Pub Date : 2023-10-19DOI: 10.1177/09544054231196597
Jonas-Frederick Hochrein, Christian Güntner, Michael Otto, Karsten Stahl
Face gear drives are special angular gears in which an involute pinion and face gear wheel mesh. They enable high transmission ratios in small construction spaces. The face gear is typically manufactured by gear hobbing or gear shaping using an involute pinion-type cutter. Face gear drives with identical pinion and cutter parameters form a conjugated pairing. Conjugate pairings tend to have unfavourable edge contact, which is usually counteracted by geometric flank modifications during manufacture. A common modification technique is the crowning of the flanks. This usually requires changes to the machine kinematics. Due to their geometry and manufacturing process, face gear drives offer an easy way to achieve a crowned contact pattern in the facewidth direction without changing the machine kinematics, making them promising for multiple applications. Using a pinion with fewer teeth than the cutter results in a crowned contact pattern (lead crowning). The position of the contact point along the facewidth can be adjusted by varying the profile shift coefficient of the pinion or the cutter. This paper presents a straightforward method for selecting proper design parameters depending on the contact distances. The contact distances can be estimated analytically to evaluate the chosen design parameters. Example calculations are given as proof of the developed method presented in this paper. Overall, this study offers a novel evaluation strategy for an ideal cutter/pinion design for manufacturing durable face gear drives with optimised contact patterns.
{"title":"Face gear drive manufacturing: Pinion/cutter design for a crowned contact pattern","authors":"Jonas-Frederick Hochrein, Christian Güntner, Michael Otto, Karsten Stahl","doi":"10.1177/09544054231196597","DOIUrl":"https://doi.org/10.1177/09544054231196597","url":null,"abstract":"Face gear drives are special angular gears in which an involute pinion and face gear wheel mesh. They enable high transmission ratios in small construction spaces. The face gear is typically manufactured by gear hobbing or gear shaping using an involute pinion-type cutter. Face gear drives with identical pinion and cutter parameters form a conjugated pairing. Conjugate pairings tend to have unfavourable edge contact, which is usually counteracted by geometric flank modifications during manufacture. A common modification technique is the crowning of the flanks. This usually requires changes to the machine kinematics. Due to their geometry and manufacturing process, face gear drives offer an easy way to achieve a crowned contact pattern in the facewidth direction without changing the machine kinematics, making them promising for multiple applications. Using a pinion with fewer teeth than the cutter results in a crowned contact pattern (lead crowning). The position of the contact point along the facewidth can be adjusted by varying the profile shift coefficient of the pinion or the cutter. This paper presents a straightforward method for selecting proper design parameters depending on the contact distances. The contact distances can be estimated analytically to evaluate the chosen design parameters. Example calculations are given as proof of the developed method presented in this paper. Overall, this study offers a novel evaluation strategy for an ideal cutter/pinion design for manufacturing durable face gear drives with optimised contact patterns.","PeriodicalId":20663,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","volume":"54 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135778816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-19DOI: 10.1177/09544054231200543
Li-Chih Wang, Kung-Ming Lan, Kang-Chu Fan
Facing the trend of Industry 4.0, the cloud-based supervisory control and data acquisition (SCADA) system employing cloud computing and IoT technology can help the manufacturing industry reduce software investment and system maintenance costs. However, manufacturers may need to install new sensors and controllers, the connection of SCADA system and shop floor machine controller, monitoring dashboard design and implementation usually need to outsource to an experienced system integration company, which may impede medium-sized manufacturing enterprises (SMEs). This paper aims to develop a cloud-based intelligent machine monitoring and control system (CIM-MCS) framework, the service structure, and approach to deploying the CIM-MCS in a public cloud infrastructure platform and service provider. The package diagram is proposed for building the CIM-MCS’s virtual factory model to improve modeling efficiency and data stability. CIM-MCS and its SCADA application in a leading automatic filling and packaging production line show that the CIM-MCS is easy to implement. The transmission time is short and acceptable for practical application. The integration of CIM-MCS with a cloud-based advanced planning scheduling system has the advantage of real-time monitoring, production progress reporting, scheduling, and dispatching and achieves the goal of anytime, anywhere, anyone, and any platform operating an intelligent factory.
面对工业4.0的趋势,采用云计算和物联网技术的基于云的SCADA (supervisory control and data acquisition)系统可以帮助制造业减少软件投资和系统维护成本。然而,制造商可能需要安装新的传感器和控制器,SCADA系统与车间机器控制器的连接,监控仪表板的设计和实现通常需要外包给有经验的系统集成公司,这可能会阻碍中型制造企业(sme)。本文旨在开发基于云的智能机器监控系统(CIM-MCS)框架、服务结构以及在公共云基础设施平台和服务提供商中部署CIM-MCS的方法。为了提高建模效率和数据的稳定性,提出了构建CIM-MCS虚拟工厂模型的封装图。CIM-MCS及其SCADA在国内领先的自动灌装包装生产线上的应用表明,CIM-MCS易于实现。传输时间短,适合实际应用。CIM-MCS与基于云的先进计划调度系统集成,具有实时监控、生产进度报告、调度调度等优势,实现了随时随地、任何人、任何平台运营智能工厂的目标。
{"title":"Development of a cloud intelligent machine monitoring and control system","authors":"Li-Chih Wang, Kung-Ming Lan, Kang-Chu Fan","doi":"10.1177/09544054231200543","DOIUrl":"https://doi.org/10.1177/09544054231200543","url":null,"abstract":"Facing the trend of Industry 4.0, the cloud-based supervisory control and data acquisition (SCADA) system employing cloud computing and IoT technology can help the manufacturing industry reduce software investment and system maintenance costs. However, manufacturers may need to install new sensors and controllers, the connection of SCADA system and shop floor machine controller, monitoring dashboard design and implementation usually need to outsource to an experienced system integration company, which may impede medium-sized manufacturing enterprises (SMEs). This paper aims to develop a cloud-based intelligent machine monitoring and control system (CIM-MCS) framework, the service structure, and approach to deploying the CIM-MCS in a public cloud infrastructure platform and service provider. The package diagram is proposed for building the CIM-MCS’s virtual factory model to improve modeling efficiency and data stability. CIM-MCS and its SCADA application in a leading automatic filling and packaging production line show that the CIM-MCS is easy to implement. The transmission time is short and acceptable for practical application. The integration of CIM-MCS with a cloud-based advanced planning scheduling system has the advantage of real-time monitoring, production progress reporting, scheduling, and dispatching and achieves the goal of anytime, anywhere, anyone, and any platform operating an intelligent factory.","PeriodicalId":20663,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","volume":"339 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135730659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-19DOI: 10.1177/09544054231202889
K Manjunath, Suman Tewary, Neha Khatri, Kai Cheng
Ultra-precision machining (UPM) of Ti-6Al-4V alloy is widely regarded as a challenging material processing due to excessive tool wear and chemical reactivity of the tool and workpiece. Tool wear has a significant influence on the surface quality and also causes damage to the substrate. Therefore, it is critical to consider the tool condition during diamond turning, especially as precision machining moves toward intelligent systems. Consequently, there is a need for effective ways for in-process tool wear monitoring in UPM. This study aims to monitor the diamond tool wear using time-frequency-based wavelet analysis on vibrational signals acquired during the machining of Additively Manufactured (AM) Ti6Al4V alloy. The analysis employed Daubechies wavelet (db4, level 8) to establish a correlation between the Standard Deviation (SD) of the magnitude in the decomposed vibrational signal obtained from both the fresh and used tools. The analysis revealed that at a feed rate of 1 mm/min, the change in SD is 32.3% whereas at a feed rate of 5 mm/min, the change in SD is 8.4%. Furthermore, the flank wear and microfractures are observed using a scanning electron microscope on the respective flank and rake face of the diamond tool.
{"title":"Discrete wavelet transforms analysis of vibration signals for correlating tool wear in diamond turning of additive manufactured Ti-6Al-4V alloy","authors":"K Manjunath, Suman Tewary, Neha Khatri, Kai Cheng","doi":"10.1177/09544054231202889","DOIUrl":"https://doi.org/10.1177/09544054231202889","url":null,"abstract":"Ultra-precision machining (UPM) of Ti-6Al-4V alloy is widely regarded as a challenging material processing due to excessive tool wear and chemical reactivity of the tool and workpiece. Tool wear has a significant influence on the surface quality and also causes damage to the substrate. Therefore, it is critical to consider the tool condition during diamond turning, especially as precision machining moves toward intelligent systems. Consequently, there is a need for effective ways for in-process tool wear monitoring in UPM. This study aims to monitor the diamond tool wear using time-frequency-based wavelet analysis on vibrational signals acquired during the machining of Additively Manufactured (AM) Ti6Al4V alloy. The analysis employed Daubechies wavelet (db4, level 8) to establish a correlation between the Standard Deviation (SD) of the magnitude in the decomposed vibrational signal obtained from both the fresh and used tools. The analysis revealed that at a feed rate of 1 mm/min, the change in SD is 32.3% whereas at a feed rate of 5 mm/min, the change in SD is 8.4%. Furthermore, the flank wear and microfractures are observed using a scanning electron microscope on the respective flank and rake face of the diamond tool.","PeriodicalId":20663,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","volume":"33 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135778514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-19DOI: 10.1177/09544054231202085
Yongsheng Du, Mingming Lu, Jieqiong Lin, Zhimin Zhu, Qiang Gao
Elliptical vibration assisted cutting (EVAC) is gradually being one of the most potential machining methods for difficult to machine materials. However, the elliptical trajectory causes periodic residual traces on machined surface. A novel quasi-intermittent vibration assisted swing cutting (QVASC) device driven by two piezoelectric actuators is proposed to reduce the residual traces between adjacent paths and improve surface quality. An X-shaped flexure hinge was used to suppress the mutual interference between two driving shafts and realize kinematic decoupling. The mechanical configuration and geometric parameters of the proposed device were designed based on the analyzing of kinematics, dynamics, and flexible characteristics. The effectiveness of the proposed device was verified by finite element analysis and off-line performance test. Tests results show that the maximum coupling ratio of motion axis, maximum motion stroke, and minimum resolution of QVASC device are 1.65%, 19.943 μm, and 9.55 nm, which are satisfied with the design and machining requirements. Finally, systematic turning experiments were carried out to verify the effectiveness of the proposed device in restraining cutting residual traces. The experimental results indicate that the proposed device can effectively inhibit the generation of periodic residual traces, which validates the feasibility of the QVASC device.
{"title":"A novel quasi-intermittent vibration assisted swing cutting device: Design and experimental investigation","authors":"Yongsheng Du, Mingming Lu, Jieqiong Lin, Zhimin Zhu, Qiang Gao","doi":"10.1177/09544054231202085","DOIUrl":"https://doi.org/10.1177/09544054231202085","url":null,"abstract":"Elliptical vibration assisted cutting (EVAC) is gradually being one of the most potential machining methods for difficult to machine materials. However, the elliptical trajectory causes periodic residual traces on machined surface. A novel quasi-intermittent vibration assisted swing cutting (QVASC) device driven by two piezoelectric actuators is proposed to reduce the residual traces between adjacent paths and improve surface quality. An X-shaped flexure hinge was used to suppress the mutual interference between two driving shafts and realize kinematic decoupling. The mechanical configuration and geometric parameters of the proposed device were designed based on the analyzing of kinematics, dynamics, and flexible characteristics. The effectiveness of the proposed device was verified by finite element analysis and off-line performance test. Tests results show that the maximum coupling ratio of motion axis, maximum motion stroke, and minimum resolution of QVASC device are 1.65%, 19.943 μm, and 9.55 nm, which are satisfied with the design and machining requirements. Finally, systematic turning experiments were carried out to verify the effectiveness of the proposed device in restraining cutting residual traces. The experimental results indicate that the proposed device can effectively inhibit the generation of periodic residual traces, which validates the feasibility of the QVASC device.","PeriodicalId":20663,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135666663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-18DOI: 10.1177/09544054231205120
İsmail Bayar, Mustafa Özgür Öteyaka, Ersin Çakir, Mustafa Ulutan
Wire arc additive manufacturing (WAAM) has recently been widely used to produce different materials. The present study fabricated AISI 304 stainless steel parts using the Plasma-WAAM (P-WAAM) method. FeCrC and SiC microparticles were added to enhance the corrosion properties of additive-manufactured (AM) AISI 304. The corrosion behaviors of the samples were studied in the 3.5 wt.% NaCl solution using electrochemical techniques. The results show that additively manufactured AISI 304 sample microstructure consisted of austenitic and δ-ferrite phases in the form of lathy and skeletal. The electrochemical results showed that the 304-WAAM sample open circuit potential (Eocp) was −180 mV and slightly more cathodic than the 304-NT sample. The Eocp decreased by 69 and 145 mV in the 304-FeCr and 304-SiC samples, respectively, compared to the 304-WAAM sample. The polarization resistance of the WAAM sample was triple compared to the reinforced with microparticles WAAM sample due to lower galvanic activity. In addition, the corrosion resistance was investigated by impedance technique, and it was found that the WAAM 304 without reinforcement had a better protective film with a larger semi-circle capacitive loop.
{"title":"Corrosion behavior of SiC and FeCrC reinforced AISI 304 components fabricated by plasma wire arc additive manufacturing (P-WAAM)","authors":"İsmail Bayar, Mustafa Özgür Öteyaka, Ersin Çakir, Mustafa Ulutan","doi":"10.1177/09544054231205120","DOIUrl":"https://doi.org/10.1177/09544054231205120","url":null,"abstract":"Wire arc additive manufacturing (WAAM) has recently been widely used to produce different materials. The present study fabricated AISI 304 stainless steel parts using the Plasma-WAAM (P-WAAM) method. FeCrC and SiC microparticles were added to enhance the corrosion properties of additive-manufactured (AM) AISI 304. The corrosion behaviors of the samples were studied in the 3.5 wt.% NaCl solution using electrochemical techniques. The results show that additively manufactured AISI 304 sample microstructure consisted of austenitic and δ-ferrite phases in the form of lathy and skeletal. The electrochemical results showed that the 304-WAAM sample open circuit potential (Eocp) was −180 mV and slightly more cathodic than the 304-NT sample. The Eocp decreased by 69 and 145 mV in the 304-FeCr and 304-SiC samples, respectively, compared to the 304-WAAM sample. The polarization resistance of the WAAM sample was triple compared to the reinforced with microparticles WAAM sample due to lower galvanic activity. In addition, the corrosion resistance was investigated by impedance technique, and it was found that the WAAM 304 without reinforcement had a better protective film with a larger semi-circle capacitive loop.","PeriodicalId":20663,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","volume":"67 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135889001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-30DOI: 10.1177/09544054231202892
Hao Xu, Xiang Cheng, Guangming Zheng, Mingze Tang, Huanbao Liu
Microscale parts made of Polyether-Ether-Ketone (PEEK) are widely used in biomedical, aerospace, and manufacturing industries. The formation mechanism of the chip and machining quality of PEEK are closely related during the micromilling process. However, they have not been sufficiently studied yet. Therefore, the chip shape during the micromilling process is investigated in this research to gain an in-depth understanding of the micromilling process of PEEK. Firstly, a finite-element simulation model is constructed and used to investigate the relationships of feed speed in relation to strain rate and chip shape. Secondly, the chip shape is classified from the experimental results and process intervals are explored corresponding to each kind of chip shape. Then, the relationships between the chip shape and evaluation indexes (milling force F, maximum cutting temperature T max , surface roughness R a ) are investigated. It turns out that four main types of chip shapes are produced during the micromilling process of PEEK, namely, the flake chip, the ribbon chip, the curl chip, and the broken chip. Different kinds of chip shapes can be obtained by controlling the process parameters during the micromilling process. The stability of the cutting process can be judged and the machining quality can be initially discerned based on the chip shapes.
{"title":"Study on the chip shape for micromilling of Polyether-Ether-Ketone","authors":"Hao Xu, Xiang Cheng, Guangming Zheng, Mingze Tang, Huanbao Liu","doi":"10.1177/09544054231202892","DOIUrl":"https://doi.org/10.1177/09544054231202892","url":null,"abstract":"Microscale parts made of Polyether-Ether-Ketone (PEEK) are widely used in biomedical, aerospace, and manufacturing industries. The formation mechanism of the chip and machining quality of PEEK are closely related during the micromilling process. However, they have not been sufficiently studied yet. Therefore, the chip shape during the micromilling process is investigated in this research to gain an in-depth understanding of the micromilling process of PEEK. Firstly, a finite-element simulation model is constructed and used to investigate the relationships of feed speed in relation to strain rate and chip shape. Secondly, the chip shape is classified from the experimental results and process intervals are explored corresponding to each kind of chip shape. Then, the relationships between the chip shape and evaluation indexes (milling force F, maximum cutting temperature T max , surface roughness R a ) are investigated. It turns out that four main types of chip shapes are produced during the micromilling process of PEEK, namely, the flake chip, the ribbon chip, the curl chip, and the broken chip. Different kinds of chip shapes can be obtained by controlling the process parameters during the micromilling process. The stability of the cutting process can be judged and the machining quality can be initially discerned based on the chip shapes.","PeriodicalId":20663,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136280272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-30DOI: 10.1177/09544054231202419
Behzad Teimouri, Mojtaba Yazdani
The study investigates the effects of pore diameter, pore spacing, and arrangement on the energy absorption ability of closed-cell aluminum foam. The optimal arrangement of pores for energy absorption was determined using experimental design and the finite element method. Aluminum 6063 with a simple cubic structure was found to be the most efficient at energy absorption, while aluminum 356 with a simple cubic structure was the least effective. As the load rate increased, the effect of the parameter t exceeded that of h in both structures. The response surface method’s proposed model was deemed effective, with the difference between experimental and predicted values around 15%–20%.
{"title":"Closed-cell aluminum foams with spherically-adjustable pores: Numerical and experimental investigation of effective parameters","authors":"Behzad Teimouri, Mojtaba Yazdani","doi":"10.1177/09544054231202419","DOIUrl":"https://doi.org/10.1177/09544054231202419","url":null,"abstract":"The study investigates the effects of pore diameter, pore spacing, and arrangement on the energy absorption ability of closed-cell aluminum foam. The optimal arrangement of pores for energy absorption was determined using experimental design and the finite element method. Aluminum 6063 with a simple cubic structure was found to be the most efficient at energy absorption, while aluminum 356 with a simple cubic structure was the least effective. As the load rate increased, the effect of the parameter t exceeded that of h in both structures. The response surface method’s proposed model was deemed effective, with the difference between experimental and predicted values around 15%–20%.","PeriodicalId":20663,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","volume":"29 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136336468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-30DOI: 10.1177/09544054231196920
K Manjunath, Suman Tewary, Neha Khatri, Kai Cheng
Additive Manufacturing (AM) has shown excellent research potential for biomedical implants, complex aerofoil structures, military applications, high-pressure cryogenic vessels, and automobile components. The mechanical properties exhibited by the additively manufactured Ti6Al4V ELI alloy components are significantly different from traditionally manufactured Ti6Al4V alloy due to the material anisotropy, orientation of the microstructure, and variation in heat treatments. Among AM techniques, SLM (Selective laser melting) offers unparalleled design flexibility with minimum impurities and high reproducibility. However, post-processing of additive manufactured components is essential due to their poor surface finish and lack of dimensional accuracy. Ti6Al4V ELI (Extra Low Interstitials) alloy is a difficult-to-cut material in Ultra-Precision Machining (UPM) due to its excessive tool wear, hardness, and chemical reactivity. Optimizing machining parameters for better surface finish by UPM is time-consuming and often not economical. Modeling and simulation provide a low-cost approach for the investigation of machining. In this work, a series of cutting experiments have been carried out on additively manufactured Ti6Al4V ELI alloy to study the cutting mechanism during UPM. In addition, Finite Element Model (FEM) is employed to understand the chip formation and cutting forces in UPM with a built-in Johnson-Cook (JC) model and a Johnson-Cook-TANH (JC-TANH) vectorized user-defined material subroutine (VUMAT) model. Cutting forces corresponding to the JC model and JC-TANH are examined with the experimental forces in literature, and the results are found to be fairly close.
{"title":"Simulation-based investigation on ultra-precision machining of additively manufactured Ti-6Al-4V ELI alloy and the associated experimental study","authors":"K Manjunath, Suman Tewary, Neha Khatri, Kai Cheng","doi":"10.1177/09544054231196920","DOIUrl":"https://doi.org/10.1177/09544054231196920","url":null,"abstract":"Additive Manufacturing (AM) has shown excellent research potential for biomedical implants, complex aerofoil structures, military applications, high-pressure cryogenic vessels, and automobile components. The mechanical properties exhibited by the additively manufactured Ti6Al4V ELI alloy components are significantly different from traditionally manufactured Ti6Al4V alloy due to the material anisotropy, orientation of the microstructure, and variation in heat treatments. Among AM techniques, SLM (Selective laser melting) offers unparalleled design flexibility with minimum impurities and high reproducibility. However, post-processing of additive manufactured components is essential due to their poor surface finish and lack of dimensional accuracy. Ti6Al4V ELI (Extra Low Interstitials) alloy is a difficult-to-cut material in Ultra-Precision Machining (UPM) due to its excessive tool wear, hardness, and chemical reactivity. Optimizing machining parameters for better surface finish by UPM is time-consuming and often not economical. Modeling and simulation provide a low-cost approach for the investigation of machining. In this work, a series of cutting experiments have been carried out on additively manufactured Ti6Al4V ELI alloy to study the cutting mechanism during UPM. In addition, Finite Element Model (FEM) is employed to understand the chip formation and cutting forces in UPM with a built-in Johnson-Cook (JC) model and a Johnson-Cook-TANH (JC-TANH) vectorized user-defined material subroutine (VUMAT) model. Cutting forces corresponding to the JC model and JC-TANH are examined with the experimental forces in literature, and the results are found to be fairly close.","PeriodicalId":20663,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","volume":"3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136336606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-30DOI: 10.1177/09544054231201873
Fengfu Yin, Kai Wang, Xiaodong Wang, Lin Li, Guangkuo Liu, Thomas Maani, John W. Sutherland
Disassembly is an inevitable step in the recovery of valuable materials from end-of-life (EoL) mobile phones. Although a Hybrid Graph is one of the prevalent method for disassembly modeling, it cannot accurately describe the subassembly disassembling process. In this paper, an improved disassembly hybrid graph model (IDHGM) for selective disassembly sequence planning is proposed for the limitations of the subassembly disassembling process of EoL mobile phones. The containment, exclusion, and subassembly are considered in view of the close connection of mobile phone parts and the occurrence of interlocking between parts. Based on the different disassembly sequences of the same part, a time cell array is used to calculate the disassembly time. The disassembly sequence is optimized by the ant colony algorithm and disassembly time is set as the optimization objective. “Honor 6” mobile phone was selected as a case study to demonstrate the feasibility of the proposed model. The results show that the disassembly sequence generated by IDHGM takes less disassembly time and can accurately describe the subassembly disassembling process.
{"title":"An improved disassembly hybrid graph model for selective disassembly sequence planning","authors":"Fengfu Yin, Kai Wang, Xiaodong Wang, Lin Li, Guangkuo Liu, Thomas Maani, John W. Sutherland","doi":"10.1177/09544054231201873","DOIUrl":"https://doi.org/10.1177/09544054231201873","url":null,"abstract":"Disassembly is an inevitable step in the recovery of valuable materials from end-of-life (EoL) mobile phones. Although a Hybrid Graph is one of the prevalent method for disassembly modeling, it cannot accurately describe the subassembly disassembling process. In this paper, an improved disassembly hybrid graph model (IDHGM) for selective disassembly sequence planning is proposed for the limitations of the subassembly disassembling process of EoL mobile phones. The containment, exclusion, and subassembly are considered in view of the close connection of mobile phone parts and the occurrence of interlocking between parts. Based on the different disassembly sequences of the same part, a time cell array is used to calculate the disassembly time. The disassembly sequence is optimized by the ant colony algorithm and disassembly time is set as the optimization objective. “Honor 6” mobile phone was selected as a case study to demonstrate the feasibility of the proposed model. The results show that the disassembly sequence generated by IDHGM takes less disassembly time and can accurately describe the subassembly disassembling process.","PeriodicalId":20663,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","volume":"24 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136336465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ni-TiN composite coating is widely used as a protective coating due to its good mechanical properties and corrosion resistance. In this study, Ni-TiN nanocomposite coatings were prepared by ultrasonic-assisted jet electrodeposition. The growth mechanism and properties of the composite coatings in ultrasonic-assisted jet electrodeposition were studied. It was found that the surface morphology of the composite coating changed significantly with the increase in the concentration of nano TiN particles. Ultrasonic affects the selective orientation of the coating, and both lead to grain refinement. The addition of ultrasonic promotes the growth of (111) crystalline surfaces of the coating. Ultrasonic-assisted jet electrodeposition reduced tip discharge and nanoparticle agglomeration, and the surface quality, physical and chemical properties of the nanocomposite coating were significantly improved. The microhardness of the Ni-TiN composite coating was as high as 622.4 HV, the maximum adhesion was 27.2 N, and the corrosion resistance was the best with the corrosion current density at 1.898 μA cm −2 , when the amount of nano TiN was 10 g/L. This method will provide a reference for improving the growth uniformity of jet electrodeposition.
{"title":"Fabrication of Ni-TiN nanocomposite coatings by ultrasonic assisted jet electrodeposition","authors":"Yuanlong Chen, Huigui Li, Jiachen Zhu, Cheng Fang, Zhongquan Li, Wei Jiang","doi":"10.1177/09544054231201919","DOIUrl":"https://doi.org/10.1177/09544054231201919","url":null,"abstract":"Ni-TiN composite coating is widely used as a protective coating due to its good mechanical properties and corrosion resistance. In this study, Ni-TiN nanocomposite coatings were prepared by ultrasonic-assisted jet electrodeposition. The growth mechanism and properties of the composite coatings in ultrasonic-assisted jet electrodeposition were studied. It was found that the surface morphology of the composite coating changed significantly with the increase in the concentration of nano TiN particles. Ultrasonic affects the selective orientation of the coating, and both lead to grain refinement. The addition of ultrasonic promotes the growth of (111) crystalline surfaces of the coating. Ultrasonic-assisted jet electrodeposition reduced tip discharge and nanoparticle agglomeration, and the surface quality, physical and chemical properties of the nanocomposite coating were significantly improved. The microhardness of the Ni-TiN composite coating was as high as 622.4 HV, the maximum adhesion was 27.2 N, and the corrosion resistance was the best with the corrosion current density at 1.898 μA cm −2 , when the amount of nano TiN was 10 g/L. This method will provide a reference for improving the growth uniformity of jet electrodeposition.","PeriodicalId":20663,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","volume":"93 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135538235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}