首页 > 最新文献

Physica Status Solidi B-basic Solid State Physics最新文献

英文 中文
Dependence of Crystal‐Field Energy on Strain/Stress Sensed by Temperature Variation of Chalcopyrite Semiconductor (Optical) Band‐Gap for Efficient Band‐Gap Tuning in the CIS/CIGS Photovoltaic 通过黄铜矿半导体(光学)带隙温度变化感知晶体场能量对应变/应力的依赖性,实现 CIS/CIGS 光伏的高效带隙调节
IF 1.6 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER Pub Date : 2024-08-07 DOI: 10.1002/pssb.202300552
Dimitra N. Papadimitriou
Chalcopyrite selenide single crystals and epitaxial layers (CuIn1−xGaxSe2, x = 0.00, 0.08, 0.19, 1.00) were characterized by temperature‐dependent photoreflectance (PR), photoluminescence (PL), photoluminescence–excitation (PLE), and variable excitation‐energy photoluminescence (VEPL) spectroscopy. The transition energies Ea, Eb, and Ec of both CuInSe2 (CIS) and CuGaSe2 (CGS) layers sensed by PR were higher than the energies of single crystals. CuInSe2 and CuGaSe2 grown on GaAs(001) underlie compressive and tensile stresses, respectively, which lead to band‐gap broadening in CIS and band‐gap narrowing in CGS. The increase of the Ea, Eb, Ec energies of tensely stressed CuGaSe2 layers to energies higher than those of the bulk originates from the stress dependence of the non‐cubic crystal field. Band‐gap scanning of the CuGaSe2 layer with continuous‐wave Ti:sapphire‐laser confirmed the absence of correlation between band‐gap readjustment and intrinsic defects. The energy of the band‐edge exciton EFE, in the PL‐spectra, was lower than the Ea transition energy, in the PR‐spectra, which is assigned to partial quenching of ΔCF with the increase of external tensile stress by gallium‐segregation at the chalcopyrite/GaAs‐interface. The stress dependence of ΔCF is negligible in CuInSe2 and linear, with a rate of 9 meV/100 MPa, in CuGaSe2. It is revealed that the energy band‐gap of photovoltaic chalcopyrite absorbers can be tuned by simultaneous built‐in and external lattice‐tuning.
通过温度相关的光反射率 (PR)、光致发光 (PL)、光致发光激发 (PLE) 和可变激发能量光致发光 (VEPL) 光谱对黄铜矿硒化物单晶和外延层(CuIn1-xGaxSe2,x = 0.00、0.08、0.19、1.00)进行了表征。PR 检测到的 CuInSe2(CIS)和 CuGaSe2(CGS)层的转换能量 Ea、Eb 和 Ec 均高于单晶体的能量。生长在砷化镓(001)上的 CuInSe2 和 CuGaSe2 分别受到压应力和拉应力的作用,这导致 CIS 的带隙变宽和 CGS 的带隙变窄。张应力 CuGaSe2 层的 Ea、Eb、Ec 能量增加到高于块体的能量,这源于非立方晶体场的应力依赖性。用连续波 Ti:sapphire 激光对 CuGaSe2 层进行带隙扫描证实,带隙重新调整与内在缺陷之间没有关联。带边激子 EFE 的能量(PL 谱)低于 Ea 过渡能量(PR 谱),这是由于黄铜/砷化镓界面上的镓偏析导致ΔCF 随着外部拉伸应力的增加而部分熄灭。在 CuInSe2 中,ΔCF 与应力的关系可以忽略不计,而在 CuGaSe2 中则呈线性关系,速率为 9 meV/100 MPa。研究揭示了光伏黄铜矿吸收体的能带隙可以通过同时进行内置和外置晶格调谐来调整。
{"title":"Dependence of Crystal‐Field Energy on Strain/Stress Sensed by Temperature Variation of Chalcopyrite Semiconductor (Optical) Band‐Gap for Efficient Band‐Gap Tuning in the CIS/CIGS Photovoltaic","authors":"Dimitra N. Papadimitriou","doi":"10.1002/pssb.202300552","DOIUrl":"https://doi.org/10.1002/pssb.202300552","url":null,"abstract":"Chalcopyrite selenide single crystals and epitaxial layers (CuIn<jats:sub>1−<jats:italic>x</jats:italic></jats:sub>Ga<jats:sub><jats:italic>x</jats:italic></jats:sub>Se<jats:sub>2</jats:sub>, <jats:italic>x</jats:italic> = 0.00, 0.08, 0.19, 1.00) were characterized by temperature‐dependent photoreflectance (PR), photoluminescence (PL), photoluminescence–excitation (PLE), and variable excitation‐energy photoluminescence (VEPL) spectroscopy. The transition energies <jats:italic>E</jats:italic><jats:sub>a</jats:sub>, <jats:italic>E</jats:italic><jats:sub>b</jats:sub>, and <jats:italic>E</jats:italic><jats:sub>c</jats:sub> of both CuInSe<jats:sub>2</jats:sub> (CIS) and CuGaSe<jats:sub>2</jats:sub> (CGS) layers sensed by PR were higher than the energies of single crystals. CuInSe<jats:sub>2</jats:sub> and CuGaSe<jats:sub>2</jats:sub> grown on GaAs(001) underlie compressive and tensile stresses, respectively, which lead to band‐gap broadening in CIS and band‐gap narrowing in CGS. The increase of the <jats:italic>E</jats:italic><jats:sub>a</jats:sub>, <jats:italic>E</jats:italic><jats:sub>b</jats:sub>, <jats:italic>E</jats:italic><jats:sub>c</jats:sub> energies of tensely stressed CuGaSe<jats:sub>2</jats:sub> layers to energies higher than those of the bulk originates from the stress dependence of the non‐cubic crystal field. Band‐gap scanning of the CuGaSe<jats:sub>2</jats:sub> layer with continuous‐wave Ti:sapphire‐laser confirmed the absence of correlation between band‐gap readjustment and intrinsic defects. The energy of the band‐edge exciton <jats:italic>E</jats:italic><jats:sub>FE</jats:sub>, in the PL‐spectra, was lower than the <jats:italic>E</jats:italic><jats:sub>a</jats:sub> transition energy, in the PR‐spectra, which is assigned to partial quenching of Δ<jats:sub>CF</jats:sub> with the increase of external tensile stress by gallium‐segregation at the chalcopyrite/GaAs‐interface. The stress dependence of Δ<jats:sub>CF</jats:sub> is negligible in CuInSe<jats:sub>2</jats:sub> and linear, with a rate of 9 meV/100 MPa, in CuGaSe<jats:sub>2</jats:sub>. It is revealed that the energy band‐gap of photovoltaic chalcopyrite absorbers can be tuned by simultaneous built‐in and external lattice‐tuning.","PeriodicalId":20406,"journal":{"name":"Physica Status Solidi B-basic Solid State Physics","volume":"3 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141948989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ab Initio Study of Structural, Electronic, Optical, and Thermoelectric Properties of Cs2(Li/Na)GaI6 for Green Energy Applications 面向绿色能源应用的 Cs2(Li/Na)GaI6 结构、电子、光学和热电性能的 Ab Initio 研究
IF 1.6 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER Pub Date : 2024-08-07 DOI: 10.1002/pssb.202400263
Mukaddar Sk, Gourav Gourav, Saurabh Ghosh
The recent year has witnessed a flurry of activities in investigating the promising electronic, optical, and transport properties of lead‐free double perovskite halides. In the present work, the structural, electronic, optical, and transport properties of Cs2(Li/Na)GaI6 are carefully examined. The predicted negative formation energy, absence of imaginary frequency in the phonon spectra, and ab‐initio molecular dynamics calculations show that they are thermodynamically stable. Additionally, electronic studies employing generalized gradient approximation (GGA)–Perdew–Burke–Ernzerhof (PBE) + modified Becke‐Johnson + spin‐orbit coupling reveal that Cs2(Li/Na)GaI6 exhibits a direct bandgap, with values of 1.24 eV for Cs2LiGaI6 and 1.39 eV for Cs2NaGaI6. The exceptional optical properties, including a high absorption coefficient (105 cm−1) and excellent optical conductivity with low reflectivity across the entire UV–visible range, indicate that Cs2(Li/Na)GaI6 are promising materials for solar cell applications. Moreover, the ultralow thermal conductivity, high Seebeck coefficient, and substantial electrical conductivity of Cs2(Li/Na)GaI6 result in a high figure of merit over the temperature range of 200–600 K. Thus, Cs2(Li/Na)GaI6 shows strong potential as both photovoltaic and thermoelectric materials.
近年来,研究无铅双包晶卤化物的电子、光学和传输特性的活动如火如荼。本研究对 Cs2(Li/Na)GaI6 的结构、电子、光学和传输特性进行了仔细研究。预测的负形成能、声子光谱中不存在虚频以及非原位分子动力学计算表明,它们在热力学上是稳定的。此外,利用广义梯度近似(GGA)-Perdew-Burke-Ernzerhof(PBE)+ 改进的 Becke-Johnson + 自旋轨道耦合进行的电子研究表明,Cs2(Li/Na)GaI6 具有直接带隙,Cs2LiGaI6 的带隙值为 1.24 eV,Cs2NaGaI6 的带隙值为 1.39 eV。Cs2(Li/Na)GaI6具有优异的光学特性,包括高吸收系数(105 cm-1)和出色的光导率,以及在整个紫外-可见光范围内的低反射率。此外,Cs2(Li/Na)GaI6 的超低热导率、高塞贝克系数和巨大的电导率使其在 200-600 K 的温度范围内具有很高的优越性。
{"title":"Ab Initio Study of Structural, Electronic, Optical, and Thermoelectric Properties of Cs2(Li/Na)GaI6 for Green Energy Applications","authors":"Mukaddar Sk, Gourav Gourav, Saurabh Ghosh","doi":"10.1002/pssb.202400263","DOIUrl":"https://doi.org/10.1002/pssb.202400263","url":null,"abstract":"The recent year has witnessed a flurry of activities in investigating the promising electronic, optical, and transport properties of lead‐free double perovskite halides. In the present work, the structural, electronic, optical, and transport properties of Cs<jats:sub>2</jats:sub>(Li/Na)GaI<jats:sub>6</jats:sub> are carefully examined. The predicted negative formation energy, absence of imaginary frequency in the phonon spectra, and ab‐initio molecular dynamics calculations show that they are thermodynamically stable. Additionally, electronic studies employing generalized gradient approximation (GGA)–Perdew–Burke–Ernzerhof (PBE) + modified Becke‐Johnson + spin‐orbit coupling reveal that Cs<jats:sub>2</jats:sub>(Li/Na)GaI<jats:sub>6</jats:sub> exhibits a direct bandgap, with values of 1.24 eV for Cs<jats:sub>2</jats:sub>LiGaI<jats:sub>6</jats:sub> and 1.39 eV for Cs<jats:sub>2</jats:sub>NaGaI<jats:sub>6</jats:sub>. The exceptional optical properties, including a high absorption coefficient (10<jats:sup>5</jats:sup> cm<jats:sup>−1</jats:sup>) and excellent optical conductivity with low reflectivity across the entire UV–visible range, indicate that Cs<jats:sub>2</jats:sub>(Li/Na)GaI<jats:sub>6</jats:sub> are promising materials for solar cell applications. Moreover, the ultralow thermal conductivity, high Seebeck coefficient, and substantial electrical conductivity of Cs<jats:sub>2</jats:sub>(Li/Na)GaI<jats:sub>6</jats:sub> result in a high figure of merit over the temperature range of 200–600 K. Thus, Cs<jats:sub>2</jats:sub>(Li/Na)GaI<jats:sub>6</jats:sub> shows strong potential as both photovoltaic and thermoelectric materials.","PeriodicalId":20406,"journal":{"name":"Physica Status Solidi B-basic Solid State Physics","volume":"4 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141948904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Self‐Assembly of MnS Shell on CdTe Nanoparticles Induced by Thermohydrolysis: Synthesis and Characterization 热水解诱导碲化镉纳米颗粒上的 MnS 壳自组装:合成与表征
IF 1.6 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER Pub Date : 2024-08-05 DOI: 10.1002/pssb.202400248
Raul Fernando Cuevas, Silvio Jose Prado, Victor Ciro Solano Reynoso, Lauro Antonio Pradela Filho, Pablo Henrique Menezes, Miguel Angel Gonzalez Balanta
Herein, CdTe/MnS core/shell nanoparticles dispersed in an aqueous solution have been synthesized. The formation of MnS semiconductor shell occurs by spontaneous self‐assembly. This process is activated by thermal hydrolysis that removes the excess of thiol and releases S2− ions. In this process, Mn2+ ions on the surface of the CdTe nanoparticles bind to S2− ions to produce a fine semiconducting layer of MnS. Measurements of Raman spectroscopy, optical absorption, and electrochemical measurements are performed. The Raman spectrum shows CdTe characteristic bands at 141 and 163 cm−1. Bands at 221 and 444 cm−1 are associated with the MnS structure. Cyclic voltammetry and differential pulse voltammetry are used to estimate the electrochemical gap at ≈2.47 eV. Absorption optical measurements show tree absorption bands. A broad band between 460 and 520 nm is associated with the first transition in CdTe nanoparticle. The absorption spectrum reveals an optical gap in the range of 2.41–2.33 eV for all the refluxed samples. These values are consistent with those obtained with the electrochemical measurements. The results evidence the formation of a core–shell semiconducting nanostructure made of CdTe nanoparticles coated with a spontaneously self‐assembled thin layer of MnS nanoparticles.
在此,我们合成了分散在水溶液中的碲化镉/锰锌核/壳纳米粒子。MnS 半导体外壳是通过自发自组装形成的。热水解可去除过量的硫醇并释放出 S2- 离子,从而激活这一过程。在此过程中,CdTe 纳米粒子表面的 Mn2+ 离子与 S2- 离子结合,产生了一层精细的 MnS 半导体层。测量结果包括拉曼光谱、光吸收和电化学测量。拉曼光谱显示了 141 和 163 cm-1 处的碲化镉特征带。221 和 444 cm-1 处的带与 MnS 结构有关。使用循环伏安法和差分脉冲伏安法估算出电化学间隙≈2.47 eV。吸收光学测量显示了树状吸收带。波长在 460 至 520 nm 之间的宽带与碲化镉纳米粒子的第一个转变有关。吸收光谱显示,所有回流样品的光隙范围都在 2.41-2.33 eV 之间。这些值与电化学测量结果一致。这些结果证明,在碲化镉纳米粒子上自发地形成了一层自组装的 MnS 纳米粒子薄层,从而形成了一种核壳半导体纳米结构。
{"title":"Self‐Assembly of MnS Shell on CdTe Nanoparticles Induced by Thermohydrolysis: Synthesis and Characterization","authors":"Raul Fernando Cuevas, Silvio Jose Prado, Victor Ciro Solano Reynoso, Lauro Antonio Pradela Filho, Pablo Henrique Menezes, Miguel Angel Gonzalez Balanta","doi":"10.1002/pssb.202400248","DOIUrl":"https://doi.org/10.1002/pssb.202400248","url":null,"abstract":"Herein, CdTe/MnS core/shell nanoparticles dispersed in an aqueous solution have been synthesized. The formation of MnS semiconductor shell occurs by spontaneous self‐assembly. This process is activated by thermal hydrolysis that removes the excess of thiol and releases S<jats:sup>2−</jats:sup> ions. In this process, Mn<jats:sup>2+</jats:sup> ions on the surface of the CdTe nanoparticles bind to S<jats:sup>2−</jats:sup> ions to produce a fine semiconducting layer of MnS. Measurements of Raman spectroscopy, optical absorption, and electrochemical measurements are performed. The Raman spectrum shows CdTe characteristic bands at 141 and 163 cm<jats:sup>−1</jats:sup>. Bands at 221 and 444 cm<jats:sup>−1</jats:sup> are associated with the MnS structure. Cyclic voltammetry and differential pulse voltammetry are used to estimate the electrochemical gap at ≈2.47 eV. Absorption optical measurements show tree absorption bands. A broad band between 460 and 520 nm is associated with the first transition in CdTe nanoparticle. The absorption spectrum reveals an optical gap in the range of 2.41–2.33 eV for all the refluxed samples. These values are consistent with those obtained with the electrochemical measurements. The results evidence the formation of a core–shell semiconducting nanostructure made of CdTe nanoparticles coated with a spontaneously self‐assembled thin layer of MnS nanoparticles.","PeriodicalId":20406,"journal":{"name":"Physica Status Solidi B-basic Solid State Physics","volume":"15 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141948880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computational Prediction of Structural, Optoelectronic, Thermodynamic, and Thermoelectric Response of the Cubic Perovskite RbTmCl3 via DFT‐mBJ + SOC Studies 通过 DFT-mBJ + SOC 研究计算预测立方包晶 RbTmCl3 的结构、光电、热力学和热电响应
IF 1.6 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER Pub Date : 2024-08-02 DOI: 10.1002/pssb.202400123
Ejaz Ahmad Khera, Abrar Nazir, Zubair Ahmed, Mumtaz Manzoor, Hamid Ullah, Sabah Ansar, Yedluri Anil Kumar, Ramesh Sharma
Perovskite halides, owing to their environmental stability, non‐toxicity, and remarkable efficiency, are emerging as potential candidates for photovoltaic, solar cell, and thermodynamic applications. The electronic, optical, thermoelectric, and thermodynamic properties of cubic perovskite RbTmCl3 are studied using density functional theory (DFT). The electronic, optical, and thermoelectric properties are calculated both with and without spin‐orbit coupling (SOC) using the Tran and Blaha functional in the structure of the modified Becke Johnson (mBJ) exchange potential, while structural and mechanical properties are assessed using the exchange‐correlation functional calculated using the Perdew Burke Ernzerhof Generalized Gradient Approximation (PBE‐GGA). The negative formation energy (−592.39 KJ mol−1) and tolerance factor (1.17) for structural stability and current their existences in the cubic phase are found. Evaluation of the obtained data with and without SOC shows that the SOC effect causes the Tm‐d states to be shifted toward the level of Fermi, thereby decreasing the energy band gaps from 1.42 to 1.32 eV. Nevertheless, only the shift of the third variable peak to lower energies indicates the impact of SOC on optical properties. The effectiveness of RbTmCl3 in optical devices operating in the visible and ultraviolet regions is demonstrated by the exceptional absorption of light in these ranges. Using TB‐mBJ + SOC functional, the electronic band structure research reveals a direct semiconducting band gap of 1.32 eV in comparison to earlier calculations like LDA, PBE‐GGA, and TB‐mBJ. The absorption spectrum, reflectivity, extinction coefficient, refractive index, and dielectric function are displayed in addition to the electrical properties. Additionally, the quasi‐harmonic Debye model, which accounts for lattice vibrations, was used to study the corresponding volume, heat capacity, expansion of the heat coefficient, and Debye temperature of the RbTmCl3 crystal. We have calculated the thermoelectric parameters such as the Seebeck coefficient, thermal conductivity, electrical conductivity, and power factor as a function of temperature (100–900 K).
透镜卤化物具有环境稳定性、无毒性和卓越的效率,正在成为光伏、太阳能电池和热动力应用的潜在候选材料。本文采用密度泛函理论(DFT)研究了立方包晶 RbTmCl3 的电子、光学、热电和热力学性质。使用修正贝克-约翰逊(mBJ)交换势结构中的 Tran 和 Blaha 函数计算了有自旋轨道耦合(SOC)和无自旋轨道耦合(SOC)时的电子、光学和热电特性,并使用 Perdew Burke Ernzerhof 广义梯度逼近法(PBE-GGA)计算的交换相关函数评估了结构和机械特性。结果发现了负形成能(-592.39 KJ mol-1)和结构稳定性容忍因子(1.17),以及它们目前在立方相中的存在情况。对包含和不包含 SOC 的所得数据进行评估后发现,SOC 效应导致 Tm-d 态向费米水平移动,从而使能带隙从 1.42 eV 减小到 1.32 eV。然而,只有第三变峰向较低能量的移动才表明了 SOC 对光学特性的影响。掺镱氯化石蜡在可见光和紫外光区域的吸收能力极强,这证明了它在光学器件中的有效性。使用 TB-mBJ + SOC 函数进行的电子能带结构研究显示,与早期的 LDA、PBE-GGA 和 TB-mBJ 等计算结果相比,直接半导体能带隙为 1.32 eV。除了电学特性外,还显示了吸收光谱、反射率、消光系数、折射率和介电函数。此外,我们还利用考虑了晶格振动的准谐波德拜模型,研究了 RbTmCl3 晶体的相应体积、热容量、膨胀热系数和德拜温度。我们计算了塞贝克系数、热导率、电导率和功率因数等热电参数与温度(100-900 K)的函数关系。
{"title":"Computational Prediction of Structural, Optoelectronic, Thermodynamic, and Thermoelectric Response of the Cubic Perovskite RbTmCl3 via DFT‐mBJ + SOC Studies","authors":"Ejaz Ahmad Khera, Abrar Nazir, Zubair Ahmed, Mumtaz Manzoor, Hamid Ullah, Sabah Ansar, Yedluri Anil Kumar, Ramesh Sharma","doi":"10.1002/pssb.202400123","DOIUrl":"https://doi.org/10.1002/pssb.202400123","url":null,"abstract":"Perovskite halides, owing to their environmental stability, non‐toxicity, and remarkable efficiency, are emerging as potential candidates for photovoltaic, solar cell, and thermodynamic applications. The electronic, optical, thermoelectric, and thermodynamic properties of cubic perovskite RbTmCl<jats:sub>3</jats:sub> are studied using density functional theory (DFT). The electronic, optical, and thermoelectric properties are calculated both with and without spin‐orbit coupling (SOC) using the Tran and Blaha functional in the structure of the modified Becke Johnson (mBJ) exchange potential, while structural and mechanical properties are assessed using the exchange‐correlation functional calculated using the Perdew Burke Ernzerhof Generalized Gradient Approximation (PBE‐GGA). The negative formation energy (−592.39 KJ mol<jats:sup>−1</jats:sup>) and tolerance factor (1.17) for structural stability and current their existences in the cubic phase are found. Evaluation of the obtained data with and without SOC shows that the SOC effect causes the Tm‐d states to be shifted toward the level of Fermi, thereby decreasing the energy band gaps from 1.42 to 1.32 eV. Nevertheless, only the shift of the third variable peak to lower energies indicates the impact of SOC on optical properties. The effectiveness of RbTmCl<jats:sub>3</jats:sub> in optical devices operating in the visible and ultraviolet regions is demonstrated by the exceptional absorption of light in these ranges. Using TB‐mBJ + SOC functional, the electronic band structure research reveals a direct semiconducting band gap of 1.32 eV in comparison to earlier calculations like LDA, PBE‐GGA, and TB‐mBJ. The absorption spectrum, reflectivity, extinction coefficient, refractive index, and dielectric function are displayed in addition to the electrical properties. Additionally, the quasi‐harmonic Debye model, which accounts for lattice vibrations, was used to study the corresponding volume, heat capacity, expansion of the heat coefficient, and Debye temperature of the RbTmCl<jats:sub>3</jats:sub> crystal. We have calculated the thermoelectric parameters such as the Seebeck coefficient, thermal conductivity, electrical conductivity, and power factor as a function of temperature (100–900 K).","PeriodicalId":20406,"journal":{"name":"Physica Status Solidi B-basic Solid State Physics","volume":"21 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141887141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring Structural, Electronic, Vibrational, and Thermophysical Properties of Fe–Pt, Fe3–Pt, and Fe–Pt3 Alloys: A Density Functional Theory Study 探索 Fe-Pt、Fe3-Pt 和 Fe-Pt3 合金的结构、电子、振动和热物理特性:密度泛函理论研究
IF 1.6 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER Pub Date : 2024-07-31 DOI: 10.1002/pssb.202400160
Bhavik Thacker, Mitesh B. Solanki, Ratnamala Kharatmol, Yogesh D. Kale, Trilok Akhani
Utilizing density functional theory, the structural, electronic, vibrational, and thermophysical properties of L10 FePt, L12 Fe3Pt, and L12 FePt3 alloys are meticulously analyzed. Employing projected augmented wave pseudopotentials alongside the Perdew–Burke–Ernzerhof exchange‐correlation function, equilibrium lattice constants are computed, aligning closely with existing data, thus validating our approach. To ascertain the dynamical stability of these alloys, phonon frequencies and density of states across high symmetry directions of the Brillouin zone are computed, affirming their stability with positive phonon frequencies throughout. Furthermore, the electronic band structure, the total and projected density of states, electronic charge density, and Fermi surfaces of the alloys are delved. The thorough analysis of phonon dispersion curves, electronic band structures, and the density of states, charge densities, and Fermi surfaces provides conclusive insights into the properties and behavior of the alloys. In essence, comprehensive investigation offers valuable insights into the thermophysical properties of L10 FePt, L12 Fe3Pt, and L12 FePt3 alloys, spanning equilibrium lattice constants, phonon characteristics, and electronic properties. These findings significantly augment the understanding of the structural stability, phonon dynamics, and electronic behavior exhibited by these alloys.
利用密度泛函理论,对 L10 FePt、L12 Fe3Pt 和 L12 FePt3 合金的结构、电子、振动和热物理性质进行了细致分析。利用投影增强波伪势和 Perdew-Burke-Ernzerhof 交换相关函数,计算出了平衡晶格常数,与现有数据非常吻合,从而验证了我们的方法。为了确定这些合金的动态稳定性,我们计算了布里渊区高对称方向上的声子频率和状态密度,证实了它们在整个过程中具有正声子频率的稳定性。此外,还深入研究了合金的电子能带结构、总态密度和投影态密度、电子电荷密度和费米面。通过对声子频散曲线、电子能带结构、状态密度、电荷密度和费米面的全面分析,我们对合金的性质和行为有了结论性的认识。从本质上讲,全面的研究对 L10 FePt、L12 Fe3Pt 和 L12 FePt3 合金的热物理性质,包括平衡晶格常数、声子特性和电子特性提供了宝贵的见解。这些发现大大加深了人们对这些合金的结构稳定性、声子动力学和电子行为的理解。
{"title":"Exploring Structural, Electronic, Vibrational, and Thermophysical Properties of Fe–Pt, Fe3–Pt, and Fe–Pt3 Alloys: A Density Functional Theory Study","authors":"Bhavik Thacker, Mitesh B. Solanki, Ratnamala Kharatmol, Yogesh D. Kale, Trilok Akhani","doi":"10.1002/pssb.202400160","DOIUrl":"https://doi.org/10.1002/pssb.202400160","url":null,"abstract":"Utilizing density functional theory, the structural, electronic, vibrational, and thermophysical properties of L1<jats:sub>0</jats:sub> FePt, L1<jats:sub>2</jats:sub> Fe<jats:sub>3</jats:sub>Pt, and L1<jats:sub>2</jats:sub> FePt<jats:sub>3</jats:sub> alloys are meticulously analyzed. Employing projected augmented wave pseudopotentials alongside the Perdew–Burke–Ernzerhof exchange‐correlation function, equilibrium lattice constants are computed, aligning closely with existing data, thus validating our approach. To ascertain the dynamical stability of these alloys, phonon frequencies and density of states across high symmetry directions of the Brillouin zone are computed, affirming their stability with positive phonon frequencies throughout. Furthermore, the electronic band structure, the total and projected density of states, electronic charge density, and Fermi surfaces of the alloys are delved. The thorough analysis of phonon dispersion curves, electronic band structures, and the density of states, charge densities, and Fermi surfaces provides conclusive insights into the properties and behavior of the alloys. In essence, comprehensive investigation offers valuable insights into the thermophysical properties of L1<jats:sub>0</jats:sub> FePt, L1<jats:sub>2</jats:sub> Fe<jats:sub>3</jats:sub>Pt, and L1<jats:sub>2</jats:sub> FePt<jats:sub>3</jats:sub> alloys, spanning equilibrium lattice constants, phonon characteristics, and electronic properties. These findings significantly augment the understanding of the structural stability, phonon dynamics, and electronic behavior exhibited by these alloys.","PeriodicalId":20406,"journal":{"name":"Physica Status Solidi B-basic Solid State Physics","volume":"359 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141866469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
First Principles Investigations on the Carbon‐Related Defects in Silicon 硅碳相关缺陷的第一原理研究
IF 1.6 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER Pub Date : 2024-07-31 DOI: 10.1002/pssb.202400254
Zhongyan Ouyang, Xiaodong Xu, Chengrui Che, Gewei Zhang, Tao Ying, Weiqi Li, Jianqun Yang, Xingji Li
Defect identification for unintentionally induced defects and radiation‐implemented defects always attracts great attention in semiconductor materials. Recent advances in carbon‐implemented single‐photon emitters in silicon urgently require the accurate identification of defect structures to reveal transition mechanisms. Using hybrid functional with finite size correction, we investigate the charge and optical transitions of carbon‐related defects, including CSiCSi, VSiCSi, CSi, SiiCSiCSi, and Ci. Except for Ci, other defects present the negative‐U feature in the charge transition process. CSiCSi and VSiCSi tend to perform p‐type conductivity with the electron capture transition close to the valence band, of which transition level ε (0/−1) is 0.30 eV for CSiCSi and ε (+1/−2) is 0.34 eV for VSiCSi. CSi and SiiCSiCSi present a bipolar doping character, and CSi tends to capture holes with transition ε (0/+2) = 0.10 eV. The optical transitions that typically emit or absorb light in the telecom optical wavelength bands are identified in these defects in terms of band edge recombination. The zero‐phonon lines of optical transitions of ε (+2/+1) for VSiCSi and Ci are consistent with a previous experiment involving single‐photon emitters. The findings are helpful to understand the performance degradation of silicon devices and provide a reference for identifying the structure of carbon‐related defects in silicon.
在半导体材料领域,无意诱导缺陷和辐射诱导缺陷的识别一直备受关注。最近在硅碳单光子发射器方面取得的进展迫切需要准确识别缺陷结构以揭示其转变机制。利用有限尺寸校正的混合函数,我们研究了碳相关缺陷的电荷和光学转变,包括 CSiCSi、VSiCSi、CSi、SiiCSiCSi 和 Ci。除 Ci 外,其他缺陷在电荷转换过程中均呈现负 U 特性。CSiCSi 和 VSiCSi 倾向于 p 型导电,电子捕获转变接近价带,其中 CSiCSi 的转变电平ε(0/-1)为 0.30 eV,VSiCSi 的转变电平ε(+1/-2)为 0.34 eV。CSi 和 SiiCSiCSi 具有双极掺杂特性,CSi 倾向于俘获空穴,其转变ε (0/+2) = 0.10 eV。在这些缺陷中,通常在电信光学波段发射或吸收光的光学转变是通过带边重组来确定的。VSiCSi 和 Ci 的光学转变 ε (+2/+1) 的零光子线与之前涉及单光子发射器的实验一致。这些发现有助于理解硅器件的性能退化,并为确定硅中碳相关缺陷的结构提供了参考。
{"title":"First Principles Investigations on the Carbon‐Related Defects in Silicon","authors":"Zhongyan Ouyang, Xiaodong Xu, Chengrui Che, Gewei Zhang, Tao Ying, Weiqi Li, Jianqun Yang, Xingji Li","doi":"10.1002/pssb.202400254","DOIUrl":"https://doi.org/10.1002/pssb.202400254","url":null,"abstract":"Defect identification for unintentionally induced defects and radiation‐implemented defects always attracts great attention in semiconductor materials. Recent advances in carbon‐implemented single‐photon emitters in silicon urgently require the accurate identification of defect structures to reveal transition mechanisms. Using hybrid functional with finite size correction, we investigate the charge and optical transitions of carbon‐related defects, including C<jats:sub>Si</jats:sub>C<jats:sub>Si</jats:sub>, V<jats:sub>Si</jats:sub>C<jats:sub>Si</jats:sub>, C<jats:sub>Si</jats:sub>, Si<jats:sub>i</jats:sub>C<jats:sub>Si</jats:sub>C<jats:sub>Si</jats:sub>, and C<jats:sub>i</jats:sub>. Except for C<jats:sub>i</jats:sub>, other defects present the negative‐U feature in the charge transition process. C<jats:sub>Si</jats:sub>C<jats:sub>Si</jats:sub> and V<jats:sub>Si</jats:sub>C<jats:sub>Si</jats:sub> tend to perform p‐type conductivity with the electron capture transition close to the valence band, of which transition level <jats:italic>ε</jats:italic> (0/−1) is 0.30 eV for C<jats:sub>Si</jats:sub>C<jats:sub>Si</jats:sub> and <jats:italic>ε</jats:italic> (+1/−2) is 0.34 eV for V<jats:sub>Si</jats:sub>C<jats:sub>Si</jats:sub>. C<jats:sub>Si</jats:sub> and Si<jats:sub>i</jats:sub>C<jats:sub>Si</jats:sub>C<jats:sub>Si</jats:sub> present a bipolar doping character, and C<jats:sub>Si</jats:sub> tends to capture holes with transition <jats:italic>ε</jats:italic> (0/+2) = 0.10 eV. The optical transitions that typically emit or absorb light in the telecom optical wavelength bands are identified in these defects in terms of band edge recombination. The zero‐phonon lines of optical transitions of <jats:italic>ε</jats:italic> (+2/+1) for V<jats:sub>Si</jats:sub>C<jats:sub>Si</jats:sub> and C<jats:sub>i</jats:sub> are consistent with a previous experiment involving single‐photon emitters. The findings are helpful to understand the performance degradation of silicon devices and provide a reference for identifying the structure of carbon‐related defects in silicon.","PeriodicalId":20406,"journal":{"name":"Physica Status Solidi B-basic Solid State Physics","volume":"48 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141866483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced Efficiency of Thin‐Film Solar Cells via Cation‐Substituted Kesterite Absorber Layers and Nontoxic Buffers: A Numerical Study 通过阳离子取代的 Kesterite 吸收层和无毒缓冲剂提高薄膜太阳能电池的效率:数值研究
IF 1.6 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER Pub Date : 2024-07-31 DOI: 10.1002/pssb.202400238
Balaji Gururajan, Atheek Posha, Wei‐Sheng Liu, Bhavya Kondapavuluri, Tarikallu Thippesh Abhishek, Perumal Thathireddy, Venkatesh Narasihman
Herein, the 1D Solar Cell Capacitance Simulator software is used to perform numerical analysis of thin‐film solar cells with Cu2ZnSnS4, Cu2BaSnS4, Cu2FeSnS4, and Cu2MnSnS4 absorber layers. The main goal is to investigate the impact of parameters, such as absorber layer thickness, acceptor density, buffer layer, bandgap, and donor density, on the efficiency of these solar cells. The absorber layer investigation entails varying the thickness and the acceptor density to evaluate their influence on the efficiency of the solar cell. A new zinc oxide sulfide (Zn(O,S)) buffer layer is also introduced instead of the conventional cadmium sulfide (CdS) buffer layer. The Zn(O,S) bandgap and its donor density, which are investigated in terms of how they affect the efficiency of the solar cells, have been varied. The optimal values for the thickness of the absorber layer, acceptor density, and the bandgap of the buffer layer are calculated. Subsequently, the donor density is evaluated to find any potential defects that may affect the efficiency of the solar cell. These results confirm that Zn(O,S) can be utilized as a buffer layer. This study concludes that Cu2ZnSnS4, Cu2BaSnS4, and Cu2MnSnS4 absorber layers have superior efficiency in comparison with Cu2FeSnS4.
本文使用一维太阳能电池电容模拟器软件对具有 Cu2ZnSnS4、Cu2BaSnS4、Cu2FeSnS4 和 Cu2MnSnS4 吸收层的薄膜太阳能电池进行数值分析。主要目的是研究吸收层厚度、受体密度、缓冲层、带隙和供体密度等参数对这些太阳能电池效率的影响。对吸收层的研究包括改变吸收层的厚度和受体密度,以评估它们对太阳能电池效率的影响。此外,还引入了一种新的硫化锌(Zn(O,S))缓冲层,以取代传统的硫化镉(CdS)缓冲层。研究人员改变了氧化锌(O,S)带隙及其供体密度,以了解它们如何影响太阳能电池的效率。计算出了吸收层厚度、受体密度和缓冲层带隙的最佳值。随后,对供体密度进行了评估,以找出可能影响太阳能电池效率的潜在缺陷。这些结果证实 Zn(O,S)可用作缓冲层。本研究的结论是,与 Cu2FeSnS4 相比,Cu2ZnSnS4、Cu2BaSnS4 和 Cu2MnSnS4 吸收层具有更高的效率。
{"title":"Enhanced Efficiency of Thin‐Film Solar Cells via Cation‐Substituted Kesterite Absorber Layers and Nontoxic Buffers: A Numerical Study","authors":"Balaji Gururajan, Atheek Posha, Wei‐Sheng Liu, Bhavya Kondapavuluri, Tarikallu Thippesh Abhishek, Perumal Thathireddy, Venkatesh Narasihman","doi":"10.1002/pssb.202400238","DOIUrl":"https://doi.org/10.1002/pssb.202400238","url":null,"abstract":"Herein, the 1D Solar Cell Capacitance Simulator software is used to perform numerical analysis of thin‐film solar cells with Cu<jats:sub>2</jats:sub>ZnSnS<jats:sub>4</jats:sub>, Cu<jats:sub>2</jats:sub>BaSnS<jats:sub>4</jats:sub>, Cu<jats:sub>2</jats:sub>FeSnS<jats:sub>4</jats:sub>, and Cu<jats:sub>2</jats:sub>MnSnS<jats:sub>4</jats:sub> absorber layers. The main goal is to investigate the impact of parameters, such as absorber layer thickness, acceptor density, buffer layer, bandgap, and donor density, on the efficiency of these solar cells. The absorber layer investigation entails varying the thickness and the acceptor density to evaluate their influence on the efficiency of the solar cell. A new zinc oxide sulfide (Zn(O,S)) buffer layer is also introduced instead of the conventional cadmium sulfide (CdS) buffer layer. The Zn(O,S) bandgap and its donor density, which are investigated in terms of how they affect the efficiency of the solar cells, have been varied. The optimal values for the thickness of the absorber layer, acceptor density, and the bandgap of the buffer layer are calculated. Subsequently, the donor density is evaluated to find any potential defects that may affect the efficiency of the solar cell. These results confirm that Zn(O,S) can be utilized as a buffer layer. This study concludes that Cu<jats:sub>2</jats:sub>ZnSnS<jats:sub>4</jats:sub>, Cu<jats:sub>2</jats:sub>BaSnS<jats:sub>4</jats:sub>, and Cu<jats:sub>2</jats:sub>MnSnS<jats:sub>4</jats:sub> absorber layers have superior efficiency in comparison with Cu<jats:sub>2</jats:sub>FeSnS<jats:sub>4</jats:sub>.","PeriodicalId":20406,"journal":{"name":"Physica Status Solidi B-basic Solid State Physics","volume":"19 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141866474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Atomic Simulation of Deformation Behavior of Polycrystalline Co30Fe16.67Ni36.67Ti16.67 High Entropy Alloy Under Uniaxial Loading 多晶 Co30Fe16.67Ni36.67Ti16.67 高熵合金在单轴载荷下变形行为的原子模拟
IF 1.6 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER Pub Date : 2024-07-31 DOI: 10.1002/pssb.202400128
Ying Fu, Wei Li, Qi Wang, Yinnan Sun, Qing Gao, Xu Xu, Junqiang Ren, Xuefeng Lu
Mechanical behavior and plastic deformation mechanism of a new type of Co30Fe16.67Ni36.67Ti16.67 high entropy alloys (HEAs) have been calculated by the molecular dynamics method. The results show that the polycrystalline Co30Fe16.67Ni36.67Ti16.67 HEA has remarkable tensile plasticity and anisotropy. When the crystallographic orientation of the grain is <001>, the plastic deformation mechanism is face‐centered cubic (FCC)→body‐centered cubic (BCC) transformation and deformation twins. Grain boundary and vacancy reduce the nucleation energy of FCC→BCC phase transition, making BCC phase nucleation easy and growing in a shear manner, eventually forming deformation twins in the BCC phase. When the crystallographic orientation of grain is <110> and <111>, the plastic deformation mechanism is stacking faults, FCC→hexagonal‐close‐packed (HCP) phase transformation, and deformation twins. The motion of Shockley dislocation leads to the stacking fault, intrinsic stacking fault leads to the FCC→HCP phase transition, extrinsic stratification fault leads to the twin deformation, and the grain refining occurs during the tension process. Temperature and strain rate also have strong effects on tensile strength and elastic modulus. These results will provide a theoretical basis for the development of the HEAs and expand their application.
利用分子动力学方法计算了一种新型 Co30Fe16.67Ni36.67Ti16.67 高熵合金(HEAs)的力学行为和塑性变形机理。结果表明,多晶 Co30Fe16.67Ni36.67Ti16.67 高熵合金具有显著的拉伸塑性和各向异性。当晶粒的晶体学取向为<001>时,塑性变形机制为面心立方(FCC)→体心立方(BCC)转变和变形孪晶。晶界和空位降低了 FCC→BCC 相转变的成核能,使 BCC 相易于成核并以剪切方式生长,最终形成 BCC 相变形孪晶。当晶粒的晶体学取向为<110>和<111>时,塑性变形机制为堆积断层、FCC→六方紧密堆积(HCP)相变和变形孪晶。肖克利位错运动导致堆叠断层,内在堆叠断层导致 FCC→HCP 相变,外在分层断层导致孪晶变形,拉伸过程中发生晶粒细化。温度和应变速率对拉伸强度和弹性模量也有很大影响。这些结果将为 HEA 的发展提供理论依据,并扩大其应用范围。
{"title":"Atomic Simulation of Deformation Behavior of Polycrystalline Co30Fe16.67Ni36.67Ti16.67 High Entropy Alloy Under Uniaxial Loading","authors":"Ying Fu, Wei Li, Qi Wang, Yinnan Sun, Qing Gao, Xu Xu, Junqiang Ren, Xuefeng Lu","doi":"10.1002/pssb.202400128","DOIUrl":"https://doi.org/10.1002/pssb.202400128","url":null,"abstract":"Mechanical behavior and plastic deformation mechanism of a new type of Co<jats:sub>30</jats:sub>Fe<jats:sub>16.67</jats:sub>Ni<jats:sub>36.67</jats:sub>Ti<jats:sub>16.67</jats:sub> high entropy alloys (HEAs) have been calculated by the molecular dynamics method. The results show that the polycrystalline Co<jats:sub>30</jats:sub>Fe<jats:sub>16.67</jats:sub>Ni<jats:sub>36.67</jats:sub>Ti<jats:sub>16.67</jats:sub> HEA has remarkable tensile plasticity and anisotropy. When the crystallographic orientation of the grain is &lt;001&gt;, the plastic deformation mechanism is face‐centered cubic (FCC)→body‐centered cubic (BCC) transformation and deformation twins. Grain boundary and vacancy reduce the nucleation energy of FCC→BCC phase transition, making BCC phase nucleation easy and growing in a shear manner, eventually forming deformation twins in the BCC phase. When the crystallographic orientation of grain is &lt;110&gt; and &lt;111&gt;, the plastic deformation mechanism is stacking faults, FCC→hexagonal‐close‐packed (HCP) phase transformation, and deformation twins. The motion of Shockley dislocation leads to the stacking fault, intrinsic stacking fault leads to the FCC→HCP phase transition, extrinsic stratification fault leads to the twin deformation, and the grain refining occurs during the tension process. Temperature and strain rate also have strong effects on tensile strength and elastic modulus. These results will provide a theoretical basis for the development of the HEAs and expand their application.","PeriodicalId":20406,"journal":{"name":"Physica Status Solidi B-basic Solid State Physics","volume":"86 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141866472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Superconductive Sodalite‐Like Clathrate Hydrides MXH12$left(text{MXH}right)_{12}$ with Critical Temperatures of near 300 K under Pressures 在压力作用下临界温度接近 300 K 的超导钠长石状冰态氢化物 MXH12(text{MXH}/right)_{12}$
IF 1.6 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER Pub Date : 2024-07-31 DOI: 10.1002/pssb.202400240
Yuxiang Fan, Bin Li, Cong Zhu, Jie Cheng, Shengli Liu, Zhixiang Shi
Herein, a series of ternary hydride compounds crystallizing in the cubic structure as potential rare‐earth and alkaline‐earth superconductors are designed and investigated. First‐principles calculations are performed on these prospective superconductors across the pressure range of 50–200 GPa, revealing their electronic band structures, phonon dispersions, electron–phonon (e–) interactions, and superconducting properties. Several compounds are identified as dynamically stable, with ScYbH and LuYbH remaining stable at 70 GPa and at 100 GPa. Notably, Eliashberg theory and e– coupling calculations predict CaLuH to exhibit a remarkable of up to 294 K at 180 GPa. In these findings, ternary hydrides are unveiled as a promising class of high‐temperature superconductors and insights are provided for achieving superconductivity at lower or ambient pressures through material design and exploration.
本文设计并研究了一系列以立方结构结晶的三元氢化物,它们是潜在的稀土和碱土超导体。在 50-200 GPa 的压力范围内对这些潜在超导体进行了第一性原理计算,揭示了它们的电子带结构、声子色散、电子-声子(e-)相互作用和超导特性。有几种化合物被确定为动态稳定化合物,其中 ScYbH 和 LuYbH 在 70 GPa 和 100 GPa 时保持稳定。值得注意的是,埃利亚斯伯格理论和电子耦合计算预测 CaLuH 在 180 GPa 时的显著性高达 294 K。这些发现揭示了三元氢化物是一类很有前途的高温超导体,并为通过材料设计和探索在较低或环境压力下实现超导提供了启示。
{"title":"Superconductive Sodalite‐Like Clathrate Hydrides MXH12$left(text{MXH}right)_{12}$ with Critical Temperatures of near 300 K under Pressures","authors":"Yuxiang Fan, Bin Li, Cong Zhu, Jie Cheng, Shengli Liu, Zhixiang Shi","doi":"10.1002/pssb.202400240","DOIUrl":"https://doi.org/10.1002/pssb.202400240","url":null,"abstract":"Herein, a series of ternary hydride compounds crystallizing in the cubic structure as potential rare‐earth and alkaline‐earth superconductors are designed and investigated. First‐principles calculations are performed on these prospective superconductors across the pressure range of 50–200 GPa, revealing their electronic band structures, phonon dispersions, electron–phonon (<jats:italic>e</jats:italic>–) interactions, and superconducting properties. Several compounds are identified as dynamically stable, with ScYbH and LuYbH remaining stable at 70 GPa and at 100 GPa. Notably, Eliashberg theory and <jats:italic>e</jats:italic>– coupling calculations predict CaLuH to exhibit a remarkable of up to 294 K at 180 GPa. In these findings, ternary hydrides are unveiled as a promising class of high‐temperature superconductors and insights are provided for achieving superconductivity at lower or ambient pressures through material design and exploration.","PeriodicalId":20406,"journal":{"name":"Physica Status Solidi B-basic Solid State Physics","volume":"18 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141866473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative Study of the Mechanical, Electronic Structure, and Optical Properties of Cubic Lithium‐Based Perovskite LiMgX3 (X = Cl, Br, I) under Pressure Effects: First‐Principles Calculations 压力效应下立方锂基包晶石 LiMgX3 (X = Cl, Br, I) 的力学、电子结构和光学特性的比较研究:第一原理计算
IF 1.6 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER Pub Date : 2024-07-29 DOI: 10.1002/pssb.202400223
Wei Luo, Shiyi Song, Yaxin Du, Siying Hu
The mechanical, electronic structure, and optical properties of lithium‐based perovskite LiMgX3 (X = Cl, Br, I) are investigated for the first time at 0–20 GPa using density‐functional theory. The Born stability criteria reveal that the phase transition points of LiMgCl3, LiMgBr3, and LiMgI3 are 20.7, 20.9, and 23.4 GPa, respectively. At 0 GPa, studies on the electronic properties using the Heyd‐Scuseria‐Ernzerhof (HSE06) functional show that LiMgCl3 and LiMgBr3 are indirect bandgap insulators with values of 5.336 and 4.113 eV, whereas LiMgI3 is an indirect bandgap semiconductor with a value of 2.055 eV. In addition, the bandgap calculated using both the PBEsol and HSE06 functionals decreases with increasing pressure, and the bandgap trends with pressure are consistent. Both functionals are also used to study the optical properties of LiMgX3 compounds, which show that they have potential for use in vacuum ultraviolet and photovoltaic applications. The mechanical and optical characteristics of the materials are significantly enhanced under pressure.
利用密度函数理论首次研究了锂基包晶 LiMgX3(X = Cl、Br、I)在 0-20 GPa 下的力学、电子结构和光学性质。博恩稳定性标准显示,LiMgCl3、LiMgBr3 和 LiMgI3 的相变点分别为 20.7、20.9 和 23.4 GPa。在 0 GPa 条件下,使用 Heyd-Scuseria-Ernzerhof (HSE06) 函数进行的电子特性研究表明,LiMgCl3 和 LiMgBr3 是间接带隙绝缘体,带隙值分别为 5.336 和 4.113 eV,而 LiMgI3 则是间接带隙半导体,带隙值为 2.055 eV。此外,使用 PBEsol 和 HSE06 函数计算出的带隙随着压力的增加而减小,带隙随压力变化的趋势是一致的。这两种函数还被用于研究 LiMgX3 化合物的光学特性,结果表明它们具有在真空紫外线和光伏应用中使用的潜力。在压力作用下,材料的机械和光学特性显著增强。
{"title":"Comparative Study of the Mechanical, Electronic Structure, and Optical Properties of Cubic Lithium‐Based Perovskite LiMgX3 (X = Cl, Br, I) under Pressure Effects: First‐Principles Calculations","authors":"Wei Luo, Shiyi Song, Yaxin Du, Siying Hu","doi":"10.1002/pssb.202400223","DOIUrl":"https://doi.org/10.1002/pssb.202400223","url":null,"abstract":"The mechanical, electronic structure, and optical properties of lithium‐based perovskite LiMgX<jats:sub>3</jats:sub> (X = Cl, Br, I) are investigated for the first time at 0–20 GPa using density‐functional theory. The Born stability criteria reveal that the phase transition points of LiMgCl<jats:sub>3</jats:sub>, LiMgBr<jats:sub>3</jats:sub>, and LiMgI<jats:sub>3</jats:sub> are 20.7, 20.9, and 23.4 GPa, respectively. At 0 GPa, studies on the electronic properties using the Heyd‐Scuseria‐Ernzerhof (HSE06) functional show that LiMgCl<jats:sub>3</jats:sub> and LiMgBr<jats:sub>3</jats:sub> are indirect bandgap insulators with values of 5.336 and 4.113 eV, whereas LiMgI<jats:sub>3</jats:sub> is an indirect bandgap semiconductor with a value of 2.055 eV. In addition, the bandgap calculated using both the PBEsol and HSE06 functionals decreases with increasing pressure, and the bandgap trends with pressure are consistent. Both functionals are also used to study the optical properties of LiMgX<jats:sub>3</jats:sub> compounds, which show that they have potential for use in vacuum ultraviolet and photovoltaic applications. The mechanical and optical characteristics of the materials are significantly enhanced under pressure.","PeriodicalId":20406,"journal":{"name":"Physica Status Solidi B-basic Solid State Physics","volume":"6 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141872872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Physica Status Solidi B-basic Solid State Physics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1