首页 > 最新文献

Physical Review Research最新文献

英文 中文
Topological boundary states in engineered quantum-dot molecules on the InAs(111)A surface: Odd numbers of quantum dots InAs(111)A 表面上工程量子点分子的拓扑边界态:奇数量子点
Pub Date : 2024-09-09 DOI: 10.1103/physrevresearch.6.033268
Van Dong Pham, Yi Pan, Steven C. Erwin, Felix von Oppen, Kiyoshi Kanisawa, Stefan Fölsch
Atom manipulation by scanning tunneling microscopy was used to construct quantum dots on the InAs(111)A surface. Each dot comprised six ionized indium adatoms. The positively charged adatoms create a confining potential acting on surface-state electrons, leading to the emergence of a bound state associated with the dot. By lining up the dots into N-dot chains with alternating tunnel coupling between them, quantum-dot molecules were constructed that revealed electronic boundary states as predicted by the Su-Schrieffer-Heeger (SSH) model of one-dimensional topological phases. Dot chains with odd N were constructed such that they host a single end or domain-wall state, allowing one to probe the localization of the boundary state on a given sublattice by scanning tunneling spectroscopy. We found probability density also on the forbidden sublattice together with an asymmetric energy spectrum of the chain-confined states. This deviation from the SSH model arises because the dots are charged and create a variation in on-site potential along the chain—which does not remove the boundary states but shifts their energy away from the midgap position. Our results demonstrate that topological boundary states can be created in quantum-dot arrays engineered with atomic-scale precision.
利用扫描隧道显微镜进行原子操作,在 InAs(111)A 表面构建量子点。每个点由六个电离铟原子组成。带正电荷的原子会对表面态电子产生约束电势,导致出现与点相关的束缚态。通过将这些点排成 N 个点链,并在它们之间交替进行隧道耦合,我们构建出了量子点分子,它揭示了一维拓扑相的苏-施里弗-希格(SSH)模型所预测的电子边界态。我们构建了奇数 N 的点链,使它们能够承载单一的端态或域壁态,从而可以通过扫描隧道光谱探测边界态在给定子晶格上的定位。我们发现禁用子晶格上也存在概率密度,同时链约束态的能谱也不对称。这种与 SSH 模型的偏差是由于点带电,并沿链产生了现场电势的变化--这并没有消除边界态,而是使它们的能量偏离了中隙位置。我们的研究结果表明,拓扑边界态可以在原子级精度的量子点阵列中产生。
{"title":"Topological boundary states in engineered quantum-dot molecules on the InAs(111)A surface: Odd numbers of quantum dots","authors":"Van Dong Pham, Yi Pan, Steven C. Erwin, Felix von Oppen, Kiyoshi Kanisawa, Stefan Fölsch","doi":"10.1103/physrevresearch.6.033268","DOIUrl":"https://doi.org/10.1103/physrevresearch.6.033268","url":null,"abstract":"Atom manipulation by scanning tunneling microscopy was used to construct quantum dots on the InAs(111)A surface. Each dot comprised six ionized indium adatoms. The positively charged adatoms create a confining potential acting on surface-state electrons, leading to the emergence of a bound state associated with the dot. By lining up the dots into <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>N</mi></mrow></math>-dot chains with alternating tunnel coupling between them, quantum-dot molecules were constructed that revealed electronic boundary states as predicted by the Su-Schrieffer-Heeger (SSH) model of one-dimensional topological phases. Dot chains with odd <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>N</mi></mrow></math> were constructed such that they host a single end or domain-wall state, allowing one to probe the localization of the boundary state on a given sublattice by scanning tunneling spectroscopy. We found probability density also on the forbidden sublattice together with an asymmetric energy spectrum of the chain-confined states. This deviation from the SSH model arises because the dots are charged and create a variation in on-site potential along the chain—which does not remove the boundary states but shifts their energy away from the midgap position. Our results demonstrate that topological boundary states can be created in quantum-dot arrays engineered with atomic-scale precision.","PeriodicalId":20546,"journal":{"name":"Physical Review Research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142211137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correlating light fields through disordered media across multiple degrees of freedom 多自由度无序介质中的相关光场
Pub Date : 2024-09-09 DOI: 10.1103/physrevresearch.6.033265
Louisiane Devaud, Bernhard Rauer, Simon Mauras, Stefan Rotter, Sylvain Gigan
Speckle patterns are inherent features of coherent light propagation through complex media. As a result of interference, they are sensitive to multiple experimental parameters such as the configuration of disorder or the propagating wavelength. Recent developments in wavefront shaping have made it possible to control speckle pattern statistics and correlations, for example using the concept of the transmission matrix. In this article, we address the problem of correlating scattered fields across multiple degrees of freedom. We highlight the common points between the specific techniques already demonstrated, and we propose a general framework based on the singular value decomposition of a linear combination of multiple transmission matrices. Following analytical predictions, we experimentally illustrate the technique on spectral and temporal correlations, and we show that both the amplitude and the phase of the field correlations can be tuned. Our work opens up new perspectives in speckle correlation manipulation, with potential applications in coherent control.
斑点模式是相干光在复杂介质中传播的固有特征。由于存在干涉,它们对多种实验参数(如无序配置或传播波长)非常敏感。波前整形技术的最新发展使得控制斑点图案统计和相关性成为可能,例如使用透射矩阵的概念。在本文中,我们将讨论跨多个自由度的散射场相关性问题。我们强调了已展示的具体技术之间的共同点,并提出了一个基于多个传输矩阵线性组合的奇异值分解的通用框架。根据分析预测,我们通过实验说明了频谱和时间相关性技术,并表明场相关性的振幅和相位都可以调整。我们的研究开辟了斑点相关操作的新视角,并有望应用于相干控制领域。
{"title":"Correlating light fields through disordered media across multiple degrees of freedom","authors":"Louisiane Devaud, Bernhard Rauer, Simon Mauras, Stefan Rotter, Sylvain Gigan","doi":"10.1103/physrevresearch.6.033265","DOIUrl":"https://doi.org/10.1103/physrevresearch.6.033265","url":null,"abstract":"Speckle patterns are inherent features of coherent light propagation through complex media. As a result of interference, they are sensitive to multiple experimental parameters such as the configuration of disorder or the propagating wavelength. Recent developments in wavefront shaping have made it possible to control speckle pattern statistics and correlations, for example using the concept of the transmission matrix. In this article, we address the problem of correlating scattered fields across multiple degrees of freedom. We highlight the common points between the specific techniques already demonstrated, and we propose a general framework based on the singular value decomposition of a linear combination of multiple transmission matrices. Following analytical predictions, we experimentally illustrate the technique on spectral and temporal correlations, and we show that both the amplitude and the phase of the field correlations can be tuned. Our work opens up new perspectives in speckle correlation manipulation, with potential applications in coherent control.","PeriodicalId":20546,"journal":{"name":"Physical Review Research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142211129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Flexible quantum data bus for quantum networks 量子网络的灵活量子数据总线
Pub Date : 2024-09-09 DOI: 10.1103/physrevresearch.6.033267
Julia Freund, Alexander Pirker, Wolfgang Dür
We consider multipath generation of Bell states in quantum networks, where a preprepared multipartite entangled two-dimensional cluster state serves as a resource to perform different tasks on demand. We show how to achieve parallel connections between multiple, freely chosen groups of parties by performing appropriate local measurements along a diagonal, staircase-shaped path on a two-dimensional cluster state. Remarkably, our measurement scheme preserves the entanglement structure of the cluster state such that the remaining state is again a two-dimensional cluster state. We demonstrate strategies for generating crossing, turning, and merging of multiple measurement lines along the two-dimensional cluster state. The results apply to local area as well as to long-distance networks.
我们考虑了量子网络中贝尔态的多路径生成问题,在这种网络中,一个预先准备好的多方纠缠二维簇态可作为一种资源,按需执行不同的任务。我们展示了如何通过在二维簇态上沿对角线、阶梯形路径执行适当的局部测量,在多个自由选择的当事人组之间实现并行连接。值得注意的是,我们的测量方案保留了簇状态的纠缠结构,因此剩余状态也是二维簇状态。我们展示了沿着二维簇态生成交叉、转向和合并多条测量线的策略。这些结果既适用于局域网络,也适用于长距离网络。
{"title":"Flexible quantum data bus for quantum networks","authors":"Julia Freund, Alexander Pirker, Wolfgang Dür","doi":"10.1103/physrevresearch.6.033267","DOIUrl":"https://doi.org/10.1103/physrevresearch.6.033267","url":null,"abstract":"We consider multipath generation of Bell states in quantum networks, where a preprepared multipartite entangled two-dimensional cluster state serves as a resource to perform different tasks on demand. We show how to achieve parallel connections between multiple, freely chosen groups of parties by performing appropriate local measurements along a diagonal, staircase-shaped path on a two-dimensional cluster state. Remarkably, our measurement scheme preserves the entanglement structure of the cluster state such that the remaining state is again a two-dimensional cluster state. We demonstrate strategies for generating crossing, turning, and merging of multiple measurement lines along the two-dimensional cluster state. The results apply to local area as well as to long-distance networks.","PeriodicalId":20546,"journal":{"name":"Physical Review Research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142211138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Detection of diffusion anisotropy from an individual short particle trajectory 从单个短粒子轨迹检测扩散各向异性
Pub Date : 2024-09-09 DOI: 10.1103/physrevresearch.6.033272
Kaito Takanami, Daisuke Taniguchi, Masafumi Kuroda, Sawako Enoki, Yasushi Okada, Yoshiyuki Kabashima
In parallel with advances in microscale imaging techniques, the fields of biology and materials science have focused on precisely extracting particle properties based on their diffusion behavior. Although the majority of real-world particles exhibit anisotropy, their behavior has been studied less than that of isotropic particles. In this study, we introduce a method for estimating the diffusion coefficients of individual anisotropic particles using short-trajectory data on the basis of a maximum likelihood framework. Traditional estimation techniques often use mean-squared displacement (MSD) values or other statistical measures that inherently remove angular information. Instead, we treated the angle as a latent variable and used belief propagation to estimate it while maximizing the likelihood using the expectation-maximization algorithm. Compared to conventional methods, this approach facilitates better estimation of shorter trajectories and faster rotations, as confirmed by numerical simulations and experimental data involving bacteria and quantum rods. Additionally, we performed an analytical investigation of the limits of detectability of anisotropy and provided guidelines for the experimental design. In addition to serving as a powerful tool for analyzing complex systems, the proposed method will pave the way for applying maximum likelihood methods to more complex diffusion phenomena.
在微尺度成像技术取得进步的同时,生物学和材料科学领域也将重点放在根据颗粒的扩散行为精确提取颗粒特性上。尽管现实世界中的大多数粒子都表现出各向异性,但对其行为的研究却少于对各向同性粒子的研究。在本研究中,我们介绍了一种基于最大似然框架、利用短轨迹数据估算单个各向异性粒子扩散系数的方法。传统的估算技术通常使用均方位移(MSD)值或其他统计量,这些统计量本质上会去除角度信息。取而代之的是,我们将角度视为一个潜在变量,并使用信念传播来估计它,同时使用期望最大化算法来最大化似然。与传统方法相比,这种方法能更好地估算出更短的轨迹和更快的旋转,这一点已通过数值模拟以及涉及细菌和量子棒的实验数据得到证实。此外,我们还对各向异性的可探测极限进行了分析研究,并为实验设计提供了指导。除了作为分析复杂系统的有力工具外,所提出的方法还将为把最大似然法应用于更复杂的扩散现象铺平道路。
{"title":"Detection of diffusion anisotropy from an individual short particle trajectory","authors":"Kaito Takanami, Daisuke Taniguchi, Masafumi Kuroda, Sawako Enoki, Yasushi Okada, Yoshiyuki Kabashima","doi":"10.1103/physrevresearch.6.033272","DOIUrl":"https://doi.org/10.1103/physrevresearch.6.033272","url":null,"abstract":"In parallel with advances in microscale imaging techniques, the fields of biology and materials science have focused on precisely extracting particle properties based on their diffusion behavior. Although the majority of real-world particles exhibit anisotropy, their behavior has been studied less than that of isotropic particles. In this study, we introduce a method for estimating the diffusion coefficients of individual anisotropic particles using short-trajectory data on the basis of a maximum likelihood framework. Traditional estimation techniques often use mean-squared displacement (MSD) values or other statistical measures that inherently remove angular information. Instead, we treated the angle as a latent variable and used belief propagation to estimate it while maximizing the likelihood using the expectation-maximization algorithm. Compared to conventional methods, this approach facilitates better estimation of shorter trajectories and faster rotations, as confirmed by numerical simulations and experimental data involving bacteria and quantum rods. Additionally, we performed an analytical investigation of the limits of detectability of anisotropy and provided guidelines for the experimental design. In addition to serving as a powerful tool for analyzing complex systems, the proposed method will pave the way for applying maximum likelihood methods to more complex diffusion phenomena.","PeriodicalId":20546,"journal":{"name":"Physical Review Research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142211132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Model orthogonalization and Bayesian forecast mixing via principal component analysis 通过主成分分析实现模型正交化和贝叶斯预测混合
Pub Date : 2024-09-09 DOI: 10.1103/physrevresearch.6.033266
P. Giuliani, K. Godbey, V. Kejzlar, W. Nazarewicz
One can improve predictability in the unknown domain by combining forecasts of imperfect complex computational models using a Bayesian statistical machine learning framework. In many cases, however, the models used in the mixing process are similar. In addition to contaminating the model space, the existence of such similar, or even redundant, models during the multimodeling process can result in misinterpretation of results and deterioration of predictive performance. In this paper we describe a method based on the principal component analysis that eliminates model redundancy. We show that by adding model orthogonalization to the proposed Bayesian model combination framework, one can arrive at better prediction accuracy and reach excellent uncertainty quantification performance.
人们可以利用贝叶斯统计机器学习框架,将不完善的复杂计算模型的预测结合起来,从而提高未知领域的可预测性。然而,在许多情况下,混合过程中使用的模型是相似的。在多模型过程中,除了会污染模型空间外,这种相似甚至冗余模型的存在还会导致对结果的误读和预测性能的下降。本文介绍了一种基于主成分分析的消除模型冗余的方法。我们的研究表明,通过在所提出的贝叶斯模型组合框架中加入模型正交化,可以获得更好的预测精度和出色的不确定性量化性能。
{"title":"Model orthogonalization and Bayesian forecast mixing via principal component analysis","authors":"P. Giuliani, K. Godbey, V. Kejzlar, W. Nazarewicz","doi":"10.1103/physrevresearch.6.033266","DOIUrl":"https://doi.org/10.1103/physrevresearch.6.033266","url":null,"abstract":"One can improve predictability in the unknown domain by combining forecasts of imperfect complex computational models using a Bayesian statistical machine learning framework. In many cases, however, the models used in the mixing process are similar. In addition to contaminating the model space, the existence of such similar, or even redundant, models during the multimodeling process can result in misinterpretation of results and deterioration of predictive performance. In this paper we describe a method based on the principal component analysis that eliminates model redundancy. We show that by adding model orthogonalization to the proposed Bayesian model combination framework, one can arrive at better prediction accuracy and reach excellent uncertainty quantification performance.","PeriodicalId":20546,"journal":{"name":"Physical Review Research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142211140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Entanglement membrane in exactly solvable lattice models 精确可解晶格模型中的纠缠膜
Pub Date : 2024-09-09 DOI: 10.1103/physrevresearch.6.033271
Michael A. Rampp, Suhail A. Rather, Pieter W. Claeys
Entanglement membrane theory is an effective coarse-grained description of entanglement dynamics and operator growth in chaotic quantum many-body systems. The fundamental quantity characterizing the membrane is the entanglement line tension. However, determining the entanglement line tension for microscopic models is in general exponentially difficult. We compute the entanglement line tension in a recently introduced class of exactly solvable yet chaotic unitary circuits, so-called generalized dual-unitary circuits, obtaining a nontrivial form that gives rise to a hierarchy of velocity scales with vE<vB. For the lowest level of the hierarchy, L¯2 circuits, the entanglement line tension can be computed entirely, while for the higher levels the solvability is reduced to certain regions in spacetime. This partial solvability enables us to place bounds on the entanglement velocity. We find that L¯2 circuits saturate certain bounds on entanglement growth that are also saturated in holographic models. Furthermore, we relate the entanglement line tension to temporal entanglement and correlation functions. We also develop methods of constructing generalized dual-unitary gates, including constructions based on complex Hadamard matrices that exhibit additional solvability properties and constructions that display behavior unique to local dimension greater than or equal to three. Our results shed light on entanglement membrane theory in microscopic Floquet lattice models and enable us to perform nontrivial checks on the validity of its predictions by comparison to exact and numerical calculations. Moreover, they demonstrate that generalized dual-unitary circuits display a more generic form of information dynamics than dual-unitary circuits.
纠缠膜理论是对混沌量子多体系统中纠缠动力学和算子增长的有效粗粒度描述。表征膜的基本量是纠缠线张力。然而,确定微观模型的纠缠线张力一般都是指数级的困难。我们计算了最近引入的一类精确可解但混乱的单元电路(即所谓的广义双单元电路)中的纠缠线张力,得到了一种非微观形式,它产生了一个速度尺度为 vE<vB 的层次结构。对于层次结构的最底层,即 L¯2 电路,纠缠线张力可以完全计算出来,而对于更高层次的电路,可解性则被降低到时空中的某些区域。这种部分可解性使我们能够确定纠缠速度的边界。我们发现,L¯2 电路使纠缠增长的某些界限达到饱和,而这些界限在全息模型中也是饱和的。此外,我们还将纠缠线张力与时间纠缠和相关函数联系起来。我们还开发了构建广义二元统一门的方法,包括基于复杂哈达玛矩阵的构建,这种构建表现出额外的可解性,并显示出局部维度大于或等于三的独特行为。我们的结果揭示了微观浮凸晶格模型中的纠缠膜理论,并使我们能够通过与精确计算和数值计算的比较,对其预测的有效性进行非微观检查。此外,它们还证明了广义双单元电路比双单元电路显示出更通用的信息动力学形式。
{"title":"Entanglement membrane in exactly solvable lattice models","authors":"Michael A. Rampp, Suhail A. Rather, Pieter W. Claeys","doi":"10.1103/physrevresearch.6.033271","DOIUrl":"https://doi.org/10.1103/physrevresearch.6.033271","url":null,"abstract":"Entanglement membrane theory is an effective coarse-grained description of entanglement dynamics and operator growth in chaotic quantum many-body systems. The fundamental quantity characterizing the membrane is the entanglement line tension. However, determining the entanglement line tension for microscopic models is in general exponentially difficult. We compute the entanglement line tension in a recently introduced class of exactly solvable yet chaotic unitary circuits, so-called generalized dual-unitary circuits, obtaining a nontrivial form that gives rise to a hierarchy of velocity scales with <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi>v</mi><mi>E</mi></msub><mo>&lt;</mo><msub><mi>v</mi><mi>B</mi></msub></mrow></math>. For the lowest level of the hierarchy, <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mover accent=\"true\"><mi mathvariant=\"script\">L</mi><mo>¯</mo></mover><mn>2</mn></msub></math> circuits, the entanglement line tension can be computed entirely, while for the higher levels the solvability is reduced to certain regions in spacetime. This partial solvability enables us to place bounds on the entanglement velocity. We find that <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mover accent=\"true\"><mi mathvariant=\"script\">L</mi><mo>¯</mo></mover><mn>2</mn></msub></math> circuits saturate certain bounds on entanglement growth that are also saturated in holographic models. Furthermore, we relate the entanglement line tension to temporal entanglement and correlation functions. We also develop methods of constructing generalized dual-unitary gates, including constructions based on complex Hadamard matrices that exhibit additional solvability properties and constructions that display behavior unique to local dimension greater than or equal to three. Our results shed light on entanglement membrane theory in microscopic Floquet lattice models and enable us to perform nontrivial checks on the validity of its predictions by comparison to exact and numerical calculations. Moreover, they demonstrate that generalized dual-unitary circuits display a more generic form of information dynamics than dual-unitary circuits.","PeriodicalId":20546,"journal":{"name":"Physical Review Research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142211135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aging transitions of multimodal oscillators in multilayer networks 多层网络中多模态振荡器的老化转换
Pub Date : 2024-09-09 DOI: 10.1103/physrevresearch.6.033269
Uroš Barać, Matjaž Perc, Marko Gosak
When individual oscillators age and become inactive, the collective dynamics of coupled oscillators is often affected as well. Depending on the fraction of inactive oscillators or cascading failures that percolate from crucial information exchange points, the critical shift toward macroscopic inactivity in coupled oscillator networks is known as the aging transition. Here, we study this phenomenon in two overlayed square lattices that together constitute a multilayer network, whereby one layer is populated with slow Poincaré oscillators and the other with fast Rulkov neurons. Moreover, in this multimodal setup, the excitability of fast oscillators is influenced by the phase of slow oscillators that are gradually inactivated toward the aging transition in the fast layer. Through extensive numerical simulations, we find that the progressive inactivation of oscillators in the slow layer nontrivially affects the collective oscillatory activity and the aging transitions in the fast layer. Most counterintuitively, we show that it is possible for the intensity of oscillatory activity in the fast layer to progressively increase to up to 100%, even when up to 60% of units in the slow oscillatory layer are inactivated. We explain our results with a numerical analysis of collective behavior in individual layers, and we discuss their implications for biological systems.
当单个振荡器老化并变得不活跃时,耦合振荡器的集体动力学通常也会受到影响。根据不活跃振荡器的比例或从关键信息交换点渗透出来的级联故障,耦合振荡器网络向宏观不活跃的临界转变被称为老化转变。在这里,我们在两个重叠的方形晶格中研究了这一现象,它们共同构成了一个多层网络,其中一层布满了慢速波恩卡雷振荡器,而另一层则布满了快速鲁尔科夫神经元。此外,在这种多模态设置中,快速振荡器的兴奋性受到慢速振荡器相位的影响,而慢速振荡器在快速层的老化转换过程中逐渐失活。通过大量的数值模拟,我们发现慢速层振荡器的逐渐失活会对快速层的集体振荡活动和老化转换产生非对称的影响。与直觉相反的是,我们发现即使慢速振荡层中多达 60% 的振荡器失活,快速振荡层中的振荡活动强度也有可能逐渐增加到 100%。我们通过对单个层的集体行为进行数值分析来解释我们的结果,并讨论它们对生物系统的影响。
{"title":"Aging transitions of multimodal oscillators in multilayer networks","authors":"Uroš Barać, Matjaž Perc, Marko Gosak","doi":"10.1103/physrevresearch.6.033269","DOIUrl":"https://doi.org/10.1103/physrevresearch.6.033269","url":null,"abstract":"When individual oscillators age and become inactive, the collective dynamics of coupled oscillators is often affected as well. Depending on the fraction of inactive oscillators or cascading failures that percolate from crucial information exchange points, the critical shift toward macroscopic inactivity in coupled oscillator networks is known as the aging transition. Here, we study this phenomenon in two overlayed square lattices that together constitute a multilayer network, whereby one layer is populated with slow Poincaré oscillators and the other with fast Rulkov neurons. Moreover, in this multimodal setup, the excitability of fast oscillators is influenced by the phase of slow oscillators that are gradually inactivated toward the aging transition in the fast layer. Through extensive numerical simulations, we find that the progressive inactivation of oscillators in the slow layer nontrivially affects the collective oscillatory activity and the aging transitions in the fast layer. Most counterintuitively, we show that it is possible for the intensity of oscillatory activity in the fast layer to progressively increase to up to 100%, even when up to 60% of units in the slow oscillatory layer are inactivated. We explain our results with a numerical analysis of collective behavior in individual layers, and we discuss their implications for biological systems.","PeriodicalId":20546,"journal":{"name":"Physical Review Research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142211136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Probabilistic inference in the era of tensor networks and differential programming 张量网络和微分编程时代的概率推理
Pub Date : 2024-09-06 DOI: 10.1103/physrevresearch.6.033261
Martin Roa-Villescas, Xuanzhao Gao, Sander Stuijk, Henk Corporaal, Jin-Guo Liu
Probabilistic inference is a fundamental task in modern machine learning. Recent advances in tensor network (TN) contraction algorithms have enabled the development of better exact inference methods. However, many common inference tasks in probabilistic graphical models (PGMs) still lack corresponding TN-based adaptations. In this paper, we advance the connection between PGMs and TNs by formulating and implementing tensor-based solutions for the following inference tasks: (A) computing the partition function, (B) computing the marginal probability of sets of variables in the model, (C) determining the most likely assignment to a set of variables, (D) the same as (C) but after having marginalized a different set of variables, and (E) generating samples from a learned probability distribution using a generalized method. Our study is motivated by recent technical advances in the fields of quantum circuit simulation, quantum many-body physics, and statistical physics. Through an experimental evaluation, we demonstrate that the integration of these quantum technologies with a series of algorithms introduced in this study significantly improves the performance efficiency of existing methods for solving probabilistic inference tasks.
概率推理是现代机器学习的一项基本任务。张量网络(TN)收缩算法的最新进展使人们能够开发出更好的精确推理方法。然而,概率图形模型(PGM)中的许多常见推理任务仍然缺乏相应的基于 TN 的适配方法。在本文中,我们为以下推理任务制定并实现了基于张量的解决方案,从而推进了 PGM 与 TN 之间的联系:(A) 计算分区函数,(B) 计算模型中变量集的边际概率,(C) 确定变量集最可能的分配,(D) 与 (C) 相同,但在对不同变量集进行边际化之后,(E) 使用广义方法从学习到的概率分布生成样本。我们的研究受到量子电路仿真、量子多体物理学和统计物理学领域最新技术进步的推动。通过实验评估,我们证明将这些量子技术与本研究中引入的一系列算法相结合,可显著提高现有方法解决概率推理任务的性能效率。
{"title":"Probabilistic inference in the era of tensor networks and differential programming","authors":"Martin Roa-Villescas, Xuanzhao Gao, Sander Stuijk, Henk Corporaal, Jin-Guo Liu","doi":"10.1103/physrevresearch.6.033261","DOIUrl":"https://doi.org/10.1103/physrevresearch.6.033261","url":null,"abstract":"Probabilistic inference is a fundamental task in modern machine learning. Recent advances in tensor network (TN) contraction algorithms have enabled the development of better exact inference methods. However, many common inference tasks in probabilistic graphical models (PGMs) still lack corresponding TN-based adaptations. In this paper, we advance the connection between PGMs and TNs by formulating and implementing tensor-based solutions for the following inference tasks: (A) computing the partition function, (B) computing the marginal probability of sets of variables in the model, (C) determining the most likely assignment to a set of variables, (D) the same as (C) but after having marginalized a different set of variables, and (E) generating samples from a learned probability distribution using a generalized method. Our study is motivated by recent technical advances in the fields of quantum circuit simulation, quantum many-body physics, and statistical physics. Through an experimental evaluation, we demonstrate that the integration of these quantum technologies with a series of algorithms introduced in this study significantly improves the performance efficiency of existing methods for solving probabilistic inference tasks.","PeriodicalId":20546,"journal":{"name":"Physical Review Research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142211163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Linking network- and neuron-level correlations by renormalized field theory 用重正化场理论将网络和神经元级相关性联系起来
Pub Date : 2024-09-06 DOI: 10.1103/physrevresearch.6.033264
Michael Dick, Alexander van Meegen, Moritz Helias
It is frequently hypothesized that cortical networks operate close to a critical point. Advantages of criticality include rich dynamics well suited for computation and critical slowing down, which may offer a mechanism for dynamic memory. However, mean-field approximations, while versatile and popular, inherently neglect the fluctuations responsible for such critical dynamics. Thus, a renormalized theory is necessary. We consider the Sompolinsky-Crisanti-Sommers model which displays a well studied chaotic as well as a magnetic transition. Based on the analog of a quantum effective action, we derive self-consistency equations for the first two renormalized Greens functions. Their self-consistent solution reveals a coupling between the population level activity and single neuron heterogeneity. The quantitative theory explains the population autocorrelation function, the single-unit autocorrelation function with its multiple temporal scales, and cross correlations.
人们经常假设大脑皮层网络在临界点附近运行。临界点的优点包括丰富的动态性,非常适合计算和临界减速,这可能为动态记忆提供了一种机制。然而,均场近似虽然用途广泛且广受欢迎,但本质上却忽略了造成这种临界动态的波动。因此,重规范化理论是必要的。我们考虑了 Sompolinsky-Crisanti-Sommers 模型,该模型显示了一种经过深入研究的混沌和磁性转变。基于量子有效作用的模拟,我们推导出了前两个重规范化格林函数的自洽方程。它们的自洽解揭示了群体水平活动与单个神经元异质性之间的耦合。定量理论解释了群体自相关函数、单个神经元自相关函数及其多时间尺度和交叉相关性。
{"title":"Linking network- and neuron-level correlations by renormalized field theory","authors":"Michael Dick, Alexander van Meegen, Moritz Helias","doi":"10.1103/physrevresearch.6.033264","DOIUrl":"https://doi.org/10.1103/physrevresearch.6.033264","url":null,"abstract":"It is frequently hypothesized that cortical networks operate close to a critical point. Advantages of criticality include rich dynamics well suited for computation and critical slowing down, which may offer a mechanism for dynamic memory. However, mean-field approximations, while versatile and popular, inherently neglect the fluctuations responsible for such critical dynamics. Thus, a renormalized theory is necessary. We consider the Sompolinsky-Crisanti-Sommers model which displays a well studied chaotic as well as a magnetic transition. Based on the analog of a quantum effective action, we derive self-consistency equations for the first two renormalized Greens functions. Their self-consistent solution reveals a coupling between the population level activity and single neuron heterogeneity. The quantitative theory explains the population autocorrelation function, the single-unit autocorrelation function with its multiple temporal scales, and cross correlations.","PeriodicalId":20546,"journal":{"name":"Physical Review Research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142211159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Popping: A granular transition 爆裂颗粒过渡
Pub Date : 2024-09-06 DOI: 10.1103/physrevresearch.6.033255
A. Ghosh, M. M. Bandi, S. Ghosh
In experiments conducted on a weakly confined 2D assembly of deformable cylinders subject ed to rapid in-plane shear loading, we have identified the key obstacle in achieving compaction. This obstacle involves a dynamic transition between mechanical instabilities, progressing from in-plane rearrangement to out-of-plane popping as the density increases. The popping effect reinforces the frictional constraints from the confining wall and restricts particle mobility, impeding the system from attaining greater compaction. We quantify this transition and demonstrate that interparticle friction contributes to smoothing the transition.
在对受到快速面内剪切加载的弱约束二维可变形圆柱体组件进行的实验中,我们发现了实现压实的关键障碍。这一障碍涉及机械不稳定性之间的动态过渡,随着密度的增加,从平面内的重新排列发展到平面外的爆裂。爆裂效应加强了来自密闭壁的摩擦约束,限制了颗粒的流动性,阻碍了系统实现更大的压实。我们对这一转变进行了量化,并证明粒子间的摩擦有助于平滑这一转变。
{"title":"Popping: A granular transition","authors":"A. Ghosh, M. M. Bandi, S. Ghosh","doi":"10.1103/physrevresearch.6.033255","DOIUrl":"https://doi.org/10.1103/physrevresearch.6.033255","url":null,"abstract":"In experiments conducted on a weakly confined 2D assembly of deformable cylinders subject ed to rapid in-plane shear loading, we have identified the key obstacle in achieving compaction. This obstacle involves a dynamic transition between mechanical instabilities, progressing from in-plane rearrangement to out-of-plane popping as the density increases. The popping effect reinforces the frictional constraints from the confining wall and restricts particle mobility, impeding the system from attaining greater compaction. We quantify this transition and demonstrate that interparticle friction contributes to smoothing the transition.","PeriodicalId":20546,"journal":{"name":"Physical Review Research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142211167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Physical Review Research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1