首页 > 最新文献

Physica Status Solidi B-basic Solid State Physics最新文献

英文 中文
Photoluminescence Emission Efficiency Analysis Methodology by Integrating Raman Spectroscopy of the A1(LO) and E2(high) Phonons in a GaInN/GaN Heterostructure 通过整合 GaInN/GaN 异质结构中 A1(LO)和 E2(high)声子的拉曼光谱分析方法进行光致发光发射效率分析
IF 1.6 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER Pub Date : 2024-04-27 DOI: 10.1002/pssb.202400057
Thee Ei Khaing Shwe, Tatsuya Asaji, Ryota Kimura, Daisuke Iida, Mohammed A. Najmi, Kazuhiro Ohkawa, Yoshihiro Ishitani
Microscopic lattice vibration images of the E2(high) mode (E2H) and another mode of A1(LO) (A1L) or the higher energy branch of LO‐phonon−plasmon coupling mode (LOPC+) in a Ga0.95In0.05N film on a GaN template are obtained by Raman scattering spectroscopy using a 325 nm laser. The increase in temperature by increasing the laser power is obtained from the decrease in the energy of E2H and the theoretical formula comprising two terms based on the mode energy variation of the bulk material and the thermal strain effect. Using the obtained temperature and the energy shift of the LOPC+, the mapping images of the temperature and electron density in the xy plane are simultaneously obtained. This image provides the spatial variation of photoluminescence (PL) emission efficiency, given as PL intensity per electron. This method enables the quantitative discussion on photo‐emission efficiency even in the regions of low or high carrier density affected by carrier transport. In the investigated area, a region with a lower PL efficiency is found despite a higher electron density and lower temperature increase than the surrounding region. This imaging analysis is feasible in integrating the carrier and thermal energy transports and recombination processes in carrier dynamics study.
利用 325 nm 激光,通过拉曼散射光谱法获得了 GaN 模板上 Ga0.95In0.05N 薄膜中 E2(高)模式 (E2H) 和另一种 A1(LO)模式 (A1L) 或 LO-声子-等离子体耦合模式 (LOPC+) 高能分支的微观晶格振动图像。通过 E2H 能量的减少以及基于块体材料模式能量变化和热应变效应的两个项组成的理论公式,可以得出激光功率增加时温度的升高。利用获得的温度和 LOPC+ 的能量移动,可同时获得 x-y 平面上的温度和电子密度映射图像。该图像提供了光致发光(PL)发射效率的空间变化,以每个电子的 PL 强度表示。即使在受载流子传输影响的低载流子密度或高载流子密度区域,这种方法也能对光致发光效率进行定量讨论。在所研究的区域中,尽管电子密度较高,温度升高幅度也比周围区域低,但还是发现了一个聚光效率较低的区域。这种成像分析在载流子动力学研究中整合载流子和热能传输以及重组过程是可行的。
{"title":"Photoluminescence Emission Efficiency Analysis Methodology by Integrating Raman Spectroscopy of the A1(LO) and E2(high) Phonons in a GaInN/GaN Heterostructure","authors":"Thee Ei Khaing Shwe, Tatsuya Asaji, Ryota Kimura, Daisuke Iida, Mohammed A. Najmi, Kazuhiro Ohkawa, Yoshihiro Ishitani","doi":"10.1002/pssb.202400057","DOIUrl":"https://doi.org/10.1002/pssb.202400057","url":null,"abstract":"Microscopic lattice vibration images of the E<jats:sub>2</jats:sub>(high) mode (E<jats:sub>2</jats:sub><jats:sup>H</jats:sup>) and another mode of A<jats:sub>1</jats:sub>(LO) (A<jats:sub>1</jats:sub><jats:sup>L</jats:sup>) or the higher energy branch of LO‐phonon−plasmon coupling mode (LOPC+) in a Ga<jats:sub>0.95</jats:sub>In<jats:sub>0.05</jats:sub>N film on a GaN template are obtained by Raman scattering spectroscopy using a 325 nm laser. The increase in temperature by increasing the laser power is obtained from the decrease in the energy of E<jats:sub>2</jats:sub><jats:sup>H</jats:sup> and the theoretical formula comprising two terms based on the mode energy variation of the bulk material and the thermal strain effect. Using the obtained temperature and the energy shift of the LOPC+, the mapping images of the temperature and electron density in the <jats:italic>x</jats:italic>–<jats:italic>y</jats:italic> plane are simultaneously obtained. This image provides the spatial variation of photoluminescence (PL) emission efficiency, given as PL intensity per electron. This method enables the quantitative discussion on photo‐emission efficiency even in the regions of low or high carrier density affected by carrier transport. In the investigated area, a region with a lower PL efficiency is found despite a higher electron density and lower temperature increase than the surrounding region. This imaging analysis is feasible in integrating the carrier and thermal energy transports and recombination processes in carrier dynamics study.","PeriodicalId":20406,"journal":{"name":"Physica Status Solidi B-basic Solid State Physics","volume":"106 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140811837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Well Number Dependence of Internal Quantum Efficiency in AlGaN Quantum Wells on Low‐Dislocation Sputtered AlN Templates 低位错溅射氮化铝模板上氮化铝量子阱内部量子效率的阱数依赖性
IF 1.6 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER Pub Date : 2024-04-27 DOI: 10.1002/pssb.202300567
Kosuke Inai, Ryota Oshimura, Kunio Himeno, Megumi Fujii, Yuta Onishi, Satoshi Kurai, Narihito Okada, Kenjiro Uesugi, Hideto Miyake, Yoichi Yamada
The internal quantum efficiency (IQE) and cathodoluminescence intensity line profile of AlGaN multiple quantum well (MQW) structures on low‐dislocation face‐to‐face annealed sputtered AlN (FFA Sp‐AlN) and on conventional metalorganic vapor‐phase epitaxy‐grown AlN (MOVPE‐AlN) templates are evaluated and the effect of the number of quantum wells (QWs) on the IQE is discussed. The higher IQE in the FFA samples is probably due to the lower threading dislocation (TD) density; however, the IQE also increases with the number of QWs although the TD density remains constant. Effective diffusion length increases with the number of QWs, indicating that the AlGaN MQW layer helps to suppress point defect diffusion, resulting in IQE increase. Furthermore, the segregation of point defects into the TDs and point defect diffusion via the TDs may explain the difference in the IQE improvement rate between the MQWs on the FFA Sp‐AlN and MOVPE‐AlN templates.
我们评估了低位错面对面退火溅射氮化镓(FFA Sp-AlN)和传统金属有机气相外延生长氮化镓(MOVPE-AlN)模板上的氮化镓多量子阱(MQW)结构的内部量子效率(IQE)和阴极发光强度线剖面,并讨论了量子阱(QW)数量对 IQE 的影响。FFA 样品的 IQE 较高可能是由于穿线位错 (TD) 密度较低;然而,虽然 TD 密度保持不变,但 IQE 也随着 QW 数量的增加而增加。有效扩散长度随 QW 数量增加而增加,这表明 AlGaN MQW 层有助于抑制点缺陷扩散,从而导致 IQE 增加。此外,点缺陷在 TD 中的分离以及通过 TD 的点缺陷扩散可能是 FFA Sp-AlN 和 MOVPE-AlN 模板上的 MQW 在 IQE 提高率方面存在差异的原因。
{"title":"Well Number Dependence of Internal Quantum Efficiency in AlGaN Quantum Wells on Low‐Dislocation Sputtered AlN Templates","authors":"Kosuke Inai, Ryota Oshimura, Kunio Himeno, Megumi Fujii, Yuta Onishi, Satoshi Kurai, Narihito Okada, Kenjiro Uesugi, Hideto Miyake, Yoichi Yamada","doi":"10.1002/pssb.202300567","DOIUrl":"https://doi.org/10.1002/pssb.202300567","url":null,"abstract":"The internal quantum efficiency (IQE) and cathodoluminescence intensity line profile of AlGaN multiple quantum well (MQW) structures on low‐dislocation face‐to‐face annealed sputtered AlN (FFA Sp‐AlN) and on conventional metalorganic vapor‐phase epitaxy‐grown AlN (MOVPE‐AlN) templates are evaluated and the effect of the number of quantum wells (QWs) on the IQE is discussed. The higher IQE in the FFA samples is probably due to the lower threading dislocation (TD) density; however, the IQE also increases with the number of QWs although the TD density remains constant. Effective diffusion length increases with the number of QWs, indicating that the AlGaN MQW layer helps to suppress point defect diffusion, resulting in IQE increase. Furthermore, the segregation of point defects into the TDs and point defect diffusion via the TDs may explain the difference in the IQE improvement rate between the MQWs on the FFA Sp‐AlN and MOVPE‐AlN templates.","PeriodicalId":20406,"journal":{"name":"Physica Status Solidi B-basic Solid State Physics","volume":"36 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140811808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Red Emission of Well‐Ordered InGaN/GaN Nanocolumn Arrays on Si (111) Substrates Grown via Nanotemplate Selective‐Area Growth 通过纳米模板选择性面积生长技术在 Si (111) 基质上生长的井然有序的 InGaN/GaN 纳米柱阵列的红色发射率
IF 1.6 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER Pub Date : 2024-04-26 DOI: 10.1002/pssb.202400064
Kota Hoshino, Rie Togashi, Katsumi Kishino
Herein, triangular‐lattice nanopillar templates are fabricated on sputter‐deposited AlN/Si (111) substrates. Nanotemplate selective‐area growth via radiofrequency‐plasma‐assisted molecular beam epitaxy is employed to grow GaN nanocolumns on the nanopillars. Well‐ordered uniform GaN nanocolumn arrays are obtained by inserting a migration‐enhanced‐epitaxy grown AlN/AlGaN buffer layer, thereby aligning the polarity of GaN to Ga‐polar. Subsequently, bulk InGaN active layers are grown on top of the GaN nanocolumns with increasing growth time (tg = 10–20 min). In the initial stage of growth (tg = 10 min), low‐In‐content InGaN grows on the edges of the six‐sided pyramidal top of the GaN nanocolumns. As the growth progresses, low‐In‐composition InGaN fills the sides between InGaN on the edges, while high‐In‐composition InGaN rapidly grows on the top of the c‐plane nanocolumns. High‐angle annular dark‐field scanning transmission electron microscopy reveals the formation of an InGaN core, covered with a low‐In‐composition InGaN shell, on the top of the nanocolumns. At tg = 20 min, the photoluminescence spectrum exhibits a peak at 669 nm with a full width at half maximum value of 51.7 nm. Thus, the proposed method is suitable for growing red‐light‐emitting well‐ordered InGaN/GaN nanocolumn arrays on Si.
本文在溅射沉积的 AlN/Si (111) 基底上制作了三角形晶格的纳米柱模板。纳米模板通过射频等离子体辅助分子束外延进行选择性面积生长,从而在纳米柱上生长出 GaN 纳米柱。通过插入迁移增强外延生长的氮化镓/氮化铝缓冲层,从而将氮化镓的极性调整为镓极性,获得了井然有序的均匀氮化镓纳米柱阵列。随后,随着生长时间(tg = 10-20 分钟)的增加,在氮化镓纳米柱顶部生长出块状 InGaN 有源层。在生长的初始阶段(tg = 10 分钟),低铟含量的 InGaN 生长在氮化镓纳米柱六面金字塔顶部的边缘。随着生长的进行,低铟含量的 InGaN 填满了边缘上 InGaN 之间的两侧,而高铟含量的 InGaN 则在 c 平面纳米柱的顶部迅速生长。高角度环形暗场扫描透射电子显微镜显示,在纳米柱顶部形成了一个 InGaN 内核,其上覆盖着一层低铟含量 InGaN 外壳。在 tg = 20 分钟时,光致发光光谱在 669 纳米处出现峰值,半最大值全宽为 51.7 纳米。因此,所提出的方法适用于在硅上生长红光发射有序的 InGaN/GaN 纳米柱阵列。
{"title":"Red Emission of Well‐Ordered InGaN/GaN Nanocolumn Arrays on Si (111) Substrates Grown via Nanotemplate Selective‐Area Growth","authors":"Kota Hoshino, Rie Togashi, Katsumi Kishino","doi":"10.1002/pssb.202400064","DOIUrl":"https://doi.org/10.1002/pssb.202400064","url":null,"abstract":"Herein, triangular‐lattice nanopillar templates are fabricated on sputter‐deposited AlN/Si (111) substrates. Nanotemplate selective‐area growth via radiofrequency‐plasma‐assisted molecular beam epitaxy is employed to grow GaN nanocolumns on the nanopillars. Well‐ordered uniform GaN nanocolumn arrays are obtained by inserting a migration‐enhanced‐epitaxy grown AlN/AlGaN buffer layer, thereby aligning the polarity of GaN to Ga‐polar. Subsequently, bulk InGaN active layers are grown on top of the GaN nanocolumns with increasing growth time (<jats:italic>t</jats:italic><jats:sub>g</jats:sub> = 10–20 min). In the initial stage of growth (<jats:italic>t</jats:italic><jats:sub>g</jats:sub> = 10 min), low‐In‐content InGaN grows on the edges of the six‐sided pyramidal top of the GaN nanocolumns. As the growth progresses, low‐In‐composition InGaN fills the sides between InGaN on the edges, while high‐In‐composition InGaN rapidly grows on the top of the c‐plane nanocolumns. High‐angle annular dark‐field scanning transmission electron microscopy reveals the formation of an InGaN core, covered with a low‐In‐composition InGaN shell, on the top of the nanocolumns. At <jats:italic>t</jats:italic><jats:sub>g</jats:sub> = 20 min, the photoluminescence spectrum exhibits a peak at 669 nm with a full width at half maximum value of 51.7 nm. Thus, the proposed method is suitable for growing red‐light‐emitting well‐ordered InGaN/GaN nanocolumn arrays on Si.","PeriodicalId":20406,"journal":{"name":"Physica Status Solidi B-basic Solid State Physics","volume":"51 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140800271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Accelerating Nonequilibrium Green Functions Simulations: The G1–G2 Scheme and Beyond 加速非平衡格林函数模拟:G1-G2 方案及其他
IF 1.6 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER Pub Date : 2024-04-26 DOI: 10.1002/pssb.202300578
Michael Bonitz, Jan‐Philip Joost, Christopher Makait, Erik Schroedter, Tim Kalsberger, Karsten Balzer
The theory of nonequilibrium Green functions (NEGF) has seen a rapid development over the recent three decades. Applications include diverse correlated many‐body systems in and out of equilibrium. Very good agreement with experiments and available exact theoretical results could be demonstrated if the proper selfenergy approximations were used. However, full two‐time NEGF simulations are computationally costly, as they suffer from a cubic scaling of the computation time with the simulation duration. Recently the G1–G2 scheme that exactly reformulates the generalized Kadanoff–Baym ansatz with Hartree–Fock propagators (HF‐GKBA) into time‐local equations is introduced, which achieves time‐linear scaling and allows for a dramatic speedup and extension of the simulations (Schluenzen et al. Phys. Rev. Lett. 2020, 124, 076601). Remarkably, this scaling is achieved quickly, and also for high‐level selfenergies, including the nonequilibrium GW and T‐matrix approximations (Joost et al. Phys. Rev. B 2020, 101, 245101). Even the dynamically screened ladder approximation is now feasible (Joost et al. Phys. Rev. B 2022, 105, 165155), and also applications to electron‐boson systems are demonstrated. Herein, an overview on recent results that are achieved with the G1–G2 scheme is presented. Problems and open questions are discussed and further ideas of how to overcome the current limitations of the scheme and present are presented. The G1–G2 scheme is illustrated by presenting applying it to the excitation dynamics of Hubbard clusters, to optical excitation of graphene, and to charge transfer during stopping of ions by correlated materials.
近三十年来,非平衡格林函数(NEGF)理论得到了快速发展。其应用包括平衡和非平衡状态下的各种相关多体系统。如果使用适当的自能近似值,可以证明与实验和现有精确理论结果非常吻合。然而,全双时 NEGF 模拟的计算成本很高,因为它们的计算时间与模拟持续时间成立方比例关系。最近推出的 G1-G2 方案将广义卡达诺夫-贝姆方差与哈特里-福克传播者(HF-GKBA)精确地重新表述为时域方程,实现了时间-线性缩放,使模拟的速度和扩展性大大提高(Schluenzen 等人,Phys. Rev. Lett.)值得注意的是,这种缩放是快速实现的,也适用于高级自能,包括非平衡 GW 和 T 矩阵近似(Joost 等人,Phys. Rev. B 2020, 101, 245101)。即使是动态屏蔽梯形近似现在也是可行的(Joost 等人,Phys. Rev. B 2022, 105, 165155),而且在电子玻色子系统中的应用也得到了证明。在此,我们将概述使用 G1-G2 方案所取得的最新成果。讨论了存在的问题和未决问题,并就如何克服该方案目前的局限性提出了进一步的想法。通过将 G1-G2 方案应用于哈伯德团簇的激发动力学、石墨烯的光学激发以及相关材料阻止离子期间的电荷转移,对该方案进行了说明。
{"title":"Accelerating Nonequilibrium Green Functions Simulations: The G1–G2 Scheme and Beyond","authors":"Michael Bonitz, Jan‐Philip Joost, Christopher Makait, Erik Schroedter, Tim Kalsberger, Karsten Balzer","doi":"10.1002/pssb.202300578","DOIUrl":"https://doi.org/10.1002/pssb.202300578","url":null,"abstract":"The theory of nonequilibrium Green functions (NEGF) has seen a rapid development over the recent three decades. Applications include diverse correlated many‐body systems in and out of equilibrium. Very good agreement with experiments and available exact theoretical results could be demonstrated if the proper selfenergy approximations were used. However, full two‐time NEGF simulations are computationally costly, as they suffer from a cubic scaling of the computation time with the simulation duration. Recently the G1–G2 scheme that exactly reformulates the generalized Kadanoff–Baym ansatz with Hartree–Fock propagators (HF‐GKBA) into time‐local equations is introduced, which achieves time‐linear scaling and allows for a dramatic speedup and extension of the simulations (Schluenzen et al. <jats:italic>Phys. Rev. Lett.</jats:italic> 2020, <jats:italic>124</jats:italic>, 076601). Remarkably, this scaling is achieved quickly, and also for high‐level selfenergies, including the nonequilibrium GW and <jats:italic>T</jats:italic>‐matrix approximations (Joost et al. <jats:italic>Phys. Rev. B</jats:italic> 2020, <jats:italic>101</jats:italic>, 245101). Even the dynamically screened ladder approximation is now feasible (Joost et al. <jats:italic>Phys. Rev. B</jats:italic> 2022, <jats:italic>105</jats:italic>, 165155), and also applications to electron‐boson systems are demonstrated. Herein, an overview on recent results that are achieved with the G1–G2 scheme is presented. Problems and open questions are discussed and further ideas of how to overcome the current limitations of the scheme and present are presented. The G1–G2 scheme is illustrated by presenting applying it to the excitation dynamics of Hubbard clusters, to optical excitation of graphene, and to charge transfer during stopping of ions by correlated materials.","PeriodicalId":20406,"journal":{"name":"Physica Status Solidi B-basic Solid State Physics","volume":"50 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140806167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improvement of Photoconductivity in a‐Oriented α‐Ga2O3 Thin Films Grown on Sapphire Substrates by Mist Chemical Vapor Deposition 利用喷雾化学气相沉积法提高蓝宝石基底上生长的面向 a 的 α-Ga2O3 薄膜的光导率
IF 1.6 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER Pub Date : 2024-04-26 DOI: 10.1002/pssb.202300463
Kazuyuki Uno, Keishi Yamaoka
α‐Ga2O3 is a suitable material for UV‐C optical devices owing to its optical absorption edge wavelength. In this study, α‐Ga2O3 thin films are grown on c‐, a‐, m‐, n‐, and r‐oriented sapphire substrates by mist chemical vapor deposition. Furthermore, their structural fluctuations, (normal direction of the surface) and (rotational direction on the surface), are examined. As a result, the a‐oriented α‐Ga2O3 thin films exhibit the smallest and . Based on the results of the previous examination, metal–semiconductor–metal (MSM) photodetectors are fabricated using c‐ and a‐oriented α‐Ga2O3 thin films and their photoconducting properties are characterized. Under D2 lamp light illumination, the MSM photodetector using a‐oriented films produces photocurrent four to six times greater than those using c‐oriented films. The visible‐light rejection ratios are at 10 V and 105.2 at 24 V. The photoresponsivity is estimated to be 2.2 A W−1 under the illumination of a D2 UV lamp and 24 V bias voltage. In these results, it is suggested that the a‐oriented α‐Ga2O3 thin film exhibits a higher in‐plane carrier mobility than the c‐oriented film. Thus, a‐oriented α‐Ga2O3 films are more suitable than c‐oriented α‐Ga2O3 films for fabricating MSM photodetectors.
α-Ga2O3具有光吸收边缘波长,是紫外-C光学器件的理想材料。本研究采用雾化化学气相沉积法在 c、a、m、n 和 r 向蓝宝石基底上生长了 α-Ga2O3 薄膜。此外,还研究了它们的结构波动(表面法线方向)和(表面旋转方向)。结果表明,a 方向的 α-Ga2O3 薄膜表现出最小的结构波动,而 r 方向的 α-Ga2O3 薄膜表现出最小的结构波动。根据之前的研究结果,利用 c 向和 a 向 α-Ga2O3 薄膜制作了金属-半导体-金属(MSM)光电探测器,并对其光导特性进行了表征。在 D2 灯照射下,使用 a 向薄膜的 MSM 光电探测器产生的光电流是使用 c 向薄膜的 MSM 光电探测器的四至六倍。在 D2 紫外灯和 24 V 偏置电压的照射下,光致发射率估计为 2.2 A W-1。这些结果表明,a 向 α-Ga2O3 薄膜比 c 向薄膜具有更高的面内载流子迁移率。因此,a 向 α-Ga2O3 薄膜比 c 向 α-Ga2O3 薄膜更适合用于制造 MSM 光电探测器。
{"title":"Improvement of Photoconductivity in a‐Oriented α‐Ga2O3 Thin Films Grown on Sapphire Substrates by Mist Chemical Vapor Deposition","authors":"Kazuyuki Uno, Keishi Yamaoka","doi":"10.1002/pssb.202300463","DOIUrl":"https://doi.org/10.1002/pssb.202300463","url":null,"abstract":"<jats:italic>α</jats:italic>‐Ga<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> is a suitable material for UV‐C optical devices owing to its optical absorption edge wavelength. In this study, <jats:italic>α</jats:italic>‐Ga<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> thin films are grown on c‐, a‐, m‐, n‐, and r‐oriented sapphire substrates by mist chemical vapor deposition. Furthermore, their structural fluctuations, (normal direction of the surface) and (rotational direction on the surface), are examined. As a result, the a‐oriented <jats:italic>α</jats:italic>‐Ga<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> thin films exhibit the smallest and . Based on the results of the previous examination, metal–semiconductor–metal (MSM) photodetectors are fabricated using c‐ and a‐oriented <jats:italic>α</jats:italic>‐Ga<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> thin films and their photoconducting properties are characterized. Under D<jats:sub>2</jats:sub> lamp light illumination, the MSM photodetector using a‐oriented films produces photocurrent four to six times greater than those using c‐oriented films. The visible‐light rejection ratios are at 10 V and 10<jats:sup>5.2</jats:sup> at 24 V. The photoresponsivity is estimated to be 2.2 A W<jats:sup>−1</jats:sup> under the illumination of a D<jats:sub>2</jats:sub> UV lamp and 24 V bias voltage. In these results, it is suggested that the a‐oriented <jats:italic>α</jats:italic>‐Ga<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> thin film exhibits a higher in‐plane carrier mobility than the c‐oriented film. Thus, a‐oriented <jats:italic>α</jats:italic>‐Ga<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> films are more suitable than c‐oriented <jats:italic>α</jats:italic>‐Ga<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> films for fabricating MSM photodetectors.","PeriodicalId":20406,"journal":{"name":"Physica Status Solidi B-basic Solid State Physics","volume":"55 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140800270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correlative Micro‐Photoluminescence Study on Hybrid Quantum‐Well InGaN Red Light‐Emitting Diodes 混合量子阱 InGaN 红色发光二极管的相关微光研究
IF 1.6 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER Pub Date : 2024-04-26 DOI: 10.1002/pssb.202400036
Zhaozong Zhang, Ryota Ishii, Kanako Shojiki, Mitsuru Funato, Daisuke Iida, Kazuhiro Ohkawa, Yoichi Kawakami
To investigate nonradiative recombination processes in indium gallium nitride (InGaN)‐based red light‐emitting diodes (LEDs), an InGaN‐based red LED with a hybrid quantum well (QW) structure consisting of red and blue single quantum wells (SQWs) is characterized by micro‐photoluminescence (μ‐PL) spectroscopy. The μ‐PL mapping of the red emission reveals numerous dark spots with various sizes and contrasts. Not only the red and blue (from a blue SQW) but green emission bands are observed at some red dark spots, suggesting that indium (In) segregation is one of the causes of nonradiative recombination in the red emission. Comparing the blue and green emission images to the red emission image reveals that the dark spots in the intensity map of the red emission can be classified into four types. Through this correlative analysis, the red dark spots associated with the dark areas in the intensity map of the blue emission are attributed to the major nonradiative recombination centers in the red emission.
为了研究基于氮化铟镓(InGaN)的红色发光二极管(LED)中的非辐射重组过程,我们利用微光致发光(μ-PL)光谱对一种基于氮化铟镓(InGaN)的红色 LED 进行了表征,该 LED 具有由红色和蓝色单量子阱(SQW)组成的混合量子阱(QW)结构。红色发射的 μ-PL 图显示了许多不同大小和对比度的暗点。在一些红色暗点上不仅能观察到红色和蓝色(来自蓝色 SQW)发射带,还能观察到绿色发射带,这表明铟(In)偏析是红色发射中非辐射重组的原因之一。将蓝色和绿色发射图像与红色发射图像进行比较,可以发现红色发射强度图中的暗点可分为四种类型。通过这种关联分析,与蓝色发射强度图中暗区相关的红色暗点可归因于红色发射中的主要非辐射重组中心。
{"title":"Correlative Micro‐Photoluminescence Study on Hybrid Quantum‐Well InGaN Red Light‐Emitting Diodes","authors":"Zhaozong Zhang, Ryota Ishii, Kanako Shojiki, Mitsuru Funato, Daisuke Iida, Kazuhiro Ohkawa, Yoichi Kawakami","doi":"10.1002/pssb.202400036","DOIUrl":"https://doi.org/10.1002/pssb.202400036","url":null,"abstract":"To investigate nonradiative recombination processes in indium gallium nitride (InGaN)‐based red light‐emitting diodes (LEDs), an InGaN‐based red LED with a hybrid quantum well (QW) structure consisting of red and blue single quantum wells (SQWs) is characterized by micro‐photoluminescence (<jats:italic>μ</jats:italic>‐PL) spectroscopy. The <jats:italic>μ</jats:italic>‐PL mapping of the red emission reveals numerous dark spots with various sizes and contrasts. Not only the red and blue (from a blue SQW) but green emission bands are observed at some red dark spots, suggesting that indium (In) segregation is one of the causes of nonradiative recombination in the red emission. Comparing the blue and green emission images to the red emission image reveals that the dark spots in the intensity map of the red emission can be classified into four types. Through this correlative analysis, the red dark spots associated with the dark areas in the intensity map of the blue emission are attributed to the major nonradiative recombination centers in the red emission.","PeriodicalId":20406,"journal":{"name":"Physica Status Solidi B-basic Solid State Physics","volume":"21 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140800269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metal–Organic Chemical Vapor Deposition of n‐AlGaN Grown on Strain‐Relaxed Distributed Bragg Reflector Buffer Layers 在应变松弛分布式布拉格反射器缓冲层上生长氮化铝镓的金属有机化学气相沉积技术
IF 1.6 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER Pub Date : 2024-04-22 DOI: 10.1002/pssb.202300558
Hisashi Yamada, Naoto Kumagai, Toshikazu Yamada
The strain relaxation, surface morphology, and reflectivity of AlGaN‐distributed Bragg reflectors (DBRs) grown via metal–organic chemical vapor deposition on AlN/Al2O3 templates are investigated. Strain relaxation begins in a 10‐period Al0.50Ga0.50N (27 nm)/Al0.75Ga0.25N (29 nm) DBR, and the degree of strain relaxation (DSR) increases with the number of DBR periods. The 30‐period DBR exhibits a peak reflectivity of 0.82 at 279 nm, with a stopband of 12 nm. The DSR of n‐Al0.62Ga0.38N on the 30‐period DBR increases from 70% to 100% as the n‐Al0.62Ga0.38N thickness increases from 0.4 to 2.5 μm. Although the surface of a DBR comprises numerous spiral hillocks, n‐Al0.62Ga0.38N grown on an AlGaN DBR exhibits a step‐flow growth. A DSR of 100% with threading screw dislocations of 2.0 × 108 cm−2 and threading edge dislocations of 1.2 × 109 cm−2 is obtained for a 2.5 μm‐thick n‐Al0.62Ga0.38N on a 30‐period AlGaN DBR.
本文研究了在 AlN/Al2O3 模板上通过金属有机化学气相沉积生长的 AlGaN 分布布拉格反射器 (DBR) 的应变松弛、表面形貌和反射率。10 周期的 Al0.50Ga0.50N (27 nm)/Al0.75Ga0.25N (29 nm) DBR 开始出现应变松弛,应变松弛程度(DSR)随 DBR 周期数的增加而增加。30 期 DBR 在 279 纳米波长处的峰值反射率为 0.82,止带为 12 纳米。随着 n-Al0.62Ga0.38N 厚度从 0.4 μm 增加到 2.5 μm,30 期 DBR 上 n-Al0.62Ga0.38N 的 DSR 从 70% 增加到 100%。虽然 DBR 表面由许多螺旋丘组成,但在氮化铝 DBR 上生长的 n-Al0.62Ga0.38N 却呈现出阶梯式流动生长。在 30 周期 AlGaN DBR 上生长的 2.5 μm 厚 n-Al0.62Ga0.38N 的 DSR 为 100%,螺纹螺旋位错为 2.0 × 108 cm-2,螺纹边缘位错为 1.2 × 109 cm-2。
{"title":"Metal–Organic Chemical Vapor Deposition of n‐AlGaN Grown on Strain‐Relaxed Distributed Bragg Reflector Buffer Layers","authors":"Hisashi Yamada, Naoto Kumagai, Toshikazu Yamada","doi":"10.1002/pssb.202300558","DOIUrl":"https://doi.org/10.1002/pssb.202300558","url":null,"abstract":"The strain relaxation, surface morphology, and reflectivity of AlGaN‐distributed Bragg reflectors (DBRs) grown via metal–organic chemical vapor deposition on AlN/Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> templates are investigated. Strain relaxation begins in a 10‐period Al<jats:sub>0.50</jats:sub>Ga<jats:sub>0.50</jats:sub>N (27 nm)/Al<jats:sub>0.75</jats:sub>Ga<jats:sub>0.25</jats:sub>N (29 nm) DBR, and the degree of strain relaxation (DSR) increases with the number of DBR periods. The 30‐period DBR exhibits a peak reflectivity of 0.82 at 279 nm, with a stopband of 12 nm. The DSR of <jats:italic>n</jats:italic>‐Al<jats:sub>0.62</jats:sub>Ga<jats:sub>0.38</jats:sub>N on the 30‐period DBR increases from 70% to 100% as the <jats:italic>n</jats:italic>‐Al<jats:sub>0.62</jats:sub>Ga<jats:sub>0.38</jats:sub>N thickness increases from 0.4 to 2.5 μm. Although the surface of a DBR comprises numerous spiral hillocks, <jats:italic>n</jats:italic>‐Al<jats:sub>0.62</jats:sub>Ga<jats:sub>0.38</jats:sub>N grown on an AlGaN DBR exhibits a step‐flow growth. A DSR of 100% with threading screw dislocations of 2.0 × 10<jats:sup>8</jats:sup> cm<jats:sup>−2</jats:sup> and threading edge dislocations of 1.2 × 10<jats:sup>9</jats:sup> cm<jats:sup>−2</jats:sup> is obtained for a 2.5 μm‐thick <jats:italic>n</jats:italic>‐Al<jats:sub>0.62</jats:sub>Ga<jats:sub>0.38</jats:sub>N on a 30‐period AlGaN DBR.","PeriodicalId":20406,"journal":{"name":"Physica Status Solidi B-basic Solid State Physics","volume":"7 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140635432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Nonradiative Properties of Self‐Trapped Holes in Ultra‐Wide Bandgap Gallium Oxide Film 超宽带隙氧化镓薄膜中自阱的非辐射特性
IF 1.6 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER Pub Date : 2024-04-22 DOI: 10.1002/pssb.202300590
Isiaka Lukman, Leah Bergman
The photoluminescence (PL) of self‐trapped holes (STH) in ultra‐wide bandgap β‐Ga2O3 is commonly its most dominant light emission and is an inherent property. Thus, gaining knowledge of the crystal dynamics that impact the PL properties is vital to sensor and other technologies. The PL, Raman‐phonons, and their interactions are studied at an extreme temperature range of 77–622 K. The PL is studied up to the bandgap value of ≈5 eV. It is found that the high‐energy Raman modes provide a major route to the nonradiative process of the PL via STH–phonon interaction with an activation energy of 72 meV. This dynamic is modeled with the configurational coordinate scheme at the strong phonon coupling limit. The exceptionally broad Gaussian PL linewidth manifests this coupling. The weak temperature response of the PL energy peak position indicates that the STH has characteristics of a deep‐level defect. This contrasts with the large redshift of ≈220 meV of the optical gap of the film, ascertained from transmission. Unlike the temperature response of the high‐energy phonons, the behavior of the low‐energy phonons is found to follow the Bose–Einstein population increase, indicating no strong interaction with the STH.
超宽带隙β-Ga2O3 中自阱空穴(STH)的光致发光(PL)通常是其最主要的光发射,也是其固有的特性。因此,了解影响聚光特性的晶体动力学对传感器和其他技术至关重要。我们在 77-622 K 的极端温度范围内对聚光、拉曼-声子及其相互作用进行了研究。研究发现,高能拉曼模式是通过激活能为 72 meV 的 STH-声子相互作用实现非辐射聚光过程的主要途径。在强声子耦合极限下,这种动态可通过构型坐标方案进行建模。异常宽广的高斯PL线宽体现了这种耦合。PL 能量峰位置的微弱温度响应表明,STH 具有深层缺陷的特征。这与通过透射确定的薄膜光隙的大红移(≈220 meV)形成鲜明对比。与高能声子的温度响应不同,低能声子的行为是随着玻色-爱因斯坦种群的增加而变化的,这表明它与 STH 没有强烈的相互作用。
{"title":"The Nonradiative Properties of Self‐Trapped Holes in Ultra‐Wide Bandgap Gallium Oxide Film","authors":"Isiaka Lukman, Leah Bergman","doi":"10.1002/pssb.202300590","DOIUrl":"https://doi.org/10.1002/pssb.202300590","url":null,"abstract":"The photoluminescence (PL) of self‐trapped holes (STH) in ultra‐wide bandgap β‐Ga<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> is commonly its most dominant light emission and is an inherent property. Thus, gaining knowledge of the crystal dynamics that impact the PL properties is vital to sensor and other technologies. The PL, Raman‐phonons, and their interactions are studied at an extreme temperature range of 77–622 K. The PL is studied up to the bandgap value of ≈5 eV. It is found that the high‐energy Raman modes provide a major route to the nonradiative process of the PL via STH–phonon interaction with an activation energy of 72 meV. This dynamic is modeled with the configurational coordinate scheme at the strong phonon coupling limit. The exceptionally broad Gaussian PL linewidth manifests this coupling. The weak temperature response of the PL energy peak position indicates that the STH has characteristics of a deep‐level defect. This contrasts with the large redshift of ≈220 meV of the optical gap of the film, ascertained from transmission. Unlike the temperature response of the high‐energy phonons, the behavior of the low‐energy phonons is found to follow the Bose–Einstein population increase, indicating no strong interaction with the STH.","PeriodicalId":20406,"journal":{"name":"Physica Status Solidi B-basic Solid State Physics","volume":"17 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140635568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Theoretical Study of Carbon K‐Edge Energy‐Loss Near‐Edge Structure Spectra in the Ordered Mo2TiAlC2 MAX and Mo2TiC2 MXene 有序 Mo2TiAlC2 MAX 和 Mo2TiC2 MXene 中碳 K 边缘能量损失近边缘结构光谱的理论研究
IF 1.6 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER Pub Date : 2024-04-22 DOI: 10.1002/pssb.202400012
Zahra Derikvandi, Mehrdad Dadsetani
By means of density functional theory, the energy‐loss near‐edge structure (ELNES) of carbon K‐edge of Mo2TiAlC2 and corresponding MoTiC2 Mxene at orientational‐independent condition is dealt with. Compared to the MAX (M is transition metal, A is an elment from group 13–16, X is C or N) phase, the energy separations increase between the main spectral features at the C K edge of Mo2TiC2 MXene owing to the structural change and decreased bond length. The dispersions of the C K edge in both systems are similar to p‐symmetry densities of states. It is indicated that the source of the first fine structure at the C 1s edge in both phases mainly comes from the electron transfer to px + py‐like character. The other fine structures result from the transition to hybridization of pz and px + py states with the prominent contribution of px + py‐like character. Moreover, the comparison of C K‐edge ELNES spectra in three Mo‐based compounds reveals that, ongoing from Mo2TiAlC2 to Mo2TiC2 and then to Mo2C, the energy position of the fine structures is shifted to higher energies (blueshifted), due to the quantum confinement effects and the change of the chemical environment around the excited carbon.
通过密度泛函理论,研究了取向无关条件下 Mo2TiAlC2 和相应 MoTiC2 Mxene 碳 K 边的能量损失近边结构(ELNES)。与 MAX 相(M 为过渡金属,A 为 13-16 族中的一个元素,X 为 C 或 N)相比,由于结构的变化和键长的减少,Mo2TiC2 MXene 的 C K 边主要光谱特征之间的能级差距增大。这两种体系中 C K 边缘的分散与 p 对称态密度相似。研究表明,这两种物相中 C 1s 边缘第一个精细结构的来源主要是电子转移到 px + py 样性。其他精细结构来自 pz 和 px + py 状态的杂化转变,其中 px + py 样性的贡献突出。此外,通过比较三种钼基化合物的 C K 边 ELNES 光谱发现,在从 Mo2TiAlC2 到 Mo2TiC2 再到 Mo2C 的过程中,由于量子约束效应和激发碳周围化学环境的变化,精细结构的能量位置向更高能量移动(蓝移)。
{"title":"Theoretical Study of Carbon K‐Edge Energy‐Loss Near‐Edge Structure Spectra in the Ordered Mo2TiAlC2 MAX and Mo2TiC2 MXene","authors":"Zahra Derikvandi, Mehrdad Dadsetani","doi":"10.1002/pssb.202400012","DOIUrl":"https://doi.org/10.1002/pssb.202400012","url":null,"abstract":"By means of density functional theory, the energy‐loss near‐edge structure (ELNES) of carbon K‐edge of Mo2TiAlC<jats:sub>2</jats:sub> and corresponding MoTiC<jats:sub>2</jats:sub> Mxene at orientational‐independent condition is dealt with. Compared to the MAX (M is transition metal, A is an elment from group 13–16, X is C or N) phase, the energy separations increase between the main spectral features at the C K edge of Mo<jats:sub>2</jats:sub>TiC<jats:sub>2</jats:sub> MXene owing to the structural change and decreased bond length. The dispersions of the C K edge in both systems are similar to p‐symmetry densities of states. It is indicated that the source of the first fine structure at the C 1<jats:italic>s</jats:italic> edge in both phases mainly comes from the electron transfer to <jats:italic>p</jats:italic><jats:sub><jats:italic>x</jats:italic></jats:sub> + <jats:italic>p</jats:italic><jats:sub><jats:italic>y</jats:italic></jats:sub>‐like character. The other fine structures result from the transition to hybridization of <jats:italic>p</jats:italic><jats:sub><jats:italic>z</jats:italic></jats:sub> and <jats:italic>p</jats:italic><jats:sub><jats:italic>x</jats:italic></jats:sub> + <jats:italic>p</jats:italic><jats:sub><jats:italic>y</jats:italic></jats:sub> states with the prominent contribution of <jats:italic>p</jats:italic><jats:sub><jats:italic>x</jats:italic></jats:sub> + <jats:italic>p</jats:italic><jats:sub><jats:italic>y</jats:italic></jats:sub>‐like character. Moreover, the comparison of C K‐edge ELNES spectra in three Mo‐based compounds reveals that, ongoing from Mo<jats:sub>2</jats:sub>TiAlC<jats:sub>2</jats:sub> to Mo<jats:sub>2</jats:sub>TiC<jats:sub>2</jats:sub> and then to Mo<jats:sub>2</jats:sub>C, the energy position of the fine structures is shifted to higher energies (blueshifted), due to the quantum confinement effects and the change of the chemical environment around the excited carbon.","PeriodicalId":20406,"journal":{"name":"Physica Status Solidi B-basic Solid State Physics","volume":"39 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140635738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New Debye Temperature Model of 4H‐SiC Crystal 4H-SiC 晶体的新型德拜温度模型
IF 1.6 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER Pub Date : 2024-04-18 DOI: 10.1002/pssb.202400104
Wei Jun Hsiung, Chih Shan Tan
The Debye temperature is a crucial parameter in understanding various properties of solids, including their melting temperature. This study focuses on 4H‐SiC, a material renowned for its wide bandgap and high thermal conductivity, making it ideal for high‐power electronic devices. Calculating various physical parameters for 4H‐SiC, including the Debye temperature, is crucial for semiconductor fabrication. However, it is observed that existing Debye models are unsuitable for computing the Debye temperature of 4H‐SiC. Therefore, phonon calculations alongside the Debye model to establish a new model for determining the Debye temperature of 4H‐SiC are used. This research has identified an optimal temperature range, referred to as the ‘T150’ model, between 150 and 160 K, which yields a Debye temperature consistent with experimental values. The newly developed “T150” model, demonstrated herein, holds the potential for determining the Debye temperatures of doped 4H‐SiC, other polytypes of 4H‐SiC, and other semiconductor materials, broadening its applicability in material science.
德拜温度是了解固体各种特性(包括其熔化温度)的关键参数。本研究的重点是 4H-SiC 材料,它以宽带隙和高热导率著称,是大功率电子设备的理想材料。计算 4H-SiC 的各种物理参数,包括德拜温度,对于半导体制造至关重要。然而,现有的 Debye 模型并不适合计算 4H-SiC 的 Debye 温度。因此,在使用 Debye 模型的同时还使用了声子计算,以建立一个确定 4H-SiC 的 Debye 温度的新模型。这项研究确定了一个最佳温度范围,即 150 至 160 K 之间的 "T150 "模型,该温度范围产生的 Debye 温度与实验值一致。本文展示的新开发的 "T150 "模型有可能用于确定掺杂的 4H-SiC 、其他多类型 4H-SiC 以及其他半导体材料的德拜温度,从而拓宽了其在材料科学领域的应用范围。
{"title":"New Debye Temperature Model of 4H‐SiC Crystal","authors":"Wei Jun Hsiung, Chih Shan Tan","doi":"10.1002/pssb.202400104","DOIUrl":"https://doi.org/10.1002/pssb.202400104","url":null,"abstract":"The Debye temperature is a crucial parameter in understanding various properties of solids, including their melting temperature. This study focuses on 4H‐SiC, a material renowned for its wide bandgap and high thermal conductivity, making it ideal for high‐power electronic devices. Calculating various physical parameters for 4H‐SiC, including the Debye temperature, is crucial for semiconductor fabrication. However, it is observed that existing Debye models are unsuitable for computing the Debye temperature of 4H‐SiC. Therefore, phonon calculations alongside the Debye model to establish a new model for determining the Debye temperature of 4H‐SiC are used. This research has identified an optimal temperature range, referred to as the ‘T150’ model, between 150 and 160 K, which yields a Debye temperature consistent with experimental values. The newly developed “T150” model, demonstrated herein, holds the potential for determining the Debye temperatures of doped 4H‐SiC, other polytypes of 4H‐SiC, and other semiconductor materials, broadening its applicability in material science.","PeriodicalId":20406,"journal":{"name":"Physica Status Solidi B-basic Solid State Physics","volume":"84 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140626720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Physica Status Solidi B-basic Solid State Physics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1