Pub Date : 2024-12-13DOI: 10.1007/s11119-024-10197-y
Anna Petrovskaia, Mikhail Gasanov, Artyom Nikitin, Polina Tregubova, Ivan Oseledets
Soil sampling is crucial for capturing soil variability and obtaining comprehensive soil information for agricultural planning. This article evaluates the potential of MaxVol, an optimal design method for soil sampling based on selecting locations with significant dissimilarities. We compared MaxVol with conditional Latin hypercube sampling (cLHS), simple random sampling (SRS) and Kennard-Stone algorithm (KS) to evaluate their ability to capture soil data distribution. We modeled spatial distributions of soil properties using simple kriging (SK) and regression kriging (RK) interpolation techniques and assessed the interpolation quality using Root Mean Square Error. According to the results, MaxVol performs similarly or better than popular sampling designs in describing soil distributions, particularly with a smaller number of points. This is valuable for costly and time-consuming field surveys. Both MaxVol and Kennard-Stone are deterministic algorithms, unlike cLHS and random sampling, providing a reliable sampling scheme. Thus, the proposed MaxVol algorithm enables obtaining soil property distributions based on environmental features.
{"title":"Maximizing dataset variability in agricultural surveys with spatial sampling based on MaxVol matrix approximation","authors":"Anna Petrovskaia, Mikhail Gasanov, Artyom Nikitin, Polina Tregubova, Ivan Oseledets","doi":"10.1007/s11119-024-10197-y","DOIUrl":"https://doi.org/10.1007/s11119-024-10197-y","url":null,"abstract":"<p>Soil sampling is crucial for capturing soil variability and obtaining comprehensive soil information for agricultural planning. This article evaluates the potential of MaxVol, an optimal design method for soil sampling based on selecting locations with significant dissimilarities. We compared MaxVol with conditional Latin hypercube sampling (cLHS), simple random sampling (SRS) and Kennard-Stone algorithm (KS) to evaluate their ability to capture soil data distribution. We modeled spatial distributions of soil properties using simple kriging (SK) and regression kriging (RK) interpolation techniques and assessed the interpolation quality using Root Mean Square Error. According to the results, MaxVol performs similarly or better than popular sampling designs in describing soil distributions, particularly with a smaller number of points. This is valuable for costly and time-consuming field surveys. Both MaxVol and Kennard-Stone are deterministic algorithms, unlike cLHS and random sampling, providing a reliable sampling scheme. Thus, the proposed MaxVol algorithm enables obtaining soil property distributions based on environmental features.</p>","PeriodicalId":20423,"journal":{"name":"Precision Agriculture","volume":"12 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142816458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-07DOI: 10.1007/s11119-024-10212-2
Patrick Filippi, Si Yang Han, Thomas F.A. Bishop
<p>There has been a recent surge in the number of studies that aim to model crop yield using data-driven approaches. This has largely come about due to the increasing amounts of remote sensing (e.g. satellite imagery) and precision agriculture data available (e.g. high-resolution crop yield monitor data), as well as the abundance of machine learning modelling approaches. However, there are several common issues in published studies in the field of precision agriculture (PA) that must be addressed. This includes the terminology used in relation to crop yield modelling, predicting, forecasting, and interpolating, as well as the way that models are calibrated and validated. As a typical example, many studies will take a crop yield map or several plots within a field from a single season, build a model with satellite or Unmanned Aerial Vehicle (UAV) imagery, validate using data-splitting or some kind of cross-validation (e.g. k-fold), and say that it is a ‘prediction’ or ‘forecast’ of crop yield. However, this poses a problem as the approach is not testing the forecasting ability of the model, as it is built on the same season that it is then validating with, thus giving a substantial overestimation of the value for decision-making, such as an application of fertiliser in-season. This is an all-too-common flaw in the logic construct of many published studies. Moving forward, it is essential that clear definitions and guidelines for data-driven yield modelling and validation are outlined so that there is a greater connection between the goal of the study, and the actual study outputs/outcomes. To demonstrate this, the current study uses a case study dataset from a collection of large neighbouring farms in New South Wales, Australia. The dataset includes 160 yield maps of winter wheat (<i>Triticum aestivum</i>) covering 26,400 hectares over a 10-year period (2014–2023). Machine learning crop yield models are built at 30 m spatial resolution with a suite of predictor data layers that relate to crop yield. This includes datasets that represent soil variation, terrain, weather, and satellite imagery of the crop. Predictions are made at both the within-field (30 m), and field resolution. Crop yield predictions are useful for an array of applications, so four different experiments were set up to reflect different scenarios. This included Experiment 1: forecasting yield mid-season (e.g. for mid-season fertilisation), Experiment 2: forecasting yield late-season (e.g. for late-season logistics/forward selling), Experiment 3: predicting yield in a previous season for a field with no yield data in a season, and Experiment 4: predicting yield in a previous season for a field with some yield data (e.g. two combine harvesters, but only one was fitted with a yield monitor). This study showcases how different model calibration and validation approaches clearly impact prediction quality, and therefore how they should be interpreted in data-driven crop yield modelling
{"title":"On crop yield modelling, predicting, and forecasting and addressing the common issues in published studies","authors":"Patrick Filippi, Si Yang Han, Thomas F.A. Bishop","doi":"10.1007/s11119-024-10212-2","DOIUrl":"https://doi.org/10.1007/s11119-024-10212-2","url":null,"abstract":"<p>There has been a recent surge in the number of studies that aim to model crop yield using data-driven approaches. This has largely come about due to the increasing amounts of remote sensing (e.g. satellite imagery) and precision agriculture data available (e.g. high-resolution crop yield monitor data), as well as the abundance of machine learning modelling approaches. However, there are several common issues in published studies in the field of precision agriculture (PA) that must be addressed. This includes the terminology used in relation to crop yield modelling, predicting, forecasting, and interpolating, as well as the way that models are calibrated and validated. As a typical example, many studies will take a crop yield map or several plots within a field from a single season, build a model with satellite or Unmanned Aerial Vehicle (UAV) imagery, validate using data-splitting or some kind of cross-validation (e.g. k-fold), and say that it is a ‘prediction’ or ‘forecast’ of crop yield. However, this poses a problem as the approach is not testing the forecasting ability of the model, as it is built on the same season that it is then validating with, thus giving a substantial overestimation of the value for decision-making, such as an application of fertiliser in-season. This is an all-too-common flaw in the logic construct of many published studies. Moving forward, it is essential that clear definitions and guidelines for data-driven yield modelling and validation are outlined so that there is a greater connection between the goal of the study, and the actual study outputs/outcomes. To demonstrate this, the current study uses a case study dataset from a collection of large neighbouring farms in New South Wales, Australia. The dataset includes 160 yield maps of winter wheat (<i>Triticum aestivum</i>) covering 26,400 hectares over a 10-year period (2014–2023). Machine learning crop yield models are built at 30 m spatial resolution with a suite of predictor data layers that relate to crop yield. This includes datasets that represent soil variation, terrain, weather, and satellite imagery of the crop. Predictions are made at both the within-field (30 m), and field resolution. Crop yield predictions are useful for an array of applications, so four different experiments were set up to reflect different scenarios. This included Experiment 1: forecasting yield mid-season (e.g. for mid-season fertilisation), Experiment 2: forecasting yield late-season (e.g. for late-season logistics/forward selling), Experiment 3: predicting yield in a previous season for a field with no yield data in a season, and Experiment 4: predicting yield in a previous season for a field with some yield data (e.g. two combine harvesters, but only one was fitted with a yield monitor). This study showcases how different model calibration and validation approaches clearly impact prediction quality, and therefore how they should be interpreted in data-driven crop yield modelling ","PeriodicalId":20423,"journal":{"name":"Precision Agriculture","volume":"8 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142788509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-04DOI: 10.1007/s11119-024-10204-2
Zeeshan Haydar, Travis J. Esau, Aitazaz A. Farooque, Farhat Abbas, Andrew Fraser
Efficient mechanical harvesting of wild blueberries across uneven topographies calls for precise header height adjustments to optimize fruit picking. Conventionally, an operator requires manual adjustment of the harvester header to accommodate the spatial variations in plant height, fruit zone, and field terrain. This can result in inadequate header positioning, which leads to berry losses and increased operator stress. This study aimed to investigate the integration of machine learning techniques with real-time geo-location data to develop an innovative system to automate harvesting operations. A supervised machine learning Random Forest (RF) model was trained based on pre-defined header setting data and integrated with the harvester’s controller to predict and position the header height using real-time geo-location data from the Starfire (SF) 6000 Global Positioning System (GPS) receiver. During harvesting, the system’s performance was evaluated at tractor ground speeds (0.31, 0.45, and 0.58 ms−1) and segment lengths (5, 10, and 15 m). Results indicated that segment size minimally affected the system’s ability to adjust header height. However, at the lowest segment length, 5 m, the coefficient of determination was 97.24, 98.12, and 82.71% for the 0.31, 0.45, and 0.58 ms−1, respectively. This study provided convincing results for automating the harvester header based on pre-defined settings, marking a significant step toward complete automation of the wild blueberry harvester. Automation of wild blueberry harvesting can help to increase picking efficiency and enhance profit margins for growers to justify the ever-increasing cost of production.
{"title":"Integration of machine learning models with real-time global positioning data to automate the wild blueberry harvester","authors":"Zeeshan Haydar, Travis J. Esau, Aitazaz A. Farooque, Farhat Abbas, Andrew Fraser","doi":"10.1007/s11119-024-10204-2","DOIUrl":"https://doi.org/10.1007/s11119-024-10204-2","url":null,"abstract":"<p>Efficient mechanical harvesting of wild blueberries across uneven topographies calls for precise header height adjustments to optimize fruit picking. Conventionally, an operator requires manual adjustment of the harvester header to accommodate the spatial variations in plant height, fruit zone, and field terrain. This can result in inadequate header positioning, which leads to berry losses and increased operator stress. This study aimed to investigate the integration of machine learning techniques with real-time geo-location data to develop an innovative system to automate harvesting operations. A supervised machine learning Random Forest (RF) model was trained based on pre-defined header setting data and integrated with the harvester’s controller to predict and position the header height using real-time geo-location data from the Starfire (SF) 6000 Global Positioning System (GPS) receiver. During harvesting, the system’s performance was evaluated at tractor ground speeds (0.31, 0.45, and 0.58 ms<sup>−1</sup>) and segment lengths (5, 10, and 15 m). Results indicated that segment size minimally affected the system’s ability to adjust header height. However, at the lowest segment length, 5 m, the coefficient of determination was 97.24, 98.12, and 82.71% for the 0.31, 0.45, and 0.58 ms<sup>−1</sup>, respectively. This study provided convincing results for automating the harvester header based on pre-defined settings, marking a significant step toward complete automation of the wild blueberry harvester. Automation of wild blueberry harvesting can help to increase picking efficiency and enhance profit margins for growers to justify the ever-increasing cost of production.</p>","PeriodicalId":20423,"journal":{"name":"Precision Agriculture","volume":"12 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142763339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-02DOI: 10.1007/s11119-024-10200-6
Bertin Takoutsing, Gerard B. M. Heuvelink, Ermias Aynekulu, Keith D. Shepherd
Crop models can improve our understanding of crop responses to environmental conditions and farming practices. However, uncertainties in model inputs can notably impact the quality of the outputs. This study aimed at quantifying the uncertainty in soil information and analyse how it propagates through the Quantitative Evaluation of Fertility of Tropical Soils model to affect yield and fertilizer recommendation rates using Monte Carlo simulation. Additional objectives were to analyse the uncertainty contributions of the individual soil inputs to model output uncertainty and discuss strategies to communicate uncertainty to end-users. The results showed that the impact of soil input uncertainty on model output uncertainty was significant and varied spatially. Comparison of the results of a deterministic model run with the mean of the Monte Carlo simulation runs showed systematic differences in yield predictions, with Monte Carlo simulations on average predicting a yield that was 0.62 tonnes ha−1 lower than the deterministic run. Similar systematic differences were observed for fertilizer recommendations, with Monte Carlo simulations recommending up to 59, 42, and 20 kg ha−1 lower nitrogen (N), phosphorous (P), and potassium (K) fertilizer applications, respectively. Stochastic sensitivity analysis showed that pH was the main source of uncertainty for K fertilizer (81.6%) and that soil organic carbon contributed most to the uncertainty of N fertilizer application (97%). Uncertainty in P fertilizer application mostly came from uncertainty in extractable phosphorus (55%) and exchangeable potassium (20%). A threshold probability map designed using statistical predictions served as a visual aid that could enable farmers to swiftly make informed decisions about fertilizer application locations. The study highlights the importance of refining the accuracy of soil maps as well as incorporating uncertainty in input data, which improves QUEFTS model predictions and offers valuable insights into the relationship between soil information accuracy and reliable crop modeling for sustainable agricultural decisions.
作物模型可以提高我们对作物对环境条件和耕作方式的反应的理解。然而,模型输入中的不确定性会显著影响输出的质量。本研究旨在量化土壤信息中的不确定性,并利用蒙特卡洛模拟分析其如何通过热带土壤肥力定量评估模型传播,从而影响产量和肥料推荐率。其他目标是分析单个土壤输入对模型输出不确定性的不确定性贡献,并讨论将不确定性传达给最终用户的策略。结果表明:土壤输入不确定性对模型输出不确定性的影响显著,且存在空间差异。将确定性模型运行的结果与蒙特卡罗模拟运行的平均值进行比较,显示出产量预测的系统性差异,蒙特卡罗模拟平均预测的产量比确定性运行低0.62吨ha - 1。在肥料建议方面也观察到类似的系统差异,蒙特卡罗模拟建议分别减少氮肥(N)、磷(P)和钾(K)施用59、42和20 kg ha - 1。随机敏感性分析表明,pH是钾肥不确定性的主要来源(81.6%),土壤有机碳对氮肥不确定性的贡献最大(97%)。磷肥施用的不确定性主要来自可提取磷(55%)和交换性钾(20%)的不确定性。使用统计预测设计的阈值概率图作为视觉辅助工具,可以使农民迅速做出有关施肥地点的明智决定。该研究强调了提高土壤图准确性以及将不确定性纳入输入数据的重要性,这可以提高QUEFTS模型的预测,并为土壤信息准确性和可靠的作物建模之间的关系提供有价值的见解,以促进可持续农业决策。
{"title":"Modelling and mapping maize yields and making fertilizer recommendations with uncertain soil information","authors":"Bertin Takoutsing, Gerard B. M. Heuvelink, Ermias Aynekulu, Keith D. Shepherd","doi":"10.1007/s11119-024-10200-6","DOIUrl":"https://doi.org/10.1007/s11119-024-10200-6","url":null,"abstract":"<p>Crop models can improve our understanding of crop responses to environmental conditions and farming practices. However, uncertainties in model inputs can notably impact the quality of the outputs. This study aimed at quantifying the uncertainty in soil information and analyse how it propagates through the Quantitative Evaluation of Fertility of Tropical Soils model to affect yield and fertilizer recommendation rates using Monte Carlo simulation. Additional objectives were to analyse the uncertainty contributions of the individual soil inputs to model output uncertainty and discuss strategies to communicate uncertainty to end-users. The results showed that the impact of soil input uncertainty on model output uncertainty was significant and varied spatially. Comparison of the results of a deterministic model run with the mean of the Monte Carlo simulation runs showed systematic differences in yield predictions, with Monte Carlo simulations on average predicting a yield that was 0.62 tonnes ha<sup>−1</sup> lower than the deterministic run. Similar systematic differences were observed for fertilizer recommendations, with Monte Carlo simulations recommending up to 59, 42, and 20 kg ha<sup>−1</sup> lower nitrogen (N), phosphorous (P), and potassium (K) fertilizer applications, respectively. Stochastic sensitivity analysis showed that pH was the main source of uncertainty for K fertilizer (81.6%) and that soil organic carbon contributed most to the uncertainty of N fertilizer application (97%). Uncertainty in P fertilizer application mostly came from uncertainty in extractable phosphorus (55%) and exchangeable potassium (20%). A threshold probability map designed using statistical predictions served as a visual aid that could enable farmers to swiftly make informed decisions about fertilizer application locations. The study highlights the importance of refining the accuracy of soil maps as well as incorporating uncertainty in input data, which improves QUEFTS model predictions and offers valuable insights into the relationship between soil information accuracy and reliable crop modeling for sustainable agricultural decisions.</p>","PeriodicalId":20423,"journal":{"name":"Precision Agriculture","volume":"8 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142758160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-02DOI: 10.1007/s11119-024-10203-3
Harsha Chandra, Rama Rao Nidamanuri
<p>Crop mapping or crop recognition specifies the types of agricultural crops that grow in a selected region. Hyperspectral imaging (HSI) acquires spectral reflectance profiles of materials in hundreds of narrow and continuous spectral bands in the optical electromagnetic spectrum. The emerging compact HSI sensors mountable on ground-based platforms and drones are promising data sources for crop classification at sub-field level. Forming part of the knowledge engineering domain in developing spectral imaging-based systems for autonomous mapping of crops, Spectral Knowledge Transfer (SKT) is a data-driven image classification paradigm for precision crop mapping. Reflectance spectral libraries provide valuable reference reflectance databases. However, spectral diversity and heterogeneity in natural farms limit the relevance and accuracy of spectra-alone based spectral libraries for crop mapping. In addition, many crops are differentiated by a combination of geometrical and spectral features. Acquiring high-resolution HSI datasets using a VNIR hyperspectral imaging system mounted on ground and drone-based platforms, this research has explored the development and demonstration of an object-based spectral library for semi-autonomous classification of drone-based hyperspectral imagery for crop mapping at plant-level. Laying a factorial designed experimental setup on the research farms of the University of Agricultural Sciences, Bengaluru, India, three vegetable crops: tomato (<i>Solanumlycopersicum L.</i>), eggplant (<i>Solanummelongena L.</i>) and cabbage (<i>Brassica oleracea L.</i>), each treated with different nitrogen levels were grown. Altering the view angle and flying altitudes, ground and drone-based HSI datasets were acquired at different growth stages. Adapting to the shape of the crop, thousands of crop patches were extracted from the HSI datasets, considering nitrogen levels, illumination, and altitude regions. Structured in a RDBMS-compatible database architecture, a spectral library, named as Object-Based Spectral Library (OBSL), incorporating spatial, and spectral characteristics of plants at different altitudes is developed. Further, the OBSL has been experimentally implemented for the knowledge-transfer based classification of drone-based HSI for the plant-level mapping of cabbage and eggplant. Computing accuracy metrics such as overall accuracy (OA), F1-score, and defining a new metric, Inverse Turndown Ratio (<i>ϕ</i>), for an objective comparison of the accuracy estimates across flying heights, the classification performance was analyzed for changes across the flying heights and crop-composition of the imagery. The best estimates of accuracy are about 69% and 86% respectively for the pixel-based and object-based crop classification. Quantified by the Inverse Turndown Ratio, the knowledge-transfer effected through the OBSL is good and consistent across the flying heights with 86% and 90% reproducibility for the pixel-based and objec
{"title":"Object-based spectral library for knowledge-transfer-based crop detection in drone-based hyperspectral imagery","authors":"Harsha Chandra, Rama Rao Nidamanuri","doi":"10.1007/s11119-024-10203-3","DOIUrl":"https://doi.org/10.1007/s11119-024-10203-3","url":null,"abstract":"<p>Crop mapping or crop recognition specifies the types of agricultural crops that grow in a selected region. Hyperspectral imaging (HSI) acquires spectral reflectance profiles of materials in hundreds of narrow and continuous spectral bands in the optical electromagnetic spectrum. The emerging compact HSI sensors mountable on ground-based platforms and drones are promising data sources for crop classification at sub-field level. Forming part of the knowledge engineering domain in developing spectral imaging-based systems for autonomous mapping of crops, Spectral Knowledge Transfer (SKT) is a data-driven image classification paradigm for precision crop mapping. Reflectance spectral libraries provide valuable reference reflectance databases. However, spectral diversity and heterogeneity in natural farms limit the relevance and accuracy of spectra-alone based spectral libraries for crop mapping. In addition, many crops are differentiated by a combination of geometrical and spectral features. Acquiring high-resolution HSI datasets using a VNIR hyperspectral imaging system mounted on ground and drone-based platforms, this research has explored the development and demonstration of an object-based spectral library for semi-autonomous classification of drone-based hyperspectral imagery for crop mapping at plant-level. Laying a factorial designed experimental setup on the research farms of the University of Agricultural Sciences, Bengaluru, India, three vegetable crops: tomato (<i>Solanumlycopersicum L.</i>), eggplant (<i>Solanummelongena L.</i>) and cabbage (<i>Brassica oleracea L.</i>), each treated with different nitrogen levels were grown. Altering the view angle and flying altitudes, ground and drone-based HSI datasets were acquired at different growth stages. Adapting to the shape of the crop, thousands of crop patches were extracted from the HSI datasets, considering nitrogen levels, illumination, and altitude regions. Structured in a RDBMS-compatible database architecture, a spectral library, named as Object-Based Spectral Library (OBSL), incorporating spatial, and spectral characteristics of plants at different altitudes is developed. Further, the OBSL has been experimentally implemented for the knowledge-transfer based classification of drone-based HSI for the plant-level mapping of cabbage and eggplant. Computing accuracy metrics such as overall accuracy (OA), F1-score, and defining a new metric, Inverse Turndown Ratio (<i>ϕ</i>), for an objective comparison of the accuracy estimates across flying heights, the classification performance was analyzed for changes across the flying heights and crop-composition of the imagery. The best estimates of accuracy are about 69% and 86% respectively for the pixel-based and object-based crop classification. Quantified by the Inverse Turndown Ratio, the knowledge-transfer effected through the OBSL is good and consistent across the flying heights with 86% and 90% reproducibility for the pixel-based and objec","PeriodicalId":20423,"journal":{"name":"Precision Agriculture","volume":"204 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142760613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-02DOI: 10.1007/s11119-024-10206-0
M. Córdoba, P. Paccioretti, M. Balzarini
The design and analysis of on-farm experimentation (OFE) have received growing attention because of the availability of precision machinery that promotes data collection. Even though replicated trials are the most recommended designs, on-farm trials with no replication are used in scenarios where variable rate technology is not available. Despite the abundance of georeferenced data within each plot harvested with yield monitor, treatments are not replicated. This paper presents an approach to statistically analyze unreplicated OFE promoting field-specific inference of treatment effects. Statistical tools for spatial data are coupled with permutation tests to determine the statistical significance between treatment means. The new methodology (OFE-mean test) involves: (1) calculation of effective sample size (ESS) given the underlying spatial structure, (2) ANOVA permutation test on a random sample of ESS, and (3) generation of the empirical distribution of p-values from repetition of step two. The median of this empirical distribution is regarded as the p-value associated with the no treatment effect hypothesis. The OFE-mean test is illustrated using several OFE trials comparing two treatments under different scenarios: with and without treatment differences. Additional assessment is carried out under simulated scenarios with different levels of spatial correlation, variability, and mean differences between treatments. The OFE-mean test had high power to detect mean differences higher than 15% for all spatial structures when total variability was lower than 30%. After treatment effects were removed, no type I error occurred in real data. The test can be easily extended to cover scenarios with more than two treatments. R scripts and sample files to run the OFE-mean test are provided.
{"title":"A new method to compare treatments in unreplicated on-farm experimentation","authors":"M. Córdoba, P. Paccioretti, M. Balzarini","doi":"10.1007/s11119-024-10206-0","DOIUrl":"https://doi.org/10.1007/s11119-024-10206-0","url":null,"abstract":"<p>The design and analysis of on-farm experimentation (OFE) have received growing attention because of the availability of precision machinery that promotes data collection. Even though replicated trials are the most recommended designs, on-farm trials with no replication are used in scenarios where variable rate technology is not available. Despite the abundance of georeferenced data within each plot harvested with yield monitor, treatments are not replicated. This paper presents an approach to statistically analyze unreplicated OFE promoting field-specific inference of treatment effects. Statistical tools for spatial data are coupled with permutation tests to determine the statistical significance between treatment means. The new methodology (OFE-mean test) involves: (1) calculation of effective sample size (ESS) given the underlying spatial structure, (2) ANOVA permutation test on a random sample of ESS, and (3) generation of the empirical distribution of p-values from repetition of step two. The median of this empirical distribution is regarded as the p-value associated with the no treatment effect hypothesis. The OFE-mean test is illustrated using several OFE trials comparing two treatments under different scenarios: with and without treatment differences. Additional assessment is carried out under simulated scenarios with different levels of spatial correlation, variability, and mean differences between treatments. The OFE-mean test had high power to detect mean differences higher than 15% for all spatial structures when total variability was lower than 30%. After treatment effects were removed, no type I error occurred in real data. The test can be easily extended to cover scenarios with more than two treatments. R scripts and sample files to run the OFE-mean test are provided.</p>","PeriodicalId":20423,"journal":{"name":"Precision Agriculture","volume":"13 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142758232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Investigating soil properties and yield variability in farming systems is crucial for delineating Management Zones (MZs). The objectives of study were to investigate the spatiotemporal variability of soil properties, identify spatial and temporal yield-limiting factors of soil and delineate MZs based on these factors. This study was conducted at the Xinghua Rice Smart Farm (33.08°E, 119.98°N) in Jiangsu Province, China, and the experiment covered five consecutive years of soil and rice yield testing from 2017 to 2021, with 933 geo-referenced soil samples and 140 rice yield samples collected annually. Soil samples were analyzed for pH, soil organic matter (SOM), total nitrogen (TN), available phosphorus (AP), available potassium (AK), and apparent soil conductivity (ECa). Spatial and temporal variability of soil properties and RY were analyzed using statistical and geostatistical methods. Ordinary Kriging (OK) interpolation characterized these distributions, and the random forest (RF) algorithm identified key yield-limiting factors. Subsequently, the effectiveness of using all variables to delineate the MZ was compared against the approach of defining MZs based solely on the identified yield-limiting factors. The study also compared Fuzzy C Means (FCM) and Spatial Fuzzy C-Means (sFCM) clustering to evaluate MZs and their temporal stability. Results showed that the coefficients of variation for soil properties ranged from low to medium (7.7-77.4%), with semi-variational function analyses showing moderate to high spatial dependence for most properties. Temporally, soil nutrients and ECa exhibited a slow increase, whereas pH decreased, showing the highest temporal stability for pH and the lowest for AP. RF analysis identified SOM, TN, and ECa as primary influencers of spatial variability of RY, and SOM, pH, and TN as main contributors to its temporal variability. The integration of yield-limiting factors with the sFCM method improves performance of MZ delineation, maintaining stability over the five-year period.
{"title":"Spatial and temporal correlation between soil and rice relative yield in small-scale paddy fields and management zones","authors":"Zhihao Zhang, Jiaoyang He, Yanxi Zhao, Zhaopeng Fu, Weikang Wang, Jiayi Zhang, Xiaojun Liu, Qiang Cao, Yan Zhu, Weixing Cao, Yongchao Tian","doi":"10.1007/s11119-024-10199-w","DOIUrl":"https://doi.org/10.1007/s11119-024-10199-w","url":null,"abstract":"<p>Investigating soil properties and yield variability in farming systems is crucial for delineating Management Zones (MZs). The objectives of study were to investigate the spatiotemporal variability of soil properties, identify spatial and temporal yield-limiting factors of soil and delineate MZs based on these factors. This study was conducted at the Xinghua Rice Smart Farm (33.08°E, 119.98°N) in Jiangsu Province, China, and the experiment covered five consecutive years of soil and rice yield testing from 2017 to 2021, with 933 geo-referenced soil samples and 140 rice yield samples collected annually. Soil samples were analyzed for pH, soil organic matter (SOM), total nitrogen (TN), available phosphorus (AP), available potassium (AK), and apparent soil conductivity (ECa). Spatial and temporal variability of soil properties and RY were analyzed using statistical and geostatistical methods. Ordinary Kriging (OK) interpolation characterized these distributions, and the random forest (RF) algorithm identified key yield-limiting factors. Subsequently, the effectiveness of using all variables to delineate the MZ was compared against the approach of defining MZs based solely on the identified yield-limiting factors. The study also compared Fuzzy C Means (FCM) and Spatial Fuzzy C-Means (sFCM) clustering to evaluate MZs and their temporal stability. Results showed that the coefficients of variation for soil properties ranged from low to medium (7.7-77.4%), with semi-variational function analyses showing moderate to high spatial dependence for most properties. Temporally, soil nutrients and ECa exhibited a slow increase, whereas pH decreased, showing the highest temporal stability for pH and the lowest for AP. RF analysis identified SOM, TN, and ECa as primary influencers of spatial variability of RY, and SOM, pH, and TN as main contributors to its temporal variability. The integration of yield-limiting factors with the sFCM method improves performance of MZ delineation, maintaining stability over the five-year period.</p>","PeriodicalId":20423,"journal":{"name":"Precision Agriculture","volume":"1 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142718564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-27DOI: 10.1007/s11119-024-10195-0
Onur İeri
Rapid rangeland monitoring is critical for implementing management actions effectively and therefore, various remote sensing methods are used for rangeland monitoring. Prices of high-resolution imagery and cloud problems could avoid practicing satellite based-methods. UAV- or ground-based high resolution RGB imagery suggested as an alternative to monitor rangelands. In this study, the performance of smartphone RGB imagery was evaluated over prediction of biomass yield and forage quality of steppe rangelands. Besides, the performance of a mobile application (Canopeo) over rangeland cover was evaluated. RGB band reflection values of smartphone images were determined using a simple open-source software, ImageJ. A total of thirteen different vegetation indices (eleven commonly used and two newly introduced) were estimated and their relations with ground data were evaluated over simple linear and quadratic regression models. AGB and DMY were predicted with moderate accuracy via the newly introduced modified blue-red-green index (MBRGI) (R2 = 0.5 for AGB) and recently used normalized difference blue-red index (NDBRI) (R2 = 0.46 for DMY) through quadratic regression models. Green leaf index (Gli), visible atmospheric resistant index (Vari), and red green blue vegetation index (RGBVI) gave better results for forage quality predictions among the other VI’s. Gli was an accurate predictor (R2 = 0.78) of forage dry matter content. However, prediction performances of VI’s were low for CP (Vari, R2 = 0.26), NDF, and ADF contents (RGBVI, R2 = 0.31 and 0.37 respectively). Cover data of Canopeo highly correlated both with transect (R2 = 0.99) and modified wheel loop (R2 = 0.73) data. These results showed that Canopeo might be a useful tool for cover predictions and smartphone-based RGB imagery has good potential for managing rangeland in terms of yield and dry matter content but the accuracy of both yield and forage quality predictions still needs to be improved.
{"title":"Usability of smartphone-based RGB vegetation indices for steppe rangeland inventory and monitoring","authors":"Onur İeri","doi":"10.1007/s11119-024-10195-0","DOIUrl":"https://doi.org/10.1007/s11119-024-10195-0","url":null,"abstract":"<p>Rapid rangeland monitoring is critical for implementing management actions effectively and therefore, various remote sensing methods are used for rangeland monitoring. Prices of high-resolution imagery and cloud problems could avoid practicing satellite based-methods. UAV- or ground-based high resolution RGB imagery suggested as an alternative to monitor rangelands. In this study, the performance of smartphone RGB imagery was evaluated over prediction of biomass yield and forage quality of steppe rangelands. Besides, the performance of a mobile application (Canopeo) over rangeland cover was evaluated. RGB band reflection values of smartphone images were determined using a simple open-source software, ImageJ. A total of thirteen different vegetation indices (eleven commonly used and two newly introduced) were estimated and their relations with ground data were evaluated over simple linear and quadratic regression models. AGB and DMY were predicted with moderate accuracy via the newly introduced modified blue-red-green index (MBRGI) (R<sup>2</sup> = 0.5 for AGB) and recently used normalized difference blue-red index (NDBRI) (R<sup>2</sup> = 0.46 for DMY) through quadratic regression models. Green leaf index (Gli), visible atmospheric resistant index (Vari), and red green blue vegetation index (RGBVI) gave better results for forage quality predictions among the other VI’s. Gli was an accurate predictor (R<sup>2</sup> = 0.78) of forage dry matter content. However, prediction performances of VI’s were low for CP (Vari, R<sup>2</sup> = 0.26), NDF, and ADF contents (RGBVI, R<sup>2</sup> = 0.31 and 0.37 respectively). Cover data of Canopeo highly correlated both with transect (R<sup>2</sup> = 0.99) and modified wheel loop (R<sup>2</sup> = 0.73) data. These results showed that Canopeo might be a useful tool for cover predictions and smartphone-based RGB imagery has good potential for managing rangeland in terms of yield and dry matter content but the accuracy of both yield and forage quality predictions still needs to be improved.</p>","PeriodicalId":20423,"journal":{"name":"Precision Agriculture","volume":"63 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142718507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-27DOI: 10.1007/s11119-024-10205-1
Jiating Li, Yufeng Ge, Laila A. Puntel, Derek M. Heeren, Geng Bai, Guillermo R. Balboa, John A. Gamon, Timothy J. Arkebauer, Yeyin Shi
Nitrogen Sufficiency Index (NSI) is an important nitrogen (N) stress indicator for precision N management. It is usually calculated using variables such as leaf chlorophyll meter readings (SPAD) and vegetation indices (VIs). However, no consensus has been reached on the most preferred variable. Additionally, conventional NSI (NSIuni) calculation assumes N being the sole yield-limiting factor, neglecting other factors such as soil water variability. To tackle these issues, this study compared various variables for NSI calculation and evaluated two new N stress indicators in minimizing the impact of confounding water treatment. The following ground- and aerial-derived variables were compared for NSIuni calculation: SPAD, sampled leaf and canopy N content (LNC, CNC), LNC and CNC estimated using hyperspectral images acquired by an Unmanned Aerial Vehicle, and three VIs (Normalized Difference Vegetation Index (NDVI), Normalized Red Edge Index (NDRE), and Chlorophyll Index) from the hyperspectral images. Results demonstrated that ground-measured variables outperformed aerial-based variables in deriving N-responsive NSI. Especially, LNC derived NSIuni responded to N treatment significantly in ten out of thirteen site-date datasets. For the second objective, a modified NSI (NSIw) and the NDRE/NDVI ratio were compared to NSIuni. NSIw reduced water treatment effects in over 80% of the datasets where NSIuni showed evident impacts. NDRE/NDVI performed similarly to NSIw, with the notable advantage of not requiring prior knowledge of soil water spatial distribution. This research pioneers the optimization of N stress indicators by identifying the best variables for NSI and mitigating the effects of soil water variability. These advancements significantly contribute to precision N management in complex field conditions.
{"title":"Devising optimized maize nitrogen stress indices in complex field conditions from UAV hyperspectral imagery","authors":"Jiating Li, Yufeng Ge, Laila A. Puntel, Derek M. Heeren, Geng Bai, Guillermo R. Balboa, John A. Gamon, Timothy J. Arkebauer, Yeyin Shi","doi":"10.1007/s11119-024-10205-1","DOIUrl":"https://doi.org/10.1007/s11119-024-10205-1","url":null,"abstract":"<p>Nitrogen Sufficiency Index (NSI) is an important nitrogen (N) stress indicator for precision N management. It is usually calculated using variables such as leaf chlorophyll meter readings (SPAD) and vegetation indices (VIs). However, no consensus has been reached on the most preferred variable. Additionally, conventional NSI (NSI<sub>uni</sub>) calculation assumes N being the sole yield-limiting factor, neglecting other factors such as soil water variability. To tackle these issues, this study compared various variables for NSI calculation and evaluated two new N stress indicators in minimizing the impact of confounding water treatment. The following ground- and aerial-derived variables were compared for NSI<sub>uni</sub> calculation: SPAD, sampled leaf and canopy N content (LNC, CNC), LNC and CNC estimated using hyperspectral images acquired by an Unmanned Aerial Vehicle, and three VIs (Normalized Difference Vegetation Index (NDVI), Normalized Red Edge Index (NDRE), and Chlorophyll Index) from the hyperspectral images. Results demonstrated that ground-measured variables outperformed aerial-based variables in deriving N-responsive NSI. Especially, LNC derived NSI<sub>uni</sub> responded to N treatment significantly in ten out of thirteen site-date datasets. For the second objective, a modified NSI (NSI<sub>w</sub>) and the NDRE/NDVI ratio were compared to NSI<sub>uni</sub>. NSI<sub>w</sub> reduced water treatment effects in over 80% of the datasets where NSI<sub>uni</sub> showed evident impacts. NDRE/NDVI performed similarly to NSI<sub>w</sub>, with the notable advantage of not requiring prior knowledge of soil water spatial distribution. This research pioneers the optimization of N stress indicators by identifying the best variables for NSI and mitigating the effects of soil water variability. These advancements significantly contribute to precision N management in complex field conditions.</p>","PeriodicalId":20423,"journal":{"name":"Precision Agriculture","volume":"53 5 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142718508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-04DOI: 10.1007/s11119-024-10192-3
Yui Yokoyama, Allard de Wit, Tsutomu Matsui, Takashi S. T. Tanaka
In-season crop growth and yield prediction at high spatial resolution are essential for informing decision-making for precise crop management, logistics and market planning in horticultural crop production. This research aimed to establish a plant-level cabbage yield prediction system by assimilating the leaf area index (LAI) estimated from UAV imagery and a segmentation model into a crop simulation model, the WOrld FOod STudies (WOFOST). The data assimilation approach was applied for one cultivar in five fields and for another cultivar in three fields to assess the yield prediction accuracy and robustness. The results showed that the root mean square error (RMSE) in the prediction of cabbage yield ranged from 1,314 to 2,532 kg ha–1 (15.8–30.9% of the relative RMSE). Parameter optimisation via data assimilation revealed that the reduction factor in the gross assimilation rate was consistently attributed to a primary yield-limiting factor. This research further explored the effect of reducing the number of LAI observations on the data assimilation performance. The RMSE of yield was only 107 kg ha–1 higher in the four LAI observations obtained from the early to mid-growing season than for the nine LAI observations over the entire growing season for cultivar ‘TCA 422’. These results highlighted the great possibility of assimilating UAV-derived LAI data into crop simulation models for plant-level cabbage yield prediction even with LAI observations only in the early and mid-growing seasons.
高空间分辨率的当季作物生长和产量预测对于园艺作物生产中的精确作物管理、物流和市场规划决策至关重要。本研究旨在通过将无人机图像估算的叶面积指数(LAI)和细分模型同化到作物模拟模型 WOrld FOod STudies(WOFOST)中,建立植物级白菜产量预测系统。数据同化方法适用于五块田中的一个栽培品种和三块田中的另一个栽培品种,以评估产量预测的准确性和稳健性。结果表明,白菜产量预测的均方根误差(RMSE)在 1,314 至 2,532 千克/公顷之间(相对均方根误差为 15.8-30.9%)。通过数据同化进行参数优化后发现,总同化率的降低系数始终是限制产量的主要因素。这项研究进一步探讨了减少 LAI 观测数据数量对数据同化性能的影响。对于栽培品种 "TCA 422 "而言,在生长季初期至中期获得的 4 个 LAI 观测值的产量均方根误差仅比整个生长季的 9 个 LAI 观测值高 107 千克/公顷。这些结果突显了将无人机获得的 LAI 数据同化到作物模拟模型中以进行大白菜植株产量预测的巨大可能性,即使 LAI 观测结果仅出现在生长季的早期和中期。
{"title":"Accuracy and robustness of a plant-level cabbage yield prediction system generated by assimilating UAV-based remote sensing data into a crop simulation model","authors":"Yui Yokoyama, Allard de Wit, Tsutomu Matsui, Takashi S. T. Tanaka","doi":"10.1007/s11119-024-10192-3","DOIUrl":"https://doi.org/10.1007/s11119-024-10192-3","url":null,"abstract":"<p>In-season crop growth and yield prediction at high spatial resolution are essential for informing decision-making for precise crop management, logistics and market planning in horticultural crop production. This research aimed to establish a plant-level cabbage yield prediction system by assimilating the leaf area index (LAI) estimated from UAV imagery and a segmentation model into a crop simulation model, the WOrld FOod STudies (WOFOST). The data assimilation approach was applied for one cultivar in five fields and for another cultivar in three fields to assess the yield prediction accuracy and robustness. The results showed that the root mean square error (RMSE) in the prediction of cabbage yield ranged from 1,314 to 2,532 kg ha<sup>–1</sup> (15.8–30.9% of the relative RMSE). Parameter optimisation via data assimilation revealed that the reduction factor in the gross assimilation rate was consistently attributed to a primary yield-limiting factor. This research further explored the effect of reducing the number of LAI observations on the data assimilation performance. The RMSE of yield was only 107 kg ha<sup>–1</sup> higher in the four LAI observations obtained from the early to mid-growing season than for the nine LAI observations over the entire growing season for cultivar ‘TCA 422’. These results highlighted the great possibility of assimilating UAV-derived LAI data into crop simulation models for plant-level cabbage yield prediction even with LAI observations only in the early and mid-growing seasons.</p>","PeriodicalId":20423,"journal":{"name":"Precision Agriculture","volume":"17 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142574515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}