首页 > 最新文献

Proceedings 2019 Network and Distributed System Security Symposium最新文献

英文 中文
Quantity vs. Quality: Evaluating User Interest Profiles Using Ad Preference Managers 数量vs.质量:使用广告偏好管理器评估用户兴趣档案
Pub Date : 2019-01-01 DOI: 10.14722/ndss.2019.23392
M. Bashir, U. Farooq, Maryam Shahid, Muhammad Fareed Zaffar, Christo Wilson
—Widely reported privacy issues concerning major online advertising platforms (e.g., Facebook) have heightened concerns among users about the data that is collected about them. However, while we have a comprehensive understanding who collects data on users, as well as how tracking is implemented, there is still a significant gap in our understanding: what information do advertisers actually infer about users, and is this information accurate? In this study, we leverage Ad Preference Managers ( APMs ) as a lens through which to address this gap. APMs are transparency tools offered by some advertising platforms that allow users to see the interest profiles that are constructed about them. We recruited 220 participants to install an IRB approved browser extension that collected their interest profiles from four APMs (Google, Facebook, Oracle BlueKai, and Neilsen eXelate), as well as behavioral and survey data. We use this data to analyze the size and correctness of interest profiles, compare their composition across the four platforms, and investigate the origins of the data underlying these profiles.
-关于主要在线广告平台(例如Facebook)的广泛报道的隐私问题加剧了用户对收集有关他们的数据的担忧。然而,虽然我们对谁收集用户数据以及如何实施跟踪有了全面的了解,但我们的理解仍然存在重大差距:广告商实际上推断了用户的哪些信息,这些信息是否准确?在本研究中,我们利用广告偏好管理器(APMs)作为解决这一差距的镜头。apm是一些广告平台提供的透明工具,允许用户查看有关他们的兴趣配置文件。我们招募了220名参与者来安装一个IRB认可的浏览器扩展,该扩展从四个apm (Google, Facebook, Oracle BlueKai和nielsen eXelate)中收集他们的兴趣概况,以及行为和调查数据。我们使用这些数据来分析兴趣概况的大小和正确性,比较四个平台的组成,并调查这些概况背后的数据来源。
{"title":"Quantity vs. Quality: Evaluating User Interest Profiles Using Ad Preference Managers","authors":"M. Bashir, U. Farooq, Maryam Shahid, Muhammad Fareed Zaffar, Christo Wilson","doi":"10.14722/ndss.2019.23392","DOIUrl":"https://doi.org/10.14722/ndss.2019.23392","url":null,"abstract":"—Widely reported privacy issues concerning major online advertising platforms (e.g., Facebook) have heightened concerns among users about the data that is collected about them. However, while we have a comprehensive understanding who collects data on users, as well as how tracking is implemented, there is still a significant gap in our understanding: what information do advertisers actually infer about users, and is this information accurate? In this study, we leverage Ad Preference Managers ( APMs ) as a lens through which to address this gap. APMs are transparency tools offered by some advertising platforms that allow users to see the interest profiles that are constructed about them. We recruited 220 participants to install an IRB approved browser extension that collected their interest profiles from four APMs (Google, Facebook, Oracle BlueKai, and Neilsen eXelate), as well as behavioral and survey data. We use this data to analyze the size and correctness of interest profiles, compare their composition across the four platforms, and investigate the origins of the data underlying these profiles.","PeriodicalId":20444,"journal":{"name":"Proceedings 2019 Network and Distributed System Security Symposium","volume":"57 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76566509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 31
BadBluetooth: Breaking Android Security Mechanisms via Malicious Bluetooth Peripherals 坏蓝牙:通过恶意蓝牙外设破坏Android安全机制
Pub Date : 2019-01-01 DOI: 10.14722/ndss.2019.23482
Fenghao Xu, Wenrui Diao, Zhou Li, Jiongyi Chen, Kehuan Zhang
—Bluetooth is a widely used communication tech- nology, especially under the scenarios of mobile computing and Internet of Things. Once paired with a host device, a Bluetooth device then can exchange commands and data, such as voice, keyboard/mouse inputs, network, blood pressure data, and so on, with the host. Due to the sensitivity of such data and commands, some security measures have already been built into the Bluetooth protocol, like authentication, encryption, authorization, etc. However, according to our studies on the Bluetooth protocol as well as its implementation on Android system, we find that there are still some design flaws which could lead to serious security consequences. For example, it is found that the authentication process on Bluetooth profiles is quite inconsistent and coarse- grained: if a paired device changes its profile, it automatically gets trust and users would not be notified. Also, there is no strict verification on the information provided by the Bluetooth device itself, so that a malicious device can deceive a user by changing its name, profile information, and icon to be displayed on the screen. To better understand the problem, we performed a systematic study over the Bluetooth profiles and presented three attacks to demonstrate the feasibility and potential damages of such Bluetooth design flaws. The attacks were implemented on a Raspberry Pi 2 device and evaluated with different Android OS versions ranging from 5.1 to the latest 8.1. The results showed adversaries could bypass existing protections of Android (e.g., permissions, isolations, etc.), launch Man-in-the-Middle attack, control the victim apps and system, steal sensitive information, etc. To mitigate such threats, a new Bluetooth validation mechanism was proposed. We implemented the prototype system based on the AOSP project and deployed it on a Google Pixel 2 phone for evaluation. The experiment showed our solution could effectively prevent the attacks.
蓝牙是一种应用广泛的通信技术,特别是在移动计算和物联网的场景下。一旦与主机设备配对,蓝牙设备就可以与主机交换命令和数据,如语音、键盘/鼠标输入、网络、血压数据等。由于这些数据和命令的敏感性,蓝牙协议中已经内置了一些安全措施,如身份验证、加密、授权等。然而,根据我们对蓝牙协议的研究,以及蓝牙协议在Android系统上的实现,我们发现它仍然存在一些设计缺陷,可能会导致严重的安全后果。例如,发现蓝牙配置文件上的身份验证过程非常不一致和粗粒度:如果配对设备更改其配置文件,它将自动获得信任,并且不会通知用户。此外,蓝牙设备本身提供的信息没有严格的验证,因此恶意设备可以通过更改其名称、配置文件信息和屏幕上显示的图标来欺骗用户。为了更好地理解这个问题,我们对蓝牙配置文件进行了系统研究,并提出了三种攻击,以证明这种蓝牙设计缺陷的可行性和潜在危害。这些攻击是在Raspberry Pi 2设备上实施的,并在从5.1到最新的8.1的不同Android操作系统版本上进行了评估。结果显示,攻击者可以绕过Android现有的保护措施(如权限、隔离等),发动中间人攻击,控制受害应用和系统,窃取敏感信息等。为了减轻这种威胁,提出了一种新的蓝牙验证机制。我们基于AOSP项目实现了原型系统,并将其部署在谷歌Pixel 2手机上进行评估。实验表明,我们的解决方案可以有效地防止攻击。
{"title":"BadBluetooth: Breaking Android Security Mechanisms via Malicious Bluetooth Peripherals","authors":"Fenghao Xu, Wenrui Diao, Zhou Li, Jiongyi Chen, Kehuan Zhang","doi":"10.14722/ndss.2019.23482","DOIUrl":"https://doi.org/10.14722/ndss.2019.23482","url":null,"abstract":"—Bluetooth is a widely used communication tech- nology, especially under the scenarios of mobile computing and Internet of Things. Once paired with a host device, a Bluetooth device then can exchange commands and data, such as voice, keyboard/mouse inputs, network, blood pressure data, and so on, with the host. Due to the sensitivity of such data and commands, some security measures have already been built into the Bluetooth protocol, like authentication, encryption, authorization, etc. However, according to our studies on the Bluetooth protocol as well as its implementation on Android system, we find that there are still some design flaws which could lead to serious security consequences. For example, it is found that the authentication process on Bluetooth profiles is quite inconsistent and coarse- grained: if a paired device changes its profile, it automatically gets trust and users would not be notified. Also, there is no strict verification on the information provided by the Bluetooth device itself, so that a malicious device can deceive a user by changing its name, profile information, and icon to be displayed on the screen. To better understand the problem, we performed a systematic study over the Bluetooth profiles and presented three attacks to demonstrate the feasibility and potential damages of such Bluetooth design flaws. The attacks were implemented on a Raspberry Pi 2 device and evaluated with different Android OS versions ranging from 5.1 to the latest 8.1. The results showed adversaries could bypass existing protections of Android (e.g., permissions, isolations, etc.), launch Man-in-the-Middle attack, control the victim apps and system, steal sensitive information, etc. To mitigate such threats, a new Bluetooth validation mechanism was proposed. We implemented the prototype system based on the AOSP project and deployed it on a Google Pixel 2 phone for evaluation. The experiment showed our solution could effectively prevent the attacks.","PeriodicalId":20444,"journal":{"name":"Proceedings 2019 Network and Distributed System Security Symposium","volume":"307 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77373917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 44
Latex Gloves: Protecting Browser Extensions from Probing and Revelation Attacks 乳胶手套:保护浏览器扩展从探测和揭露攻击
Pub Date : 2019-01-01 DOI: 10.14722/NDSS.2019.23309
Alexander Sjösten, S. Acker, Pablo Picazo-Sanchez, A. Sabelfeld
Browser extensions enable rich experience for the users of today's web. Being deployed with elevated privileges, extensions are given the power to overrule web pages. As a result, web pages often seek to detect the installed extensions, sometimes for benign adoption of their behavior but sometimes as part of privacy-violating user fingerprinting. Researchers have studied a class of attacks that allow detecting extensions by probing for Web Accessible Resources (WARs) via URLs that include public extension IDs. Realizing privacy risks associated with WARs, Firefox has recently moved to randomize a browser extension's ID, prompting the Chrome team to plan for following the same path. However, rather than mitigating the issue, the randomized IDs can in fact exacerbate the extension detection problem, enabling attackers to use a randomized ID as a reliable fingerprint of a user. We study a class of extension revelation attacks, where extensions reveal themselves by injecting their code on web pages. We demonstrate how a combination of revelation and probing can uniquely identify 90% out of all extensions injecting content, in spite of a randomization scheme. We perform a series of large-scale studies to estimate possible implications of both classes of attacks. As a countermeasure, we propose a browser-based mechanism that enables control over which extensions are loaded on which web pages and present a proof of concept implementation which blocks both classes of attacks.
浏览器扩展为今天的网络用户提供丰富的体验。通过提升权限来部署扩展,扩展被赋予了否决网页的权力。因此,网页经常试图检测已安装的扩展,有时是为了善意地采用它们的行为,但有时是作为侵犯隐私的用户指纹的一部分。研究人员研究了一类允许通过包含公共扩展id的url探测Web可访问资源(war)来检测扩展的攻击。意识到与战争相关的隐私风险,Firefox最近开始随机化浏览器扩展的ID,这促使Chrome团队计划走同样的道路。然而,随机化ID不但不能缓解问题,反而会加剧扩展检测问题,使攻击者能够使用随机化ID作为用户的可靠指纹。我们研究了一类扩展暴露攻击,其中扩展通过在网页上注入其代码来暴露自己。我们演示了如何结合启示和探测可以唯一地识别90%的所有注入内容的扩展,尽管随机方案。我们进行了一系列大规模研究,以估计这两类攻击的可能影响。作为对策,我们提出了一种基于浏览器的机制,可以控制哪些扩展加载到哪些网页上,并提出了一个概念验证实现,可以阻止这两类攻击。
{"title":"Latex Gloves: Protecting Browser Extensions from Probing and Revelation Attacks","authors":"Alexander Sjösten, S. Acker, Pablo Picazo-Sanchez, A. Sabelfeld","doi":"10.14722/NDSS.2019.23309","DOIUrl":"https://doi.org/10.14722/NDSS.2019.23309","url":null,"abstract":"Browser extensions enable rich experience for the users of today's web. Being deployed with elevated privileges, extensions are given the power to overrule web pages. As a result, web pages often seek to detect the installed extensions, sometimes for benign adoption of their behavior but sometimes as part of privacy-violating user fingerprinting. Researchers have studied a class of attacks that allow detecting extensions by probing for Web Accessible Resources (WARs) via URLs that include public extension IDs. Realizing privacy risks associated with WARs, Firefox has recently moved to randomize a browser extension's ID, prompting the Chrome team to plan for following the same path. However, rather than mitigating the issue, the randomized IDs can in fact exacerbate the extension detection problem, enabling attackers to use a randomized ID as a reliable fingerprint of a user. We study a class of extension revelation attacks, where extensions reveal themselves by injecting their code on web pages. We demonstrate how a combination of revelation and probing can uniquely identify 90% out of all extensions injecting content, in spite of a randomization scheme. We perform a series of large-scale studies to estimate possible implications of both classes of attacks. As a countermeasure, we propose a browser-based mechanism that enables control over which extensions are loaded on which web pages and present a proof of concept implementation which blocks both classes of attacks.","PeriodicalId":20444,"journal":{"name":"Proceedings 2019 Network and Distributed System Security Symposium","volume":"727 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83300378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 24
Robust Performance Metrics for Authentication Systems 身份验证系统的健壮性能指标
Pub Date : 2019-01-01 DOI: 10.14722/ndss.2019.23351
Shridatt Sugrim, Can Liu, Meghan McLean, J. Lindqvist
Research has produced many types of authentication systems that use machine learning. However, there is no consistent approach for reporting performance metrics and the reported metrics are inadequate. In this work, we show that several of the common metrics used for reporting performance, such as maximum accuracy (ACC), equal error rate (EER) and area under the ROC curve (AUROC), are inherently flawed. These common metrics hide the details of the inherent tradeoffs a system must make when implemented. Our findings show that current metrics give no insight into how system performance degrades outside the ideal conditions in which they were designed. We argue that adequate performance reporting must be provided to enable meaningful evaluation and that current, commonly used approaches fail in this regard. We present the unnormalized frequency count of scores (FCS) to demonstrate the mathematical underpinnings that lead to these failures and show how they can be avoided. The FCS can be used to augment the performance reporting to enable comparison across systems in a visual way. When reported with the Receiver Operating Characteristics curve (ROC), these two metrics provide a solution to the limitations of currently reported metrics. Finally, we show how to use the FCS and ROC metrics to evaluate and compare different authentication systems.
研究已经产生了许多使用机器学习的认证系统。然而,没有一致的方法来报告性能指标,报告的指标是不充分的。在这项工作中,我们展示了用于报告性能的几个常用指标,如最大准确性(ACC),等错误率(EER)和ROC曲线下面积(AUROC),本质上是有缺陷的。这些通用指标隐藏了系统在实现时必须进行的内在权衡的细节。我们的发现表明,当前的度量标准无法洞察系统性能在设计理想条件之外是如何下降的。我们认为,必须提供充分的绩效报告,以便进行有意义的评估,而目前常用的方法在这方面失败了。我们提出了非标准化的分数频率计数(FCS),以展示导致这些失败的数学基础,并展示如何避免这些失败。FCS可用于增强性能报告,以便以可视化的方式跨系统进行比较。当与受试者工作特征曲线(ROC)一起报告时,这两个指标为当前报告的指标的局限性提供了解决方案。最后,我们展示了如何使用FCS和ROC指标来评估和比较不同的身份验证系统。
{"title":"Robust Performance Metrics for Authentication Systems","authors":"Shridatt Sugrim, Can Liu, Meghan McLean, J. Lindqvist","doi":"10.14722/ndss.2019.23351","DOIUrl":"https://doi.org/10.14722/ndss.2019.23351","url":null,"abstract":"Research has produced many types of authentication systems that use machine learning. However, there is no consistent approach for reporting performance metrics and the reported metrics are inadequate. In this work, we show that several of the common metrics used for reporting performance, such as maximum accuracy (ACC), equal error rate (EER) and area under the ROC curve (AUROC), are inherently flawed. These common metrics hide the details of the inherent tradeoffs a system must make when implemented. Our findings show that current metrics give no insight into how system performance degrades outside the ideal conditions in which they were designed. We argue that adequate performance reporting must be provided to enable meaningful evaluation and that current, commonly used approaches fail in this regard. We present the unnormalized frequency count of scores (FCS) to demonstrate the mathematical underpinnings that lead to these failures and show how they can be avoided. The FCS can be used to augment the performance reporting to enable comparison across systems in a visual way. When reported with the Receiver Operating Characteristics curve (ROC), these two metrics provide a solution to the limitations of currently reported metrics. Finally, we show how to use the FCS and ROC metrics to evaluate and compare different authentication systems.","PeriodicalId":20444,"journal":{"name":"Proceedings 2019 Network and Distributed System Security Symposium","volume":"32 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87332807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 34
Enemy At the Gateways: Censorship-Resilient Proxy Distribution Using Game Theory 网关上的敌人:使用博弈论的审查弹性代理分配
Pub Date : 2019-01-01 DOI: 10.14722/ndss.2019.23496
Milad Nasr, Sadegh Farhang, A. Houmansadr, Jens Grossklags
A core technique used by popular proxy-based circumvention systems like Tor is to privately and selectively distribute the IP addresses of circumvention proxies among censored clients to keep them unknown to the censors. In Tor, for instance, such privately shared proxies are known as bridges. A key challenge to this mechanism is the insider attack problem: censoring agents can impersonate benign censored clients in order to learn (and then block) the privately shared circumvention proxies. To minimize the risks of the insider attack threat, in-thewild circumvention systems like Tor use various proxy assignment mechanisms in order to minimize the risk of proxy enumeration by the censors, while providing access to a large fraction of censored clients. Unfortunately, existing proxy assignment mechanisms (like the one used by Tor) are based on ad hoc heuristics that offer no theoretical guarantees and are easily evaded in practice. In this paper, we take a systematic approach to the problem of proxy distribution in circumvention systems by establishing a gametheoretic framework. We model the proxy assignment problem as a game between circumvention system operators and the censors, and use game theory to derive the optimal strategies of each of the parties. Using our framework, we derive the best (optimal) proxy assignment mechanism of a circumvention system like Tor in the presence of the strongest censorship adversary who takes her best censorship actions. We perform extensive simulations to evaluate our optimal proxy assignment algorithm under various adversarial and network settings. We show that the algorithm has superior performance compared to the state of the art, i.e., provides stronger resistance to censorship even against the strongest censorship adversary. Our study establishes a generic framework for optimal proxy assignment that can be applied to various types of circumvention systems and under various threat models. We conclude with lessons and recommendations for the design of proxy-based circumvention systems.
流行的基于代理的翻墙系统(如Tor)使用的核心技术是在被审查的客户端之间私下和有选择地分发翻墙代理的IP地址,以使审查者不知道它们。例如,在Tor中,这种私人共享的代理被称为桥接。这种机制面临的一个关键挑战是内部攻击问题:审查代理可以冒充被审查的良性客户端,以便学习(然后阻止)私有共享的规避代理。为了最大限度地降低内部攻击威胁的风险,像Tor这样的野外规避系统使用各种代理分配机制,以最大限度地降低审查者代理枚举的风险,同时提供对大部分审查客户端的访问。不幸的是,现有的代理分配机制(如Tor所使用的)是基于临时启发式的,无法提供理论上的保证,并且在实践中很容易被规避。本文通过建立一个博弈论框架,系统地研究了规避系统中的代理分配问题。本文将代理分配问题建模为规避系统操作者与审查者之间的博弈,并利用博弈论推导出双方的最优策略。使用我们的框架,我们推导了在最强审查对手存在的情况下,像Tor这样的规避系统的最佳(最优)代理分配机制,该对手采取了最好的审查行动。我们进行了大量的模拟来评估我们在各种对抗和网络设置下的最佳代理分配算法。我们表明,与目前的技术水平相比,该算法具有优越的性能,即即使面对最强的审查对手,也能提供更强的审查阻力。我们的研究建立了一个通用的最优代理分配框架,可以应用于各种类型的规避系统和各种威胁模型。最后,我们对基于代理的规避系统的设计提出了经验教训和建议。
{"title":"Enemy At the Gateways: Censorship-Resilient Proxy Distribution Using Game Theory","authors":"Milad Nasr, Sadegh Farhang, A. Houmansadr, Jens Grossklags","doi":"10.14722/ndss.2019.23496","DOIUrl":"https://doi.org/10.14722/ndss.2019.23496","url":null,"abstract":"A core technique used by popular proxy-based circumvention systems like Tor is to privately and selectively distribute the IP addresses of circumvention proxies among censored clients to keep them unknown to the censors. In Tor, for instance, such privately shared proxies are known as bridges. A key challenge to this mechanism is the insider attack problem: censoring agents can impersonate benign censored clients in order to learn (and then block) the privately shared circumvention proxies. To minimize the risks of the insider attack threat, in-thewild circumvention systems like Tor use various proxy assignment mechanisms in order to minimize the risk of proxy enumeration by the censors, while providing access to a large fraction of censored clients. Unfortunately, existing proxy assignment mechanisms (like the one used by Tor) are based on ad hoc heuristics that offer no theoretical guarantees and are easily evaded in practice. In this paper, we take a systematic approach to the problem of proxy distribution in circumvention systems by establishing a gametheoretic framework. We model the proxy assignment problem as a game between circumvention system operators and the censors, and use game theory to derive the optimal strategies of each of the parties. Using our framework, we derive the best (optimal) proxy assignment mechanism of a circumvention system like Tor in the presence of the strongest censorship adversary who takes her best censorship actions. We perform extensive simulations to evaluate our optimal proxy assignment algorithm under various adversarial and network settings. We show that the algorithm has superior performance compared to the state of the art, i.e., provides stronger resistance to censorship even against the strongest censorship adversary. Our study establishes a generic framework for optimal proxy assignment that can be applied to various types of circumvention systems and under various threat models. We conclude with lessons and recommendations for the design of proxy-based circumvention systems.","PeriodicalId":20444,"journal":{"name":"Proceedings 2019 Network and Distributed System Security Symposium","volume":"10 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84573474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Vault: Fast Bootstrapping for the Algorand Cryptocurrency Vault:快速引导算法和加密货币
Pub Date : 2019-01-01 DOI: 10.14722/ndss.2019.23313
Derek Leung, Adam Suhl, Y. Gilad, N. Zeldovich
Decentralized cryptocurrencies rely on participants to keep track of the state of the system in order to verify new transactions. As the number of users and transactions grows, this requirement becomes a significant burden, requiring users to download, verify, and store a large amount of data to participate. Vault is a new cryptocurrency design based on Algorand that minimizes these storage and bootstrapping costs for participants. Vault’s design is based on Algorand’s proof-of-stake consensus protocol and uses several techniques to achieve its goals. First, Vault decouples the storage of recent transactions from the storage of account balances, which enables Vault to delete old account state. Second, Vault allows sharding state across participants in a way that preserves strong security guarantees. Finally, Vault introduces the notion of stamping certificates, which allow a new client to catch up securely and efficiently in a proofof-stake system without having to verify every single block. Experiments with a prototype implementation of Vault’s data structures show that Vault’s design reduces the bandwidth cost of joining the network as a full client by 99.7% compared to Bitcoin and 90.5% compared to Ethereum when downloading a ledger containing 500 million transactions.
去中心化的加密货币依赖于参与者跟踪系统的状态,以验证新的交易。随着用户和事务数量的增长,这一需求成为一个重大负担,需要用户下载、验证和存储大量数据才能参与。Vault是一种基于Algorand的新型加密货币设计,可以最大限度地减少参与者的存储和启动成本。Vault的设计基于Algorand的权益证明共识协议,并使用多种技术来实现其目标。首先,Vault将最近事务的存储与帐户余额的存储解耦,这使Vault能够删除旧的帐户状态。其次,Vault允许在参与者之间进行状态分片,以保持强大的安全保证。最后,Vault引入了盖章证书的概念,它允许新客户在权益证明系统中安全有效地赶上,而无需验证每个区块。对Vault数据结构原型实现的实验表明,在下载包含5亿笔交易的分类账时,与比特币相比,Vault的设计将作为完整客户端加入网络的带宽成本降低了99.7%,与以太坊相比降低了90.5%。
{"title":"Vault: Fast Bootstrapping for the Algorand Cryptocurrency","authors":"Derek Leung, Adam Suhl, Y. Gilad, N. Zeldovich","doi":"10.14722/ndss.2019.23313","DOIUrl":"https://doi.org/10.14722/ndss.2019.23313","url":null,"abstract":"Decentralized cryptocurrencies rely on participants to keep track of the state of the system in order to verify new transactions. As the number of users and transactions grows, this requirement becomes a significant burden, requiring users to download, verify, and store a large amount of data to participate. Vault is a new cryptocurrency design based on Algorand that minimizes these storage and bootstrapping costs for participants. Vault’s design is based on Algorand’s proof-of-stake consensus protocol and uses several techniques to achieve its goals. First, Vault decouples the storage of recent transactions from the storage of account balances, which enables Vault to delete old account state. Second, Vault allows sharding state across participants in a way that preserves strong security guarantees. Finally, Vault introduces the notion of stamping certificates, which allow a new client to catch up securely and efficiently in a proofof-stake system without having to verify every single block. Experiments with a prototype implementation of Vault’s data structures show that Vault’s design reduces the bandwidth cost of joining the network as a full client by 99.7% compared to Bitcoin and 90.5% compared to Ethereum when downloading a ledger containing 500 million transactions.","PeriodicalId":20444,"journal":{"name":"Proceedings 2019 Network and Distributed System Security Symposium","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89598829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 42
NoDoze: Combatting Threat Alert Fatigue with Automated Provenance Triage NoDoze:通过自动来源分类对抗威胁警报疲劳
Pub Date : 2019-01-01 DOI: 10.14722/ndss.2019.23349
Wajih Ul Hassan, Shengjian Guo, Ding Li, Zhengzhang Chen, Kangkook Jee, Zhichun Li, Adam Bates
—Large enterprises are increasingly relying on threat detection softwares (e.g., Intrusion Detection Systems) to allow them to spot suspicious activities. These softwares generate alerts which must be investigated by cyber analysts to figure out if they are true attacks. Unfortunately, in practice, there are more alerts than cyber analysts can properly investigate. This leads to a “threat alert fatigue” or information overload problem where cyber analysts miss true attack alerts in the noise of false alarms. In this paper, we present N O D OZE to combat this challenge using contextual and historical information of generated threat alert. N O D OZE first generates a causal dependency graph of an alert event. Then, it assigns an anomaly score to each edge in the dependency graph based on the frequency with which related events have happened before in the enterprise. N O D OZE then propagates those scores along the neighboring edges of the graph using a novel network diffusion algorithm and generates an aggregate anomaly score which is used for triaging. We deployed and evaluated N O D OZE at NEC Labs America. Evaluation on our dataset of 364 threat alerts shows that N O D OZE consistently ranked the true alerts higher than the false alerts based on aggregate anomaly scores. Further, through the introduction of a cutoff threshold for anomaly scores, we estimate that our system decreases the volume of false alarms by 84%, saving analysts’ more than 90 hours of investigation time per week. N O D OZE generates alert dependency graphs that are two orders of magnitude smaller than those generated by traditional tools without sacrificing the vital information needed for the investigation. Our system has a low average runtime overhead and can be deployed with any threat detection software.
-大型企业越来越依赖威胁检测软件(例如,入侵检测系统)来发现可疑活动。这些软件产生警报,必须由网络分析师进行调查,以确定它们是否是真正的攻击。不幸的是,在实践中,网络分析师无法正确调查的警报数量太多。这导致了“威胁警报疲劳”或信息过载问题,即网络分析师在虚假警报的噪音中错过了真正的攻击警报。在本文中,我们提出了N O D OZE,利用生成的威胁警报的上下文和历史信息来应对这一挑战。OZE首先生成警报事件的因果依赖关系图。然后,它根据相关事件之前在企业中发生的频率,为依赖图中的每条边分配一个异常分数。然后,N O D OZE使用一种新的网络扩散算法沿图的邻近边缘传播这些分数,并生成一个用于分类的汇总异常分数。我们在NEC美国实验室部署并评估了N O D OZE。对我们的364个威胁警报数据集的评估表明,基于总异常得分,N O D OZE始终将真实警报排在高于虚假警报的位置。此外,通过引入异常分数的截止阈值,我们估计我们的系统将误报警的数量减少了84%,为分析师节省了每周90多个小时的调查时间。n.o.d OZE生成的警报依赖关系图比传统工具生成的依赖关系图小两个数量级,而不会牺牲调查所需的重要信息。我们的系统具有较低的平均运行时开销,可以与任何威胁检测软件一起部署。
{"title":"NoDoze: Combatting Threat Alert Fatigue with Automated Provenance Triage","authors":"Wajih Ul Hassan, Shengjian Guo, Ding Li, Zhengzhang Chen, Kangkook Jee, Zhichun Li, Adam Bates","doi":"10.14722/ndss.2019.23349","DOIUrl":"https://doi.org/10.14722/ndss.2019.23349","url":null,"abstract":"—Large enterprises are increasingly relying on threat detection softwares (e.g., Intrusion Detection Systems) to allow them to spot suspicious activities. These softwares generate alerts which must be investigated by cyber analysts to figure out if they are true attacks. Unfortunately, in practice, there are more alerts than cyber analysts can properly investigate. This leads to a “threat alert fatigue” or information overload problem where cyber analysts miss true attack alerts in the noise of false alarms. In this paper, we present N O D OZE to combat this challenge using contextual and historical information of generated threat alert. N O D OZE first generates a causal dependency graph of an alert event. Then, it assigns an anomaly score to each edge in the dependency graph based on the frequency with which related events have happened before in the enterprise. N O D OZE then propagates those scores along the neighboring edges of the graph using a novel network diffusion algorithm and generates an aggregate anomaly score which is used for triaging. We deployed and evaluated N O D OZE at NEC Labs America. Evaluation on our dataset of 364 threat alerts shows that N O D OZE consistently ranked the true alerts higher than the false alerts based on aggregate anomaly scores. Further, through the introduction of a cutoff threshold for anomaly scores, we estimate that our system decreases the volume of false alarms by 84%, saving analysts’ more than 90 hours of investigation time per week. N O D OZE generates alert dependency graphs that are two orders of magnitude smaller than those generated by traditional tools without sacrificing the vital information needed for the investigation. Our system has a low average runtime overhead and can be deployed with any threat detection software.","PeriodicalId":20444,"journal":{"name":"Proceedings 2019 Network and Distributed System Security Symposium","volume":"52 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74684478","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 155
Send Hardest Problems My Way: Probabilistic Path Prioritization for Hybrid Fuzzing 把最难的问题交给我:混合模糊的概率路径优先化
Pub Date : 2019-01-01 DOI: 10.14722/ndss.2019.23504
Lei Zhao, Yue Duan, Heng Yin, J. Xuan
Hybrid fuzzing which combines fuzzing and concolic execution has become an advanced technique for software vulnerability detection. Based on the observation that fuzzing and concolic execution are complementary in nature, the stateof-the-art hybrid fuzzing systems deploy “demand launch” and “optimal switch” strategies. Although these ideas sound intriguing, we point out several fundamental limitations in them, due to oversimplified assumptions. We then propose a novel “discriminative dispatch” strategy to better utilize the capability of concolic execution. We design a novel Monte Carlo based probabilistic path prioritization model to quantify each path’s difficulty and prioritize them for concolic execution. This model treats fuzzing as a random sampling process. It calculates each path’s probability based on the sampling information. Finally, our model prioritizes and assigns the most difficult paths to concolic execution. We implement a prototype system DigFuzz and evaluate our system with two representative datasets. Results show that the concolic execution in DigFuzz outperforms than those in state-of-the-art hybrid fuzzing systems in every major aspect. In particular, the concolic execution in DigFuzz contributes to discovering more vulnerabilities (12 vs. 5) and producing more code coverage (18.9% vs. 3.8%) on the CQE dataset than the concolic execution in Driller.
混合模糊测试将模糊测试和协同执行相结合,已成为一种先进的软件漏洞检测技术。基于观察到模糊测试和协同执行在本质上是互补的,最先进的混合模糊测试系统采用“需求启动”和“最优切换”策略。虽然这些想法听起来很有趣,但我们指出了它们的几个基本局限性,这是由于过于简化的假设。然后,我们提出了一种新的“判别调度”策略,以更好地利用协同执行的能力。我们设计了一种新的基于蒙特卡罗的概率路径优先级模型来量化每条路径的难度,并对它们进行优先级排序。该模型将模糊处理视为随机抽样过程。它根据采样信息计算每条路径的概率。最后,我们的模型对最困难的路径进行优先级排序,并将其分配给联合执行。我们实现了一个原型系统DigFuzz,并用两个代表性的数据集对我们的系统进行了评估。结果表明,在每个主要方面,DigFuzz的一致性执行都优于最先进的混合模糊系统。特别是,与Driller中的concolic执行相比,DigFuzz中的concolic执行有助于在CQE数据集上发现更多漏洞(12 vs. 5)并产生更多代码覆盖率(18.9% vs. 3.8%)。
{"title":"Send Hardest Problems My Way: Probabilistic Path Prioritization for Hybrid Fuzzing","authors":"Lei Zhao, Yue Duan, Heng Yin, J. Xuan","doi":"10.14722/ndss.2019.23504","DOIUrl":"https://doi.org/10.14722/ndss.2019.23504","url":null,"abstract":"Hybrid fuzzing which combines fuzzing and concolic execution has become an advanced technique for software vulnerability detection. Based on the observation that fuzzing and concolic execution are complementary in nature, the stateof-the-art hybrid fuzzing systems deploy “demand launch” and “optimal switch” strategies. Although these ideas sound intriguing, we point out several fundamental limitations in them, due to oversimplified assumptions. We then propose a novel “discriminative dispatch” strategy to better utilize the capability of concolic execution. We design a novel Monte Carlo based probabilistic path prioritization model to quantify each path’s difficulty and prioritize them for concolic execution. This model treats fuzzing as a random sampling process. It calculates each path’s probability based on the sampling information. Finally, our model prioritizes and assigns the most difficult paths to concolic execution. We implement a prototype system DigFuzz and evaluate our system with two representative datasets. Results show that the concolic execution in DigFuzz outperforms than those in state-of-the-art hybrid fuzzing systems in every major aspect. In particular, the concolic execution in DigFuzz contributes to discovering more vulnerabilities (12 vs. 5) and producing more code coverage (18.9% vs. 3.8%) on the CQE dataset than the concolic execution in Driller.","PeriodicalId":20444,"journal":{"name":"Proceedings 2019 Network and Distributed System Security Symposium","volume":"292 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79630601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 117
Oligo-Snoop: A Non-Invasive Side Channel Attack Against DNA Synthesis Machines Oligo-Snoop:对DNA合成机的非侵入性侧通道攻击
Pub Date : 2019-01-01 DOI: 10.14722/ndss.2019.23544
Sina Faezi, Sujit Rokka Chhetri, A. Malawade, J. Chaput, William H. Grover, P. Brisk, M. A. Faruque
Synthetic biology is developing into a promising science and engineering field. One of the enabling technologies for this field is the DNA synthesizer. It allows researchers to custom-build sequences of oligonucleotides (short DNA strands) using the nucleobases: Adenine (A), Guanine (G), Cytosine (C), and Thymine (T). Incorporating these sequences into organisms can result in improved disease resistance and lifespan for plants, animals, and humans. Hence, many laboratories spend large amounts of capital researching and developing unique sequences of oligonucleotides. However, these DNA synthesizers are fully automated systems with cyber-domain processes and physical domain components. Hence, they may be prone to security breaches like any other computing system. In our work, we present a novel acoustic side-channel attack methodology which can be used on DNA synthesizers to breach their confidentiality and steal valuable oligonucleotide sequences. Our proposed attack methodology achieves an average accuracy of 88.07% in predicting each base and is able to reconstruct short sequences with 100% accuracy by making less than 21 guesses out of 4 possibilities. We evaluate our attack against the effects of the microphone’s distance from the DNA synthesizer and show that our attack methodology can achieve over 80% accuracy when the microphone is placed as far as 0.7 meters from the DNA synthesizer despite the presence of common room noise. In addition, we reconstruct DNA sequences to show how effectively an attacker with biomedical-domain knowledge would be able to derive the intended functionality of the sequence using the proposed attack methodology. To the best of our knowledge, this is the first methodology that highlights the possibility of such an attack on systems used to synthesize DNA molecules.
合成生物学正在成为一个有发展前途的科学和工程领域。这一领域的一项使能技术是DNA合成器。它允许研究人员使用核碱基定制构建寡核苷酸(短DNA链)序列:腺嘌呤(A),鸟嘌呤(G),胞嘧啶(C)和胸腺嘧啶(T)。将这些序列整合到生物体中可以提高植物,动物和人类的抗病能力和寿命。因此,许多实验室花费大量资金研究和开发独特的寡核苷酸序列。然而,这些DNA合成器是完全自动化的系统,具有网络域过程和物理域组件。因此,它们可能像任何其他计算系统一样容易出现安全漏洞。在我们的工作中,我们提出了一种新的声学侧信道攻击方法,该方法可用于DNA合成器,以破坏其机密性并窃取有价值的寡核苷酸序列。我们提出的攻击方法在预测每个碱基的平均准确率为88.07%,并且能够在4种可能性中进行少于21次猜测,以100%的准确率重建短序列。我们评估了我们的攻击对麦克风与DNA合成器距离的影响,并表明当麦克风放置在距离DNA合成器0.7米远的地方时,尽管存在公共房间噪声,我们的攻击方法可以达到80%以上的准确率。此外,我们重建了DNA序列,以显示具有生物医学领域知识的攻击者如何有效地使用所提出的攻击方法推导出序列的预期功能。据我们所知,这是第一个强调对用于合成DNA分子的系统进行这种攻击的可能性的方法。
{"title":"Oligo-Snoop: A Non-Invasive Side Channel Attack Against DNA Synthesis Machines","authors":"Sina Faezi, Sujit Rokka Chhetri, A. Malawade, J. Chaput, William H. Grover, P. Brisk, M. A. Faruque","doi":"10.14722/ndss.2019.23544","DOIUrl":"https://doi.org/10.14722/ndss.2019.23544","url":null,"abstract":"Synthetic biology is developing into a promising science and engineering field. One of the enabling technologies for this field is the DNA synthesizer. It allows researchers to custom-build sequences of oligonucleotides (short DNA strands) using the nucleobases: Adenine (A), Guanine (G), Cytosine (C), and Thymine (T). Incorporating these sequences into organisms can result in improved disease resistance and lifespan for plants, animals, and humans. Hence, many laboratories spend large amounts of capital researching and developing unique sequences of oligonucleotides. However, these DNA synthesizers are fully automated systems with cyber-domain processes and physical domain components. Hence, they may be prone to security breaches like any other computing system. In our work, we present a novel acoustic side-channel attack methodology which can be used on DNA synthesizers to breach their confidentiality and steal valuable oligonucleotide sequences. Our proposed attack methodology achieves an average accuracy of 88.07% in predicting each base and is able to reconstruct short sequences with 100% accuracy by making less than 21 guesses out of 4 possibilities. We evaluate our attack against the effects of the microphone’s distance from the DNA synthesizer and show that our attack methodology can achieve over 80% accuracy when the microphone is placed as far as 0.7 meters from the DNA synthesizer despite the presence of common room noise. In addition, we reconstruct DNA sequences to show how effectively an attacker with biomedical-domain knowledge would be able to derive the intended functionality of the sequence using the proposed attack methodology. To the best of our knowledge, this is the first methodology that highlights the possibility of such an attack on systems used to synthesize DNA molecules.","PeriodicalId":20444,"journal":{"name":"Proceedings 2019 Network and Distributed System Security Symposium","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77974726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 25
Measurement and Analysis of Hajime, a Peer-to-peer IoT Botnet 点对点物联网僵尸网络Hajime的测量与分析
Pub Date : 2019-01-01 DOI: 10.14722/ndss.2019.23488
Stephen Herwig, Katura Harvey, George Hughey, Richard Roberts, Dave Levin
The Internet of Things (IoT) introduces an unprecedented diversity and ubiquity to networked computing. It also introduces new attack surfaces that are a boon to attackers. The recent Mirai botnet showed the potential and power of a collection of compromised IoT devices. A new botnet, known as Hajime, targets many of the same devices as Mirai, but differs considerably in its design and operation. Hajime uses a public peer-to-peer system as its command and control infrastructure, and regularly introduces new exploits, thereby increasing its resilience. We show that Hajime’s distributed design makes it a valuable tool for better understanding IoT botnets. For instance, Hajime cleanly separates its bots into different peer groups depending on their underlying hardware architecture. Through detailed measurement—active scanning of Hajime’s peer-to-peer infrastructure and passive, longitudinal collection of root DNS backscatter traffic—we show that Hajime can be used as a lens into how IoT botnets operate, what kinds of devices they compromise, and what countries are more (or less) susceptible. Our results show that there are more compromised IoT devices than previously reported; that these devices use an assortment of CPU architectures, the popularity of which varies widely by country; that churn is high among IoT devices; and that new exploits can quickly and drastically increase the size and power of IoT botnets. Our code and data are available to assist future efforts to measure and mitigate the growing threat of IoT botnets.
物联网(IoT)为网络计算带来了前所未有的多样性和普遍性。它还引入了新的攻击面,这对攻击者来说是一个福音。最近的Mirai僵尸网络展示了一系列受损物联网设备的潜力和力量。一种名为Hajime的新型僵尸网络与Mirai攻击的设备相同,但在设计和操作上有很大不同。Hajime使用公共点对点系统作为其指挥和控制基础设施,并定期引入新的漏洞,从而提高其弹性。我们展示了Hajime的分布式设计使其成为更好地理解物联网僵尸网络的有价值的工具。例如,Hajime根据其底层硬件架构将其机器人清晰地划分为不同的对等组。通过详细的测量——主动扫描Hajime的点对点基础设施和被动、纵向收集根DNS反向散射流量——我们表明,Hajime可以作为一个镜头,了解物联网僵尸网络是如何运作的,它们会破坏什么样的设备,以及哪些国家更容易(或更少)受到影响。我们的研究结果表明,受感染的物联网设备比之前报道的要多;这些设备使用各种各样的CPU架构,其受欢迎程度因国家而异;物联网设备的流失率很高;新的漏洞可以迅速大幅增加物联网僵尸网络的规模和能力。我们的代码和数据可用于帮助未来测量和减轻物联网僵尸网络日益增长的威胁。
{"title":"Measurement and Analysis of Hajime, a Peer-to-peer IoT Botnet","authors":"Stephen Herwig, Katura Harvey, George Hughey, Richard Roberts, Dave Levin","doi":"10.14722/ndss.2019.23488","DOIUrl":"https://doi.org/10.14722/ndss.2019.23488","url":null,"abstract":"The Internet of Things (IoT) introduces an unprecedented diversity and ubiquity to networked computing. It also introduces new attack surfaces that are a boon to attackers. The recent Mirai botnet showed the potential and power of a collection of compromised IoT devices. A new botnet, known as Hajime, targets many of the same devices as Mirai, but differs considerably in its design and operation. Hajime uses a public peer-to-peer system as its command and control infrastructure, and regularly introduces new exploits, thereby increasing its resilience. We show that Hajime’s distributed design makes it a valuable tool for better understanding IoT botnets. For instance, Hajime cleanly separates its bots into different peer groups depending on their underlying hardware architecture. Through detailed measurement—active scanning of Hajime’s peer-to-peer infrastructure and passive, longitudinal collection of root DNS backscatter traffic—we show that Hajime can be used as a lens into how IoT botnets operate, what kinds of devices they compromise, and what countries are more (or less) susceptible. Our results show that there are more compromised IoT devices than previously reported; that these devices use an assortment of CPU architectures, the popularity of which varies widely by country; that churn is high among IoT devices; and that new exploits can quickly and drastically increase the size and power of IoT botnets. Our code and data are available to assist future efforts to measure and mitigate the growing threat of IoT botnets.","PeriodicalId":20444,"journal":{"name":"Proceedings 2019 Network and Distributed System Security Symposium","volume":"19 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76706867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 124
期刊
Proceedings 2019 Network and Distributed System Security Symposium
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1