Joseph D. Malone, Mohamed T. El-Haddad, Yuankai K. Tao
Optical coherence tomographic angiography (OCT-A) technologies have been primarily demonstrated on slit-lamp systems, which preclude imaging in infants, bedridden patients, or patients who are otherwise unable to be imaged upright. Current-generation OCT-A requires densely-sampled volumetric datasets for high vascular resolution imaging, but bulk motion artifacts, resulting from saccades or eye drifts, often distort anatomic features during long acquisitions. Here, we demonstrate handheld motion-artifact corrected OCT-A using spectrally encoded coherence tomography and reflectometry (SECTR). SECTR has advantageous over previously demonstrated handheld ophthalmic imagers by acquiring spatiotemporally co-registered, high-speed en face images of the retinal fundus using spectrally encoded reflectometry (SER) concurrently with OCT. The orthogonal priority acquisition axes of SER and OCT enables volumetric registration and motion-artifact compensation. We have incorporated several optomechanical improvements including novel snap-fit lens mounts for reduced size and weight and improved optical stability over our previous design. Additionally, we developed a method for reducing back reflections from a double-clad fiber by fusion-splicing a no-core fiber segment with a predefined geometry. Lastly, we demonstrate in vivo human OCT-A imaging of the optic nerve head and fovea. OCT and OCT-A images were motion-corrected using complementary motion information extracted from en face SER and cross-sectional OCT images. Here, OCT-A volumetric datasets were densely-sampled in small regions-of-interest within a large SER field-of-view to achieve high vascular resolution OCT-A while maintaining sufficient fiducials within SER images for motion registration. We believe our probe will enable point-of-care functional ophthalmic imaging.
{"title":"Handheld OCT-A using spectrally encoded coherence tomography and reflectometry (Conference Presentation)","authors":"Joseph D. Malone, Mohamed T. El-Haddad, Yuankai K. Tao","doi":"10.1117/12.2510340","DOIUrl":"https://doi.org/10.1117/12.2510340","url":null,"abstract":"Optical coherence tomographic angiography (OCT-A) technologies have been primarily demonstrated on slit-lamp systems, which preclude imaging in infants, bedridden patients, or patients who are otherwise unable to be imaged upright. Current-generation OCT-A requires densely-sampled volumetric datasets for high vascular resolution imaging, but bulk motion artifacts, resulting from saccades or eye drifts, often distort anatomic features during long acquisitions. Here, we demonstrate handheld motion-artifact corrected OCT-A using spectrally encoded coherence tomography and reflectometry (SECTR). SECTR has advantageous over previously demonstrated handheld ophthalmic imagers by acquiring spatiotemporally co-registered, high-speed en face images of the retinal fundus using spectrally encoded reflectometry (SER) concurrently with OCT. The orthogonal priority acquisition axes of SER and OCT enables volumetric registration and motion-artifact compensation. We have incorporated several optomechanical improvements including novel snap-fit lens mounts for reduced size and weight and improved optical stability over our previous design. Additionally, we developed a method for reducing back reflections from a double-clad fiber by fusion-splicing a no-core fiber segment with a predefined geometry. Lastly, we demonstrate in vivo human OCT-A imaging of the optic nerve head and fovea. OCT and OCT-A images were motion-corrected using complementary motion information extracted from en face SER and cross-sectional OCT images. Here, OCT-A volumetric datasets were densely-sampled in small regions-of-interest within a large SER field-of-view to achieve high vascular resolution OCT-A while maintaining sufficient fiducials within SER images for motion registration. We believe our probe will enable point-of-care functional ophthalmic imaging.","PeriodicalId":204875,"journal":{"name":"Ophthalmic Technologies XXIX","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133920162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shinnosuke Azuma, S. Makita, M. Miura, Toshihiro Mino, Tatsuo Yamaguchi, Y. Yasuno
Jones matrix optical coherence tomography (JM-OCT) is a functional extension of OCT. However, the clinical utility of JM-OCT is not widely accepted. Because of its hardware complexity and poorly established methods for clinical interpretation. In this study, we propose the approaches to solve the above-mentioned problems. To reduce the hardware complexity, we employ encapsulated passive polarization delay module (PPD) and encapsulated polarization diversity detection module (PDD), and develop full-function JM-OCT and simplified JM-OCT. In addition, we developed a pixel wise segmentation method for JM-OCT. The full-function JM-OCT which uses both PDD and PPD measures OCT, OCT angiography (OCTA), degree-of-polarization-uniformity (DOPU) and birefringence. The simplified JM-OCT which uses only PDD measures OCT, OCTA, and DOPU but not birefringence. In both JM-OCT systems, all the optical components are packed in a standard-sized retinal scanner. A pixel-wise segmentation method for retinal pigment epithelium (RPE) and choroidal stroma exploits multiple types of images obtained by the JM-OCT. Attenuation coefficient, OCTA, and DOPU are combined to synthesize a new artificial contrast. By applying a simple threshold to it, the target tissue is segmented. After segmenting the RPE, an en face “melano-layer thickness map” is created. A Normal subject and a pigment epithelial detachment (PED) subject are obtained by full-function JM-OCT and simplified JM-OCT. In PED subject, thickened RPE, hyper-reflective foci, and damaged RPE are correctly detected by RPE segmentation. In addition, created melano-layer thickness map has similar patterns to infrared fundus autofluorescence (NIR-AF), and it can contribute further interpretation of the NIR-AF.
{"title":"Clinical Jones-matrix OCT for diagnosis of macular disease (Conference Presentation)","authors":"Shinnosuke Azuma, S. Makita, M. Miura, Toshihiro Mino, Tatsuo Yamaguchi, Y. Yasuno","doi":"10.1117/12.2507800","DOIUrl":"https://doi.org/10.1117/12.2507800","url":null,"abstract":"Jones matrix optical coherence tomography (JM-OCT) is a functional extension of OCT. However, the clinical utility of JM-OCT is not widely accepted. Because of its hardware complexity and poorly established methods for clinical interpretation.\u0000In this study, we propose the approaches to solve the above-mentioned problems. To reduce the hardware complexity, we employ encapsulated passive polarization delay module (PPD) and encapsulated polarization diversity detection module (PDD), and develop full-function JM-OCT and simplified JM-OCT. In addition, we developed a pixel wise segmentation method for JM-OCT. \u0000The full-function JM-OCT which uses both PDD and PPD measures OCT, OCT angiography (OCTA), degree-of-polarization-uniformity (DOPU) and birefringence. The simplified JM-OCT which uses only PDD measures OCT, OCTA, and DOPU but not birefringence. In both JM-OCT systems, all the optical components are packed in a standard-sized retinal scanner.\u0000A pixel-wise segmentation method for retinal pigment epithelium (RPE) and choroidal stroma exploits multiple types of images obtained by the JM-OCT. Attenuation coefficient, OCTA, and DOPU are combined to synthesize a new artificial contrast. By applying a simple threshold to it, the target tissue is segmented. After segmenting the RPE, an en face “melano-layer thickness map” is created. \u0000A Normal subject and a pigment epithelial detachment (PED) subject are obtained by full-function JM-OCT and simplified JM-OCT. In PED subject, thickened RPE, hyper-reflective foci, and damaged RPE are correctly detected by RPE segmentation. In addition, created melano-layer thickness map has similar patterns to infrared fundus autofluorescence (NIR-AF), and it can contribute further interpretation of the NIR-AF.","PeriodicalId":204875,"journal":{"name":"Ophthalmic Technologies XXIX","volume":"439 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115613511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Batista, H. Breunig, T. Hager, B. Seitz, K. König
{"title":"Follow-up of accelerated-crosslinking non-invasively and label-free using multiphoton tomography","authors":"A. Batista, H. Breunig, T. Hager, B. Seitz, K. König","doi":"10.22028/D291-28846","DOIUrl":"https://doi.org/10.22028/D291-28846","url":null,"abstract":"","PeriodicalId":204875,"journal":{"name":"Ophthalmic Technologies XXIX","volume":"22 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114818218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
T. Son, Minha Alam, Changgeng Liu, D. Toslak, Xincheng Yao
Differential artery-vein analysis is valuable for early detection of diabetic retinopathy (DR) and other eye diseases. As a new optical coherence tomography (OCT) imaging modality, emerging OCT angiography (OCTA) provides capillary level resolution for accurate examination of retinal vasculatures. However, differential artery-vein analysis in OCTA, particularly for macular region in which blood vessels are small, is challenging. In coordination with an automatic vessel tracking algorithm, we report here the feasibility of using near infrared OCT oximetry to guide artery-vein classification in OCTA of macular region.
{"title":"Artery and vein differentiation in retinal optical coherence tomography angiography of macular region","authors":"T. Son, Minha Alam, Changgeng Liu, D. Toslak, Xincheng Yao","doi":"10.1117/12.2508918","DOIUrl":"https://doi.org/10.1117/12.2508918","url":null,"abstract":"Differential artery-vein analysis is valuable for early detection of diabetic retinopathy (DR) and other eye diseases. As a new optical coherence tomography (OCT) imaging modality, emerging OCT angiography (OCTA) provides capillary level resolution for accurate examination of retinal vasculatures. However, differential artery-vein analysis in OCTA, particularly for macular region in which blood vessels are small, is challenging. In coordination with an automatic vessel tracking algorithm, we report here the feasibility of using near infrared OCT oximetry to guide artery-vein classification in OCTA of macular region.","PeriodicalId":204875,"journal":{"name":"Ophthalmic Technologies XXIX","volume":"109 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117187266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}