Pub Date : 2025-01-22DOI: 10.1007/s11119-024-10201-5
Bernat Salas, Ramón Salcedo, Francisco Garcia-Ruiz, Emilio Gil
In recent years, there has been a significant progress in technologies used in 3D crop spraying. The inherent goal of applying these technologies has been to reduce drift, improve efficacy in the use of Plant Protection Products (PPP) and, consequently, reduce the amount of chemicals in fruit production, thus minimizing environmental impact and enhancing human health. In order to assess the study of this impact, deposition trials were conducted in an apple orchard at two different growth stages (BBCH72 and BBCH99). Three typical sprayers were used to perform these trials: the reference sprayer, representing the most popular one used by local farmers; the Best Management Practices (BMP) sprayer, symbolizing well-adjusted equipment according the target; and the VRA sprayer, a newly developed machine provided with ultrasonic sensors and the corresponding developed hardware to achieve an on-line pesticide rate adaption, according to the canopy dimensions. This VRA sprayer has been developed within OPTIMA H2020 EU project (www.optima-h2020.eu). The VRA sprayer effectively achieved similar or better values of deposition and coverage in the whole canopy target, using up to 35% less PPP rate, compared to the reference sprayer. Additionally, the developed VRA machine has demonstrated its ability to adapt the applied PPP rate to fundamental canopy parameters such as width and density, allowing to implement alternative pesticide rates, based on canopy characteristics (i.e. Leaf Wall Area), as a new method proposed by European and Mediterranean Plant Protection Organization (EPPO).
{"title":"Field validation of a variable rate application sprayer equipped with ultrasonic sensors in apple tree plantations","authors":"Bernat Salas, Ramón Salcedo, Francisco Garcia-Ruiz, Emilio Gil","doi":"10.1007/s11119-024-10201-5","DOIUrl":"https://doi.org/10.1007/s11119-024-10201-5","url":null,"abstract":"<p>In recent years, there has been a significant progress in technologies used in 3D crop spraying. The inherent goal of applying these technologies has been to reduce drift, improve efficacy in the use of Plant Protection Products (PPP) and, consequently, reduce the amount of chemicals in fruit production, thus minimizing environmental impact and enhancing human health. In order to assess the study of this impact, deposition trials were conducted in an apple orchard at two different growth stages (BBCH72 and BBCH99). Three typical sprayers were used to perform these trials: the reference sprayer, representing the most popular one used by local farmers; the Best Management Practices (BMP) sprayer, symbolizing well-adjusted equipment according the target; and the VRA sprayer, a newly developed machine provided with ultrasonic sensors and the corresponding developed hardware to achieve an on-line pesticide rate adaption, according to the canopy dimensions. This VRA sprayer has been developed within OPTIMA H2020 EU project (www.optima-h2020.eu). The VRA sprayer effectively achieved similar or better values of deposition and coverage in the whole canopy target, using up to 35% less PPP rate, compared to the reference sprayer. Additionally, the developed VRA machine has demonstrated its ability to adapt the applied PPP rate to fundamental canopy parameters such as width and density, allowing to implement alternative pesticide rates, based on canopy characteristics (i.e. Leaf Wall Area), as a new method proposed by European and Mediterranean Plant Protection Organization (EPPO).</p>","PeriodicalId":20423,"journal":{"name":"Precision Agriculture","volume":"32 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143020658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rapid and accurate detection of fruits is crucial for estimating yields and making scientific decisions in litchi orchards. However, litchis grow in complex natural environments, characterized by variable lighting, severe occlusion from branches and leaves, small fruit sizes, and dense overlapping, all of which pose significant challenges for accurate detection. This paper addressed this problem by proposing a method that combines unmanned aerial vehicle (UAV) remote sensing and deep learning for litchi detection. A remote sensing image dataset comprising litchi fruit was first constructed. Subsequently, an improved algorithm, YOLOv7-MSRSF, was developed. Experimental results demonstrated that YOLOv7-MSRSF’s mean average precision (mAP) reached 96.1%, outperforming YOLOv7 and pure transformer algorithms by 3.7% and 20.6%, respectively. Tests on randomly selected 24 images demonstrated that integrating the Swin-transformer module into YOLOv7 improved litchi fruit detection accuracy under severe occlusion, dense overlapping, and variable lighting by 19.55%, 6.63%, and 13.94%, respectively. YOLOv7-MSRSF showed further improvements in these three complex conditions, with detection accuracy increasing by 26.99%, 9.82%, and 18.68%, respectively, reaching 89.16%, 97.79%, and 95.56%. Furthermore, the Real-ESRGAN algorithm significantly enhanced the YOLOv7-MSRSF model’s recognition accuracy of objects in low-resolution images captured by high-altitude drones. The average detected accuracy of three images collected at 27.5 m above the canopy reached a high value of 82.2%, which was improved by 70.6% compared with that (11.6%) before super-resolution processing. The proposed method offered valuable guidance for detecting small, dense agricultural objects in large-scale, complex natural environments.
{"title":"Enhanced visual detection of litchi fruit in complex natural environments based on unmanned aerial vehicle (UAV) remote sensing","authors":"Changjiang Liang, Juntao Liang, Weiguang Yang, Weiyi Ge, Jing Zhao, Zhaorong Li, Shudai Bai, Jiawen Fan, Yubin Lan, Yongbing Long","doi":"10.1007/s11119-025-10220-w","DOIUrl":"https://doi.org/10.1007/s11119-025-10220-w","url":null,"abstract":"<p>Rapid and accurate detection of fruits is crucial for estimating yields and making scientific decisions in litchi orchards. However, litchis grow in complex natural environments, characterized by variable lighting, severe occlusion from branches and leaves, small fruit sizes, and dense overlapping, all of which pose significant challenges for accurate detection. This paper addressed this problem by proposing a method that combines unmanned aerial vehicle (UAV) remote sensing and deep learning for litchi detection. A remote sensing image dataset comprising litchi fruit was first constructed. Subsequently, an improved algorithm, YOLOv7-MSRSF, was developed. Experimental results demonstrated that YOLOv7-MSRSF’s mean average precision (mAP) reached 96.1%, outperforming YOLOv7 and pure transformer algorithms by 3.7% and 20.6%, respectively. Tests on randomly selected 24 images demonstrated that integrating the Swin-transformer module into YOLOv7 improved litchi fruit detection accuracy under severe occlusion, dense overlapping, and variable lighting by 19.55%, 6.63%, and 13.94%, respectively. YOLOv7-MSRSF showed further improvements in these three complex conditions, with detection accuracy increasing by 26.99%, 9.82%, and 18.68%, respectively, reaching 89.16%, 97.79%, and 95.56%. Furthermore, the Real-ESRGAN algorithm significantly enhanced the YOLOv7-MSRSF model’s recognition accuracy of objects in low-resolution images captured by high-altitude drones. The average detected accuracy of three images collected at 27.5 m above the canopy reached a high value of 82.2%, which was improved by 70.6% compared with that (11.6%) before super-resolution processing. The proposed method offered valuable guidance for detecting small, dense agricultural objects in large-scale, complex natural environments.</p>","PeriodicalId":20423,"journal":{"name":"Precision Agriculture","volume":"57 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143020692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-07DOI: 10.1007/s11119-024-10214-0
Henrique Oldoni, Paulo S. G. Magalhães, Agda L. G. Oliveira, Joaquim P. Lima, Gleyce K. D. A. Figueiredo, Edemar Moro, Lucas R. Amaral
Few strategies have been developed to effectively delineate management zones (MZs) in crop-pasture rotation (CPR) systems that accommodate site-specific management for multiple crops using a single map. This study aimed to propose and evaluate several feature selection approaches that account for multiple crops in CPR systems and propose a framework for MZ delineation in CPR systems that results in a single MZ map. The feature selection approaches were based on the spatial correlation between attributes (soil, crops, and terrain attributes) and yield variables (grain and pasture yield, spatial trend of yield, and yield temporal stability). This study was conducted in an area with an integrated crop-livestock system, featuring the CPR of soybean and pasture. The results showed that the approach based on yield temporal stability was the most effective for selecting relevant attributes used in the MZ delineation in CPR systems, resulting in greater differentiation among MZs. A higher number of MZs was needed (four zones), emphasizing the importance of carefully selecting the number based on variance reduction and yield differences to ensure that the final MZ map reflects the variability across all crops and guides their integrated management. The proposed framework is one of the first to use yield temporal stability for feature selection specifically aimed at delineating MZs in CPR systems. This approach improves the ability to select significant attributes used in the MZs delineation process, providing a better solution for improving input use efficiency and maximizing grain and pasture yield in integrated farming systems.
{"title":"Management zones delineation: a proposal to overcome the crop-pasture rotation challenge","authors":"Henrique Oldoni, Paulo S. G. Magalhães, Agda L. G. Oliveira, Joaquim P. Lima, Gleyce K. D. A. Figueiredo, Edemar Moro, Lucas R. Amaral","doi":"10.1007/s11119-024-10214-0","DOIUrl":"https://doi.org/10.1007/s11119-024-10214-0","url":null,"abstract":"<p>Few strategies have been developed to effectively delineate management zones (MZs) in crop-pasture rotation (CPR) systems that accommodate site-specific management for multiple crops using a single map. This study aimed to propose and evaluate several feature selection approaches that account for multiple crops in CPR systems and propose a framework for MZ delineation in CPR systems that results in a single MZ map. The feature selection approaches were based on the spatial correlation between attributes (soil, crops, and terrain attributes) and yield variables (grain and pasture yield, spatial trend of yield, and yield temporal stability). This study was conducted in an area with an integrated crop-livestock system, featuring the CPR of soybean and pasture. The results showed that the approach based on yield temporal stability was the most effective for selecting relevant attributes used in the MZ delineation in CPR systems, resulting in greater differentiation among MZs. A higher number of MZs was needed (four zones), emphasizing the importance of carefully selecting the number based on variance reduction and yield differences to ensure that the final MZ map reflects the variability across all crops and guides their integrated management. The proposed framework is one of the first to use yield temporal stability for feature selection specifically aimed at delineating MZs in CPR systems. This approach improves the ability to select significant attributes used in the MZs delineation process, providing a better solution for improving input use efficiency and maximizing grain and pasture yield in integrated farming systems.</p>","PeriodicalId":20423,"journal":{"name":"Precision Agriculture","volume":"5 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142934936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}