Pub Date : 2024-07-06DOI: 10.1007/s11119-024-10162-9
Kushal KC, Matthew Romanko, Andrew Perrault, Sami Khanal
This study assesses the potential of using multispectral images collected by an unmanned aerial system (UAS) on machine learning (ML) frameworks to estimate cereal rye (Secale cereal L.) biomass. Multispectral images and ground-truth cereal rye biomass data were collected from 15 farmers’ fields up to three times between March and May in northwest Ohio. Images were processed to derive 13 vegetation indices (VIs). Out of 13 VIs, six optimal sets of VIs, including excess green (ExG), normalized green red difference index (NGRDI), soil adjusted vegetation index (SAVI), blue green ratio (B_G_ratio), red-edge triangular vegetation index (RTVI), and normalized difference red-edge (NDRE) were selected using the variance inflation factor (VIF) based feature selection approach. Six regression models including a multiple linear regression (MLR), elastic net (ENET), multivariate adaptive regression splines (MARS), support vector machine (SVM), random forest (RF), and extreme gradient boosting (XGB) were investigated for estimation of cereal rye biomass based on the VIs. For most of the models, the six selected VIs performed better than or similar to the full set of 13 VIs with R2 ranging from 0.24 to 0.59 and RMSE ranging from 83.13 to 91.89 g/m2 during 10-fold cross-validation. During independent accuracy assessment with the selected set of VIs, XGB exhibited the highest R2 (0.67) and lowest RMSE (83.13 g/m2) and MAE (48.13 g/m2) followed by RF and ENET. For all the models, the agreement between observed and predicted biomass was high for biomass less than or equal to 200 g/m2 but decreased for biomass greater than 200 g/m2. When field-collected structural features were integrated with the selected VIs, the models showed improved performance, with R2 and RMSE of the models reaching up to 0.82 and 61.67 g/m2 respectively. Among the six VIs, SAVI showed the strongest impact on the model prediction for the best-performing RF and XGB regression models. The findings of this study demonstrate the potential of precisely estimating and mapping cereal rye biomass based on UAS-captured multispectral images. Timely information on cover crop growth can facilitate numerous decision-making processes, including planning the planting operations, and management of nutrients, weeds, and soil moisture to improve agronomic and environmental outcomes.
{"title":"On-farm cereal rye biomass estimation using machine learning on images from an unmanned aerial system","authors":"Kushal KC, Matthew Romanko, Andrew Perrault, Sami Khanal","doi":"10.1007/s11119-024-10162-9","DOIUrl":"https://doi.org/10.1007/s11119-024-10162-9","url":null,"abstract":"<p>This study assesses the potential of using multispectral images collected by an unmanned aerial system (UAS) on machine learning (ML) frameworks to estimate cereal rye (<i>Secale cereal</i> L.) biomass. Multispectral images and ground-truth cereal rye biomass data were collected from 15 farmers’ fields up to three times between March and May in northwest Ohio. Images were processed to derive 13 vegetation indices (VIs). Out of 13 VIs, six optimal sets of VIs, including excess green (ExG), normalized green red difference index (NGRDI), soil adjusted vegetation index (SAVI), blue green ratio (B_G_ratio), red-edge triangular vegetation index (RTVI), and normalized difference red-edge (NDRE) were selected using the variance inflation factor (VIF) based feature selection approach. Six regression models including a multiple linear regression (MLR), elastic net (ENET), multivariate adaptive regression splines (MARS), support vector machine (SVM), random forest (RF), and extreme gradient boosting (XGB) were investigated for estimation of cereal rye biomass based on the VIs. For most of the models, the six selected VIs performed better than or similar to the full set of 13 VIs with R<sup>2</sup> ranging from 0.24 to 0.59 and RMSE ranging from 83.13 to 91.89 g/m<sup>2</sup> during 10-fold cross-validation. During independent accuracy assessment with the selected set of VIs, XGB exhibited the highest R<sup>2</sup> (0.67) and lowest RMSE (83.13 g/m<sup>2</sup>) and MAE (48.13 g/m<sup>2</sup>) followed by RF and ENET. For all the models, the agreement between observed and predicted biomass was high for biomass less than or equal to 200 g/m<sup>2</sup> but decreased for biomass greater than 200 g/m<sup>2</sup>. When field-collected structural features were integrated with the selected VIs, the models showed improved performance, with R<sup>2</sup> and RMSE of the models reaching up to 0.82 and 61.67 g/m<sup>2</sup> respectively. Among the six VIs, SAVI showed the strongest impact on the model prediction for the best-performing RF and XGB regression models. The findings of this study demonstrate the potential of precisely estimating and mapping cereal rye biomass based on UAS-captured multispectral images. Timely information on cover crop growth can facilitate numerous decision-making processes, including planning the planting operations, and management of nutrients, weeds, and soil moisture to improve agronomic and environmental outcomes.</p>","PeriodicalId":20423,"journal":{"name":"Precision Agriculture","volume":"28 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141553310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-06DOI: 10.1007/s11119-024-10161-w
M. J. Tilse, P. Filippi, B. Whelan, T. F. A. Bishop
Purpose
A generalised approach to downscale areal observations of crop production data is illustrated using cotton yield and fibre quality (length and micronaire) data which is measured as a module (areal/block) average.
Methods
Two features of the downscaling algorithm are; (i) to estimate spatial trends in yield and quality using regression with fine resolution predictors such as remote sensing imagery, and (ii) use area-to-point kriging (A2PK) to downscale either the observations in the absence of a useful spatial trend model or the residuals from the trend model (if useful) from areal averages.
Results
Correlations with remote sensing covariates were stronger for cotton fibre yield than for cotton fibre micronaire, and much stronger compared to those for cotton fibre length. Spatial trends in cotton fibre yield and micronaire could be estimated with good model quality using regression with remote sensing covariates with or without A2PK in almost all fields. Conversely, model quality was poorer for cotton fibre length and there was only a small difference in model performance between the null and trend models. When the downscaling approach was tested using fine-resolution yield observations, model performance was poorer at a fine-resolution compared to the module-resolution, which was to be expected.
Conclusion
This approach enables the creation of high-resolution raster maps of variables of interest with a much finer spatial resolution compared to the areal observations, and can be applied for any areal averaged crop production data in a range of broadacre and horticultural industries (e.g. sugarcane, apples, citrus). The finer spatial resolution may allow growers or agronomists to better understand the drivers of variability within fields, assess management implications, and create management plans at a higher resolution.
{"title":"Downscaling crop production data to fine scale estimates with geostatistics and remote sensing: a case study in mapping cotton fibre quality","authors":"M. J. Tilse, P. Filippi, B. Whelan, T. F. A. Bishop","doi":"10.1007/s11119-024-10161-w","DOIUrl":"https://doi.org/10.1007/s11119-024-10161-w","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Purpose</h3><p>A generalised approach to downscale areal observations of crop production data is illustrated using cotton yield and fibre quality (length and micronaire) data which is measured as a module (areal/block) average.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>Two features of the downscaling algorithm are; (i) to estimate spatial trends in yield and quality using regression with fine resolution predictors such as remote sensing imagery, and (ii) use area-to-point kriging (A2PK) to downscale either the observations in the absence of a useful spatial trend model or the residuals from the trend model (if useful) from areal averages.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>Correlations with remote sensing covariates were stronger for cotton fibre yield than for cotton fibre micronaire, and much stronger compared to those for cotton fibre length. Spatial trends in cotton fibre yield and micronaire could be estimated with good model quality using regression with remote sensing covariates with or without A2PK in almost all fields. Conversely, model quality was poorer for cotton fibre length and there was only a small difference in model performance between the null and trend models. When the downscaling approach was tested using fine-resolution yield observations, model performance was poorer at a fine-resolution compared to the module-resolution, which was to be expected.</p><h3 data-test=\"abstract-sub-heading\">Conclusion</h3><p>This approach enables the creation of high-resolution raster maps of variables of interest with a much finer spatial resolution compared to the areal observations, and can be applied for any areal averaged crop production data in a range of broadacre and horticultural industries (e.g. sugarcane, apples, citrus). The finer spatial resolution may allow growers or agronomists to better understand the drivers of variability within fields, assess management implications, and create management plans at a higher resolution.</p>","PeriodicalId":20423,"journal":{"name":"Precision Agriculture","volume":"25 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141553464","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-05DOI: 10.1007/s11119-024-10153-w
Marco Fiorentini, Calogero Schillaci, Michele Denora, Stefano Zenobi, Paola A. Deligios, Rodolfo Santilocchi, Michele Perniola, Luigi Ledda, Roberto Orsini
Purpose
This research aims to develop a meta-machine learning model to optimize soil and nitrogen management for durum wheat in Italy. It addresses the challenges of increased food production on limited land amidst rising input costs, geopolitical changes, and climate change. The goal is to aid decision-makers in achieving maximum crop yield and income margins through effective agronomic strategies.
Methods
The study developed a meta-machine learning model, integrating classification and regression models, and tested it at four sites in Marche and Basilicata, Italy, over several years. The model incorporated data from remote sensing, crop phenology, soil chemical properties, weather data, soil management, and nitrogen levels. A Random Forest model was used to classify crop phenology, while a Neural Network model predicted yield. Eleven nitrogen levels were compared across these sites.
Results
The Random Forest model achieved an accuracy of 0.98, kappa of 0.96, and recall of 0.98 for predicting crop phenology. The Neural Network model for yield prediction had an R squared of 0.90 and a Root Mean Square Error of 0.59 t ha-1. Key factors identified for model accuracy were temperature, precipitation, NDVI, and nitrogen input. Simulations of 30 soil management and fertilization combinations revealed that no-tillage management increased grain yield. The Marginal Fertilizer Yield Index determined optimal nitrogen application.
Conclusions
The meta-machine learning model accurately predicted durum wheat yield and identified effective agronomic strategies, demonstrating the potential for broader application in field conditions. The model offers a promising approach to sustainable agriculture and climate change mitigation by utilising publicly available spatial datasets.