cultivation of Entomonies sp. was conducted in FPAP using the optimal conditions determined earlier, resulting in the maximum cell number density of 19.69 × 104 cells/mL, which was approximately 47 and 73% increase from the result using the stirred tank photobioreactor fed with modified and standard F/2 growth media, respectively.
{"title":"Continuous production of diatom Entomoneis sp. in mechanically stirred tank and flat-panel airlift photobioreactors","authors":"Thunyaporn Viriyayingsiri, Pantaporn Sittplangkoon, S. Powtongsook, Kasidit Nootong","doi":"10.1080/10826068.2015.1135460","DOIUrl":"https://doi.org/10.1080/10826068.2015.1135460","url":null,"abstract":"ABSTRACT Continuous production of diatom Entomonies sp. was performed in mechanically stirred tank and flat-panel airlift photobioreactors (FPAP). The maximum specific growth rate of diatom from the batch experiment was 0.98 d−1. A series of dilution rate and macronutrient concentration adjustments were performed in a stirred tank photobioreactor and found that the dilution rate ranged from 0.7 to 0.8 d−1 and modified F/2 growth media containing nitrate at 3.09 mg N/L, phosphate at 2.24 mg P/L, and silicate at 11.91 mg Si/L yielded the maximum cell number density. Finally, the continuous cultivation of Entomonies sp. was conducted in FPAP using the optimal conditions determined earlier, resulting in the maximum cell number density of 19.69 × 104 cells/mL, which was approximately 47 and 73% increase from the result using the stirred tank photobioreactor fed with modified and standard F/2 growth media, respectively.","PeriodicalId":20393,"journal":{"name":"Preparative Biochemistry and Biotechnology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86812662","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-10-02DOI: 10.1080/10826068.2015.1135452
M. Brgles, P. Prebeg, T. Kurtović, J. Ranić, M. Marchetti‐Deschmann, G. Allmaier, B. Halassy
ABSTRACT Tetanus toxoid (TTd) is a highly immunogenic, detoxified form of tetanus toxin, a causative agent of tetanus disease, produced by Clostridium tetani. Since tetanus disease cannot be eradicated but is easily prevented by vaccination, the need for the tetanus vaccine is permanent. The aim of this work was to investigate the possibility of optimizing TTd purification, i.e., ammonium sulfate precipitation process. The influence of the percentage of ammonium sulfate, starting amount of TTd, buffer type, pH, temperature, and starting purity of TTd on the purification process were investigated using optimal design for response surface models. Responses measured for evaluation of the ammonium sulfate precipitation process were TTd amount (Lf/mL) and total protein content. These two parameters were used to calculate purity (Lf/mgPN) and the yield of the process. Results indicate that citrate buffer, lower temperature, and lower starting amount of TTd result in higher purities of precipitates. Gel electrophoresis combined with matrix-assisted laser desorption ionization–mass spectrometric analysis of precipitates revealed that there are no inter-protein cross-links and that all contaminating proteins have pIs similar to TTd, so this is most probably the reason for the limited success of purification by precipitation.
{"title":"Optimization of tetanus toxoid ammonium sulfate precipitation process using response surface methodology","authors":"M. Brgles, P. Prebeg, T. Kurtović, J. Ranić, M. Marchetti‐Deschmann, G. Allmaier, B. Halassy","doi":"10.1080/10826068.2015.1135452","DOIUrl":"https://doi.org/10.1080/10826068.2015.1135452","url":null,"abstract":"ABSTRACT Tetanus toxoid (TTd) is a highly immunogenic, detoxified form of tetanus toxin, a causative agent of tetanus disease, produced by Clostridium tetani. Since tetanus disease cannot be eradicated but is easily prevented by vaccination, the need for the tetanus vaccine is permanent. The aim of this work was to investigate the possibility of optimizing TTd purification, i.e., ammonium sulfate precipitation process. The influence of the percentage of ammonium sulfate, starting amount of TTd, buffer type, pH, temperature, and starting purity of TTd on the purification process were investigated using optimal design for response surface models. Responses measured for evaluation of the ammonium sulfate precipitation process were TTd amount (Lf/mL) and total protein content. These two parameters were used to calculate purity (Lf/mgPN) and the yield of the process. Results indicate that citrate buffer, lower temperature, and lower starting amount of TTd result in higher purities of precipitates. Gel electrophoresis combined with matrix-assisted laser desorption ionization–mass spectrometric analysis of precipitates revealed that there are no inter-protein cross-links and that all contaminating proteins have pIs similar to TTd, so this is most probably the reason for the limited success of purification by precipitation.","PeriodicalId":20393,"journal":{"name":"Preparative Biochemistry and Biotechnology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79289860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-10-02DOI: 10.1080/10826068.2015.1128445
F. Spina, Charles Junghanns, I. Donelli, R. Nair, Philippe Demarche, A. Romagnolo, G. Freddi, S. Agathos, G. Varese
ABSTRACT The production of laccases from Trametes pubescens was investigated along with the role of nutrients and elicitors. Copper proved to be a fundamental inducer, although productivity yields were consistently enhanced only in the presence of additional compounds (textile dyes). Using a central composite design, the optimal culture condition was examined, by taking into consideration the three distinct variables and their combinatorial effect. The 290 U ml−1 of laccases were produced after setting nitrogen, copper, and reactive blue 19 concentration; in a bioreactor, activity recovery was lower (90 U ml−1) and pellet morphology was different. The activity of the laccase crude extract was maximal at 60°C and stable for 14 h at 50°C and for 2 months at pH 6 and room temperature. The biotechnological potential was assessed, confirming the capacity to decolorize single or mixed solutions of textile dyes and to enhance the whitening yield of raw cotton fibers, working in synergism with the conventional H2O2-based method.
摘要研究了短毛毡(Trametes pubescens)漆酶的产生过程,并探讨了营养物质和激发子的作用。铜被证明是一种基本的诱导剂,尽管只有在其他化合物(纺织染料)存在的情况下,生产率才能持续提高。采用中心组合设计,通过考虑三个不同的变量及其组合效应,确定了最佳培养条件。在设定氮、铜和活性蓝19浓度后,产生290 U ml−1的漆酶;在生物反应器中,活性回收率较低(90 U ml−1),且颗粒形态不同。漆酶粗提物在60℃条件下活性最高,在50℃条件下稳定14 h,在pH 6和室温条件下稳定2个月。生物技术的潜力进行了评估,确认了脱色能力单一或混合的纺织染料溶液和提高原棉纤维的增白率,与传统的h2o2为基础的方法协同工作。
{"title":"Stimulation of laccases from Trametes pubescens: Use in dye decolorization and cotton bleaching","authors":"F. Spina, Charles Junghanns, I. Donelli, R. Nair, Philippe Demarche, A. Romagnolo, G. Freddi, S. Agathos, G. Varese","doi":"10.1080/10826068.2015.1128445","DOIUrl":"https://doi.org/10.1080/10826068.2015.1128445","url":null,"abstract":"ABSTRACT The production of laccases from Trametes pubescens was investigated along with the role of nutrients and elicitors. Copper proved to be a fundamental inducer, although productivity yields were consistently enhanced only in the presence of additional compounds (textile dyes). Using a central composite design, the optimal culture condition was examined, by taking into consideration the three distinct variables and their combinatorial effect. The 290 U ml−1 of laccases were produced after setting nitrogen, copper, and reactive blue 19 concentration; in a bioreactor, activity recovery was lower (90 U ml−1) and pellet morphology was different. The activity of the laccase crude extract was maximal at 60°C and stable for 14 h at 50°C and for 2 months at pH 6 and room temperature. The biotechnological potential was assessed, confirming the capacity to decolorize single or mixed solutions of textile dyes and to enhance the whitening yield of raw cotton fibers, working in synergism with the conventional H2O2-based method.","PeriodicalId":20393,"journal":{"name":"Preparative Biochemistry and Biotechnology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77761014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-10-02DOI: 10.1080/10826068.2015.1128447
N. C. Maldonado, C. Silva de Ruiz, M. Nader-Macías
ABSTRACT Diarrhea is one of the most frequent diseases affecting newborn calves in intensive systems. Several strategies were proposed to protect and improve health, such as probiotics. This work was directed to design a product containing freeze-dried bacteria, vitamins, and minerals, as well as to optimize conditions with lyoprotectors, combine strains and add vitamins, minerals, and inulin to the product. The lyoprotectors were milk, milk-whey, and actose, and products were stored for 6 months at 4°C. Combined bacteria were freeze-dried in milk and the final products were added with minerals, vitamins, and insulin. The viable cells were determined by the plate count assay and antibiotic profiles to differentiate strains. Lactobacillus johnsonii CRL1693, L. murinus CRL1695, L. mucosae CRL1696, L. salivarius CRL1702, L. amylovorus CRL1697, and Enterococcus faecium CRL1703 were evaluated. The optimal conditions were different for each strain. Milk and milk whey maintained the viability during the process and storage after 6 months for most of the strains, except for L. johnsonii. Lactose did not improve cell’s recovery. L. murinus was viable for 6 months in all the conditions, with similar results in enterococci. In strains combined before freeze-dried, the viability decreased deeply, showing that one-step process with bacteria mixtures, vitamins, and minerals were not adequate. Freeze-dried resistance depends on each strain and must be lyophilized individually.
{"title":"Design of a beneficial product for newborn calves by combining Lactobacilli, minerals, and vitamins","authors":"N. C. Maldonado, C. Silva de Ruiz, M. Nader-Macías","doi":"10.1080/10826068.2015.1128447","DOIUrl":"https://doi.org/10.1080/10826068.2015.1128447","url":null,"abstract":"ABSTRACT Diarrhea is one of the most frequent diseases affecting newborn calves in intensive systems. Several strategies were proposed to protect and improve health, such as probiotics. This work was directed to design a product containing freeze-dried bacteria, vitamins, and minerals, as well as to optimize conditions with lyoprotectors, combine strains and add vitamins, minerals, and inulin to the product. The lyoprotectors were milk, milk-whey, and actose, and products were stored for 6 months at 4°C. Combined bacteria were freeze-dried in milk and the final products were added with minerals, vitamins, and insulin. The viable cells were determined by the plate count assay and antibiotic profiles to differentiate strains. Lactobacillus johnsonii CRL1693, L. murinus CRL1695, L. mucosae CRL1696, L. salivarius CRL1702, L. amylovorus CRL1697, and Enterococcus faecium CRL1703 were evaluated. The optimal conditions were different for each strain. Milk and milk whey maintained the viability during the process and storage after 6 months for most of the strains, except for L. johnsonii. Lactose did not improve cell’s recovery. L. murinus was viable for 6 months in all the conditions, with similar results in enterococci. In strains combined before freeze-dried, the viability decreased deeply, showing that one-step process with bacteria mixtures, vitamins, and minerals were not adequate. Freeze-dried resistance depends on each strain and must be lyophilized individually.","PeriodicalId":20393,"journal":{"name":"Preparative Biochemistry and Biotechnology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76991937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-08-17DOI: 10.1080/10826068.2015.1128446
N. Mohan, Rengesh Balakrishnan, S. Sivaprakasam
ABSTRACT Hyaluronic acid (HA) production using a dairy industrial waste is a more cost-efficient strategy than using an expensive synthetic medium. In this study, we investigated the production of HA using Streptococcus thermophilus under shake flask conditions using dairy industrial waste as nutritional supplements, namely whey permeate (WP) and whey protein hydrolysate (WPH). Preliminary screening using Plackett–Burman design exhibited WP, WPH, initial pH, and inoculum size as significant factors influencing HA titer. Response surface methodology design of four factors was formulated at three levels for enhanced production of HA. Shake flask HA fermentation by S. thermophilus was performed under global optimized process conditions and the optimal HA titer (342.93 mg L−1) corroborates with Box–Behnken design prediction. The molecular weight of HA was elucidated as 9.22–9.46 kDa. The ultralow-molecular weight HA reported in this study has a potential role in drug and gene delivery applications.
{"title":"Optimization and effect of dairy industrial waste as media components in the production of hyaluronic acid by Streptococcus thermophilus","authors":"N. Mohan, Rengesh Balakrishnan, S. Sivaprakasam","doi":"10.1080/10826068.2015.1128446","DOIUrl":"https://doi.org/10.1080/10826068.2015.1128446","url":null,"abstract":"ABSTRACT Hyaluronic acid (HA) production using a dairy industrial waste is a more cost-efficient strategy than using an expensive synthetic medium. In this study, we investigated the production of HA using Streptococcus thermophilus under shake flask conditions using dairy industrial waste as nutritional supplements, namely whey permeate (WP) and whey protein hydrolysate (WPH). Preliminary screening using Plackett–Burman design exhibited WP, WPH, initial pH, and inoculum size as significant factors influencing HA titer. Response surface methodology design of four factors was formulated at three levels for enhanced production of HA. Shake flask HA fermentation by S. thermophilus was performed under global optimized process conditions and the optimal HA titer (342.93 mg L−1) corroborates with Box–Behnken design prediction. The molecular weight of HA was elucidated as 9.22–9.46 kDa. The ultralow-molecular weight HA reported in this study has a potential role in drug and gene delivery applications.","PeriodicalId":20393,"journal":{"name":"Preparative Biochemistry and Biotechnology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82021676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ABSTRACT Geobacillus sp. 4j, a deep-sea high-salt thermophile, was found to produce thermostable α-amylase. In this work, culture medium and conditions were first optimized to enhance the production of thermostable α-amylase by statistical methodologies. The resulting extracellular production was increased by five times and reached 6.40 U/ml. Then, a high-temperature batch culture of the thermophile in a 15 l in-house-designed bioreactor was studied. The results showed that a relatively high dissolved oxygen (600 rpm and 15 l/min) and culture temperature of 60°C facilitated both cell growth and α-amylase production. Thus, an efficient fermentation process was established with initial medium of pH 6.0, culture temperature of 60°C, and dissolved oxygen above 20%. It gave an α-amylase production of 79 U/ml and productivity of 19804 U/l·hr, which were 10.8 and 208 times higher than those in shake flask, respectively. This work is useful for deep-sea high-salt thermophile culture, where efforts are lacking presently.
{"title":"Bioprocess exploration for thermostable α-amylase production of a deep-sea thermophile Geobacillus sp. in high-temperature bioreactor","authors":"Tao Jiang, Mengmeng Huang, Hao He, Jian Lu, Xiangshan Zhou, Menghao Cai, Yuanxing Zhang","doi":"10.1080/10826068.2015.1128444","DOIUrl":"https://doi.org/10.1080/10826068.2015.1128444","url":null,"abstract":"ABSTRACT Geobacillus sp. 4j, a deep-sea high-salt thermophile, was found to produce thermostable α-amylase. In this work, culture medium and conditions were first optimized to enhance the production of thermostable α-amylase by statistical methodologies. The resulting extracellular production was increased by five times and reached 6.40 U/ml. Then, a high-temperature batch culture of the thermophile in a 15 l in-house-designed bioreactor was studied. The results showed that a relatively high dissolved oxygen (600 rpm and 15 l/min) and culture temperature of 60°C facilitated both cell growth and α-amylase production. Thus, an efficient fermentation process was established with initial medium of pH 6.0, culture temperature of 60°C, and dissolved oxygen above 20%. It gave an α-amylase production of 79 U/ml and productivity of 19804 U/l·hr, which were 10.8 and 208 times higher than those in shake flask, respectively. This work is useful for deep-sea high-salt thermophile culture, where efforts are lacking presently.","PeriodicalId":20393,"journal":{"name":"Preparative Biochemistry and Biotechnology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89086811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}