首页 > 最新文献

Proceeding of the Electrical Engineering Computer Science and Informatics最新文献

英文 中文
The Utilization of Ontology to Support The Results of Association Rule Apriori 利用本体支持关联规则先验结果
Pub Date : 2018-11-01 DOI: 10.11591/eecsi.v5.1642
D. Wardani, Achmad Khusyaini
Association rule is one of the data mining techniques to find associative combinations of items. There are several algorithms including Apriori, FP Growth, and CT-Pro. One of the advantages of the Apriori algorithm is that it produces many rules. To improve its result, one of the methods is by using the semantic web technology. This work proposes how the hierarchical type of ontology can be utilized by the Apriori algorithm to improve the results. The Apriori with ontology implements the Interestingness Rule (IR) which is a parameter to determine the degree of association between combinations of items in a dataset. The series of experiments show that the proposed idea can improve the results compare to the default Apriori algorithm. Keywords—Association Rule, Apriori, Ontology, Interestingness
关联规则是一种数据挖掘技术,用于发现项目之间的关联组合。目前有Apriori、FP Growth、CT-Pro等算法。Apriori算法的优点之一是它产生许多规则。为了改善其结果,其中一种方法是使用语义web技术。这项工作提出了如何利用层次本体类型的Apriori算法来改进结果。带有本体的Apriori实现了兴趣规则(Interestingness Rule, IR),该规则是确定数据集中项目组合之间关联程度的参数。一系列的实验表明,与默认的Apriori算法相比,提出的思想可以改善结果。关键词:关联规则,先验,本体论,趣味性
{"title":"The Utilization of Ontology to Support The Results of Association Rule Apriori","authors":"D. Wardani, Achmad Khusyaini","doi":"10.11591/eecsi.v5.1642","DOIUrl":"https://doi.org/10.11591/eecsi.v5.1642","url":null,"abstract":"Association rule is one of the data mining techniques to find associative combinations of items. There are several algorithms including Apriori, FP Growth, and CT-Pro. One of the advantages of the Apriori algorithm is that it produces many rules. To improve its result, one of the methods is by using the semantic web technology. This work proposes how the hierarchical type of ontology can be utilized by the Apriori algorithm to improve the results. The Apriori with ontology implements the Interestingness Rule (IR) which is a parameter to determine the degree of association between combinations of items in a dataset. The series of experiments show that the proposed idea can improve the results compare to the default Apriori algorithm. Keywords—Association Rule, Apriori, Ontology, Interestingness","PeriodicalId":20498,"journal":{"name":"Proceeding of the Electrical Engineering Computer Science and Informatics","volume":"69 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88959817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Social Media and User Performance in Knowledge Sharing 知识共享中的社交媒体与用户绩效
Pub Date : 2018-10-01 DOI: 10.11591/eecsi.v5.1611
S. Assegaff, Akwan Sunoto, H. Hendrawan, Xaverius Sika Sika
The aimed of this study is to investigate the impact of social media utilization on the student's performances for knowledge sharing in teaching and learning progress. A research model on the basis of the Task-Technology Fit Theory and three hypotheses theory was developed for this study. Model and hypotheses then tested and validated using data obtained from a survey of respondents. The survey was conducted on students at a university in Indonesia. Of the 103 questionnaires filled out by members of the university, 75 questionnaires declared valid and used for further analysis. Data were analyzed using Partial Least Square (PLS) PLS Smart software utilizes V2. This study reveals that student performance in sharing knowledge with social media impact by technology characteristic and social media utilization.
本研究旨在探讨社交媒体使用对学生在教与学进步中知识分享表现的影响。本研究以任务-技术契合理论和三个假设理论为基础,建立了一个研究模型。然后使用从受访者调查中获得的数据对模型和假设进行测试和验证。这项调查是对印度尼西亚一所大学的学生进行的。在大学成员填写的103份问卷中,有75份被宣布有效并用于进一步分析。数据分析使用偏最小二乘(PLS) PLS智能软件利用V2。本研究发现,学生在知识分享方面的表现受技术特征和社交媒体使用的影响。
{"title":"Social Media and User Performance in Knowledge Sharing","authors":"S. Assegaff, Akwan Sunoto, H. Hendrawan, Xaverius Sika Sika","doi":"10.11591/eecsi.v5.1611","DOIUrl":"https://doi.org/10.11591/eecsi.v5.1611","url":null,"abstract":"The aimed of this study is to investigate the impact of social media utilization on the student's performances for knowledge sharing in teaching and learning progress. A research model on the basis of the Task-Technology Fit Theory and three hypotheses theory was developed for this study. Model and hypotheses then tested and validated using data obtained from a survey of respondents. The survey was conducted on students at a university in Indonesia. Of the 103 questionnaires filled out by members of the university, 75 questionnaires declared valid and used for further analysis. Data were analyzed using Partial Least Square (PLS) PLS Smart software utilizes V2. This study reveals that student performance in sharing knowledge with social media impact by technology characteristic and social media utilization.","PeriodicalId":20498,"journal":{"name":"Proceeding of the Electrical Engineering Computer Science and Informatics","volume":"12 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85359632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Proceeding of the Electrical Engineering Computer Science and Informatics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1