首页 > 最新文献

Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval最新文献

英文 中文
Coarse-to-Fine Grained Classification 粗到细粒度分类
Yuqi Huo, Yao Lu, Yulei Niu, Zhiwu Lu, Ji-Rong Wen
Fine-grained image classification and retrieval become topical in both computer vision and information retrieval. In real-life scenarios, fine-grained tasks tend to appear along with coarse-grained tasks when the observed object is coming closer. However, in previous works, the combination of fine-grained and coarse-grained tasks was often ignored. In this paper, we define a new problem called coarse-to-fine grained classification (C2FGC) which aims to recognize the classes of objects in multiple resolutions (from low to high). To solve this problem, we propose a novel Multi-linear Pooling with Hierarchy (MLPH) model. Specifically, we first design a multi-linear pooling module to include both trilinear and bilinear pooling, and then formulate the coarse-grained and fine-grained tasks within a unified framework. Experiments on two benchmark datasets show that our model achieves state-of-the-art results.
细粒度图像的分类和检索已成为计算机视觉和信息检索领域的研究热点。在现实场景中,当观察到的对象越来越近时,细粒度任务往往会与粗粒度任务一起出现。然而,在以往的工作中,细粒度和粗粒度任务的结合往往被忽略。在本文中,我们定义了一个新的问题,称为粗粒度到细粒度分类(C2FGC),其目的是在多个分辨率(从低到高)下识别对象的类别。为了解决这个问题,我们提出了一种新的多层线性池化(MLPH)模型。具体来说,我们首先设计了一个包含三线性和双线性池化的多线性池化模块,然后在统一的框架内制定粗粒度和细粒度任务。在两个基准数据集上的实验表明,我们的模型达到了最先进的结果。
{"title":"Coarse-to-Fine Grained Classification","authors":"Yuqi Huo, Yao Lu, Yulei Niu, Zhiwu Lu, Ji-Rong Wen","doi":"10.1145/3331184.3331336","DOIUrl":"https://doi.org/10.1145/3331184.3331336","url":null,"abstract":"Fine-grained image classification and retrieval become topical in both computer vision and information retrieval. In real-life scenarios, fine-grained tasks tend to appear along with coarse-grained tasks when the observed object is coming closer. However, in previous works, the combination of fine-grained and coarse-grained tasks was often ignored. In this paper, we define a new problem called coarse-to-fine grained classification (C2FGC) which aims to recognize the classes of objects in multiple resolutions (from low to high). To solve this problem, we propose a novel Multi-linear Pooling with Hierarchy (MLPH) model. Specifically, we first design a multi-linear pooling module to include both trilinear and bilinear pooling, and then formulate the coarse-grained and fine-grained tasks within a unified framework. Experiments on two benchmark datasets show that our model achieves state-of-the-art results.","PeriodicalId":20700,"journal":{"name":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":"50 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82564302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Query-Task Mapping Query-Task映射
Michael Völske, Ehsan Fatehifar, Benno Stein, Matthias Hagen
Several recent task-based search studies aim at splitting query logs into sets of queries for the same task or information need. We address the natural next step: mapping a currently submitted query to an appropriate task in an already task-split log. This query-task mapping can, for instance, enhance query suggestions---rendering efficiency of the mapping, besides accuracy, a key objective. Our main contributions are three large benchmark datasets and preliminary experiments with four query-task mapping approaches: (1) a Trie-based approach, (2) MinHash~LSH, (3) word movers distance in a Word2Vec setup, and (4) an inverted index-based approach. The experiments show that the fast and accurate inverted index-based method forms a strong baseline.
最近一些基于任务的搜索研究旨在将查询日志拆分为同一任务或信息需求的查询集。我们解决了自然的下一步:将当前提交的查询映射到已经任务分割日志中的适当任务。例如,这种查询任务映射可以增强查询建议——映射的呈现效率,除了准确性之外,这是一个关键目标。我们的主要贡献是三个大型基准数据集和四种查询任务映射方法的初步实验:(1)基于trie的方法,(2)MinHash~LSH, (3) Word2Vec设置中的字移动距离,以及(4)基于倒排索引的方法。实验表明,基于倒排索引的方法快速准确地形成了一个强基线。
{"title":"Query-Task Mapping","authors":"Michael Völske, Ehsan Fatehifar, Benno Stein, Matthias Hagen","doi":"10.1145/3331184.3331286","DOIUrl":"https://doi.org/10.1145/3331184.3331286","url":null,"abstract":"Several recent task-based search studies aim at splitting query logs into sets of queries for the same task or information need. We address the natural next step: mapping a currently submitted query to an appropriate task in an already task-split log. This query-task mapping can, for instance, enhance query suggestions---rendering efficiency of the mapping, besides accuracy, a key objective. Our main contributions are three large benchmark datasets and preliminary experiments with four query-task mapping approaches: (1) a Trie-based approach, (2) MinHash~LSH, (3) word movers distance in a Word2Vec setup, and (4) an inverted index-based approach. The experiments show that the fast and accurate inverted index-based method forms a strong baseline.","PeriodicalId":20700,"journal":{"name":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":"174 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82672783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
A Systematic Comparison of Methods for Finding Good Premises for Claims 寻找良好索赔前提方法的系统比较
Lorik Dumani, Ralf Schenkel
Research on computational argumentation has recently become very popular. An argument consists of a claim that is supported or attacked by at least one premise. Its intention is the persuasion of others. An important problem in this field is retrieving good premises for a designated claim from a corpus of arguments. Given a claim, oftentimes existing approaches' first step is finding textually similar claims. In this paper we compare 196 methods systematically for determining similar claims by textual similarity, using a large corpus of (claim, premise) pairs crawled from debate portals. We also evaluate how well textual similarity of claims can predict relevance of the associated premises.
近年来,计算论证的研究变得非常流行。一个论点由至少有一个前提支持或攻击的主张组成。它的目的是说服别人。这个领域的一个重要问题是从论点语料库中为指定的主张检索好的前提。给定一个权利要求,通常现有方法的第一步是寻找文本相似的权利要求。在本文中,我们系统地比较了196种方法,通过文本相似性来确定相似的主张,使用从辩论门户网站抓取的大量(主张,前提)对语料库。我们还评估了声明的文本相似性如何很好地预测相关前提的相关性。
{"title":"A Systematic Comparison of Methods for Finding Good Premises for Claims","authors":"Lorik Dumani, Ralf Schenkel","doi":"10.1145/3331184.3331282","DOIUrl":"https://doi.org/10.1145/3331184.3331282","url":null,"abstract":"Research on computational argumentation has recently become very popular. An argument consists of a claim that is supported or attacked by at least one premise. Its intention is the persuasion of others. An important problem in this field is retrieving good premises for a designated claim from a corpus of arguments. Given a claim, oftentimes existing approaches' first step is finding textually similar claims. In this paper we compare 196 methods systematically for determining similar claims by textual similarity, using a large corpus of (claim, premise) pairs crawled from debate portals. We also evaluate how well textual similarity of claims can predict relevance of the associated premises.","PeriodicalId":20700,"journal":{"name":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":"36 1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89843996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 15
Improving Collaborative Metric Learning with Efficient Negative Sampling 利用高效负抽样改进协同度量学习
Viet-Anh Tran, Romain Hennequin, Jimena Royo-Letelier, Manuel Moussallam
Distance metric learning based on triplet loss has been applied with success in a wide range of applications such as face recognition, image retrieval, speaker change detection and recently recommendation with the Collaborative Metric Learning (CML) model. However, as we show in this article, CML requires large batches to work reasonably well because of a too simplistic uniform negative sampling strategy for selecting triplets. Due to memory limitations, this makes it difficult to scale in high-dimensional scenarios. To alleviate this problem, we propose here a 2-stage negative sampling strategy which finds triplets that are highly informative for learning. Our strategy allows CML to work effectively in terms of accuracy and popularity bias, even when the batch size is an order of magnitude smaller than what would be needed with the default uniform sampling. We demonstrate the suitability of the proposed strategy for recommendation and exhibit consistent positive results across various datasets.
基于三重态损失的距离度量学习在人脸识别、图像检索、说话人变化检测以及最近的协同度量学习(CML)模型推荐等广泛应用中取得了成功。然而,正如我们在本文中所展示的,CML需要大量的批处理才能很好地工作,因为选择三元组的统一负采样策略过于简单。由于内存限制,这使得难以在高维场景中进行扩展。为了缓解这个问题,我们在这里提出了一个两阶段的负抽样策略,该策略可以找到对学习具有高度信息的三胞胎。我们的策略允许CML在准确性和流行偏差方面有效地工作,即使批处理大小比默认均匀抽样所需的小一个数量级。我们证明了所提出的推荐策略的适用性,并在各种数据集上展示了一致的积极结果。
{"title":"Improving Collaborative Metric Learning with Efficient Negative Sampling","authors":"Viet-Anh Tran, Romain Hennequin, Jimena Royo-Letelier, Manuel Moussallam","doi":"10.1145/3331184.3331337","DOIUrl":"https://doi.org/10.1145/3331184.3331337","url":null,"abstract":"Distance metric learning based on triplet loss has been applied with success in a wide range of applications such as face recognition, image retrieval, speaker change detection and recently recommendation with the Collaborative Metric Learning (CML) model. However, as we show in this article, CML requires large batches to work reasonably well because of a too simplistic uniform negative sampling strategy for selecting triplets. Due to memory limitations, this makes it difficult to scale in high-dimensional scenarios. To alleviate this problem, we propose here a 2-stage negative sampling strategy which finds triplets that are highly informative for learning. Our strategy allows CML to work effectively in terms of accuracy and popularity bias, even when the batch size is an order of magnitude smaller than what would be needed with the default uniform sampling. We demonstrate the suitability of the proposed strategy for recommendation and exhibit consistent positive results across various datasets.","PeriodicalId":20700,"journal":{"name":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":"155 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91435185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 16
PSGAN
Shuqi Lu, Zhicheng Dou, Xu Jun, Jian-Yun Nie, Ji-rong Wen
Personalized search aims to adapt document ranking to user's personal interests. Traditionally, this is done by extracting click and topical features from historical data in order to construct a user profile. In recent years, deep learning has been successfully used in personalized search due to its ability of automatic feature learning. However, the small amount of noisy personal data poses challenges to deep learning models to learn the personalized classification boundary between relevant and irrelevant results. In this paper, we propose PSGAN, a Generative Adversarial Network (GAN) framework for personalized search. By means of adversarial training, we enforce the model to pay more attention to training data that are difficult to distinguish. We use the discriminator to evaluate personalized relevance of documents and use the generator to learn the distribution of relevant documents. Two alternative ways to construct the generator in the framework are tested: based on the current query or based on a set of generated queries. Experiments on data from a commercial search engine show that our models can yield significant improvements over state-of-the-art models.
{"title":"PSGAN","authors":"Shuqi Lu, Zhicheng Dou, Xu Jun, Jian-Yun Nie, Ji-rong Wen","doi":"10.1145/3331184.3331218","DOIUrl":"https://doi.org/10.1145/3331184.3331218","url":null,"abstract":"Personalized search aims to adapt document ranking to user's personal interests. Traditionally, this is done by extracting click and topical features from historical data in order to construct a user profile. In recent years, deep learning has been successfully used in personalized search due to its ability of automatic feature learning. However, the small amount of noisy personal data poses challenges to deep learning models to learn the personalized classification boundary between relevant and irrelevant results. In this paper, we propose PSGAN, a Generative Adversarial Network (GAN) framework for personalized search. By means of adversarial training, we enforce the model to pay more attention to training data that are difficult to distinguish. We use the discriminator to evaluate personalized relevance of documents and use the generator to learn the distribution of relevant documents. Two alternative ways to construct the generator in the framework are tested: based on the current query or based on a set of generated queries. Experiments on data from a commercial search engine show that our models can yield significant improvements over state-of-the-art models.","PeriodicalId":20700,"journal":{"name":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":"68 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84767256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 38
Hot Topic-Aware Retweet Prediction with Masked Self-attentive Model 基于屏蔽自关注模型的热话题感知转发预测
Renfeng Ma, Xiangkun Hu, Qi Zhang, Xuanjing Huang, Yu-Gang Jiang
Social media users create millions of microblog entries on various topics each day. Retweet behaviour play a crucial role in spreading topics on social media. Retweet prediction task has received considerable attention in recent years. The majority of existing retweet prediction methods are focus on modeling user preference by utilizing various information, such as user profiles, user post history, user following relationships, etc. Yet, the users exposures towards real-time posting from their followees contribute significantly to making retweet predictions, considering that the users may participate into the hot topics discussed by their followees rather than be limited to their previous interests. To make efficient use of hot topics, we propose a novel masked self-attentive model to perform the retweet prediction task by perceiving the hot topics discussed by the users' followees. We incorporate the posting histories of users with external memory and utilize a hierarchical attention mechanism to construct the users' interests. Hence, our model can be jointly hot-topic aware and user interests aware to make a final prediction. Experimental results on a dataset collected from Twitter demonstrated that the proposed method can achieve better performance than state-of-the-art methods.
社交媒体用户每天就各种话题创建数百万条微博。转发行为在社交媒体上传播话题方面起着至关重要的作用。转发预测任务近年来受到了相当大的关注。现有的转推预测方法大多侧重于利用用户资料、用户帖子历史、用户关注关系等各种信息对用户偏好进行建模。然而,用户对关注者实时发布的内容的接触对转发预测有很大的帮助,因为用户可能会参与到关注者讨论的热点话题中,而不是局限于自己以前的兴趣。为了有效地利用热点话题,我们提出了一种新的掩蔽自关注模型,通过感知用户关注者讨论的热点话题来完成转发预测任务。我们将用户的帖子历史与外部记忆相结合,并利用分层关注机制构建用户的兴趣。因此,我们的模型可以同时感知热点话题和用户兴趣,从而做出最终的预测。从Twitter收集的数据集上的实验结果表明,所提出的方法可以获得比目前最先进的方法更好的性能。
{"title":"Hot Topic-Aware Retweet Prediction with Masked Self-attentive Model","authors":"Renfeng Ma, Xiangkun Hu, Qi Zhang, Xuanjing Huang, Yu-Gang Jiang","doi":"10.1145/3331184.3331236","DOIUrl":"https://doi.org/10.1145/3331184.3331236","url":null,"abstract":"Social media users create millions of microblog entries on various topics each day. Retweet behaviour play a crucial role in spreading topics on social media. Retweet prediction task has received considerable attention in recent years. The majority of existing retweet prediction methods are focus on modeling user preference by utilizing various information, such as user profiles, user post history, user following relationships, etc. Yet, the users exposures towards real-time posting from their followees contribute significantly to making retweet predictions, considering that the users may participate into the hot topics discussed by their followees rather than be limited to their previous interests. To make efficient use of hot topics, we propose a novel masked self-attentive model to perform the retweet prediction task by perceiving the hot topics discussed by the users' followees. We incorporate the posting histories of users with external memory and utilize a hierarchical attention mechanism to construct the users' interests. Hence, our model can be jointly hot-topic aware and user interests aware to make a final prediction. Experimental results on a dataset collected from Twitter demonstrated that the proposed method can achieve better performance than state-of-the-art methods.","PeriodicalId":20700,"journal":{"name":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":"77 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76013320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 23
Effective Online Evaluation for Web Search 网络搜索的有效在线评估
Alexey Drutsa, Gleb Gusev, E. Kharitonov, Denis Kulemyakin, P. Serdyukov, I. Yashkov
We present you a program of a balanced mix between an overview of academic achievements in the field of online evaluation and a portion of unique industrial practical experience shared by both the leading researchers and engineers from global Internet companies. First, we give basic knowledge from mathematical statistics. This is followed by foundations of main evaluation methods such as A/B testing, interleaving, and observational studies. Then, we share rich industrial experiences on constructing of an experimentation pipeline and evaluation metrics (emphasizing best practices and common pitfalls). A large part of our tutorial is devoted to modern and state-of-the-art techniques (including the ones based on machine learning) that allow to conduct online experimentation efficiently. We invite software engineers, designers, analysts, and managers of web services and software products, as well as beginners, advanced specialists, and researchers to learn how to make web service development effectively data-driven.
我们为您提供一个平衡组合的课程,既有在线评估领域的学术成就概述,也有来自全球互联网公司的领先研究人员和工程师分享的部分独特的工业实践经验。首先,我们给出数理统计的基础知识。其次是主要评估方法的基础,如A/B测试、交错和观察性研究。然后,我们在构建实验管道和评估度量(强调最佳实践和常见缺陷)方面分享了丰富的工业经验。我们教程的很大一部分致力于现代和最先进的技术(包括基于机器学习的技术),这些技术允许有效地进行在线实验。我们邀请web服务和软件产品的软件工程师、设计师、分析师和管理人员,以及初学者、高级专家和研究人员来学习如何使web服务开发有效地由数据驱动。
{"title":"Effective Online Evaluation for Web Search","authors":"Alexey Drutsa, Gleb Gusev, E. Kharitonov, Denis Kulemyakin, P. Serdyukov, I. Yashkov","doi":"10.1145/3331184.3331378","DOIUrl":"https://doi.org/10.1145/3331184.3331378","url":null,"abstract":"We present you a program of a balanced mix between an overview of academic achievements in the field of online evaluation and a portion of unique industrial practical experience shared by both the leading researchers and engineers from global Internet companies. First, we give basic knowledge from mathematical statistics. This is followed by foundations of main evaluation methods such as A/B testing, interleaving, and observational studies. Then, we share rich industrial experiences on constructing of an experimentation pipeline and evaluation metrics (emphasizing best practices and common pitfalls). A large part of our tutorial is devoted to modern and state-of-the-art techniques (including the ones based on machine learning) that allow to conduct online experimentation efficiently. We invite software engineers, designers, analysts, and managers of web services and software products, as well as beginners, advanced specialists, and researchers to learn how to make web service development effectively data-driven.","PeriodicalId":20700,"journal":{"name":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":"110 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76048875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Mention Recommendation in Twitter with Cooperative Multi-Agent Reinforcement Learning 提到Twitter中使用协同多智能体强化学习的推荐
Tao Gui, Peng Liu, Qi Zhang, Liang Zhu, Minlong Peng, Yunhua Zhou, Xuanjing Huang
In Twitter-like social networking services, the "@'' symbol can be used with the tweet to mention users whom the user wants to alert regarding the message. An automatic suggestion to the user of a small list of candidate names can improve communication efficiency. Previous work usually used several most recent tweets or randomly select historical tweets to make an inference about this preferred list of names. However, because there are too many historical tweets by users and a wide variety of content types, the use of several tweets cannot guarantee the desired results. In this work, we propose the use of a novel cooperative multi-agent approach to mention recommendation, which incorporates dozens of more historical tweets than earlier approaches. The proposed method can effectively select a small set of historical tweets and cooperatively extract relevant indicator tweets from both the user and mentioned users. Experimental results demonstrate that the proposed method outperforms state-of-the-art methods.
在类似twitter的社交网络服务中,“@”符号可以与tweet一起使用,以提及用户想要提醒的用户。自动向用户推荐少量候选名单可以提高通信效率。以前的工作通常使用最近的几条推文或随机选择历史推文来对这个首选名称列表进行推断。但是,由于用户的历史tweets太多,内容类型繁多,使用多个tweets并不能保证达到预期的效果。在这项工作中,我们提出使用一种新颖的合作多智能体方法来提及推荐,它比以前的方法包含了更多的历史推文。该方法可以有效地选择一小部分历史推文,并从用户和被提及用户中协同提取相关的指标推文。实验结果表明,该方法优于现有的方法。
{"title":"Mention Recommendation in Twitter with Cooperative Multi-Agent Reinforcement Learning","authors":"Tao Gui, Peng Liu, Qi Zhang, Liang Zhu, Minlong Peng, Yunhua Zhou, Xuanjing Huang","doi":"10.1145/3331184.3331237","DOIUrl":"https://doi.org/10.1145/3331184.3331237","url":null,"abstract":"In Twitter-like social networking services, the \"@'' symbol can be used with the tweet to mention users whom the user wants to alert regarding the message. An automatic suggestion to the user of a small list of candidate names can improve communication efficiency. Previous work usually used several most recent tweets or randomly select historical tweets to make an inference about this preferred list of names. However, because there are too many historical tweets by users and a wide variety of content types, the use of several tweets cannot guarantee the desired results. In this work, we propose the use of a novel cooperative multi-agent approach to mention recommendation, which incorporates dozens of more historical tweets than earlier approaches. The proposed method can effectively select a small set of historical tweets and cooperatively extract relevant indicator tweets from both the user and mentioned users. Experimental results demonstrate that the proposed method outperforms state-of-the-art methods.","PeriodicalId":20700,"journal":{"name":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":"17 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77783667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 14
Unified Collaborative Filtering over Graph Embeddings 图嵌入的统一协同过滤
Pengfei Wang, H. Chen, Yadong Zhu, Huawei Shen, Yongfeng Zhang
Collaborative Filtering (CF) by learning from the wisdom of crowds has become one of the most important approaches to recommender systems research, and various CF models have been designed and applied to different scenarios. However, a challenging task is how to select the most appropriate CF model for a specific recommendation task. In this paper, we propose a Unified Collaborative Filtering framework based on Graph Embeddings (UGrec for short) to solve the problem. Specifically, UGrec models user and item interactions within a graph network, and sequential recommendation path is designed as a basic unit to capture the correlations between users and items. Mathematically, we show that many representative recommendation approaches and their variants can be mapped as a recommendation path in the graph. In addition, by applying a carefully designed attention mechanism on the recommendation paths, UGrec can determine the significance of each sequential recommendation path so as to conduct automatic model selection. Compared with state-of-the-art methods, our method shows significant improvements for recommendation quality. This work also leads to a deeper understanding of the connection between graph embeddings and recommendation algorithms.
基于群体智慧的协同过滤(CF)已成为推荐系统研究的重要方法之一,各种协同过滤模型已被设计并应用于不同的场景。然而,如何为特定的推荐任务选择最合适的CF模型是一个具有挑战性的任务。在本文中,我们提出了一个基于图嵌入的统一协同过滤框架(UGrec)来解决这个问题。具体来说,UGrec在图网络中对用户和物品的交互进行建模,并将顺序推荐路径设计为捕获用户和物品之间相关性的基本单元。在数学上,我们证明了许多有代表性的推荐方法及其变体可以映射为图中的推荐路径。此外,通过在推荐路径上应用精心设计的关注机制,UGrec可以确定每条顺序推荐路径的重要性,从而进行自动模型选择。与最先进的方法相比,我们的方法在推荐质量上有了显著的提高。这项工作也使人们对图嵌入和推荐算法之间的联系有了更深的理解。
{"title":"Unified Collaborative Filtering over Graph Embeddings","authors":"Pengfei Wang, H. Chen, Yadong Zhu, Huawei Shen, Yongfeng Zhang","doi":"10.1145/3331184.3331224","DOIUrl":"https://doi.org/10.1145/3331184.3331224","url":null,"abstract":"Collaborative Filtering (CF) by learning from the wisdom of crowds has become one of the most important approaches to recommender systems research, and various CF models have been designed and applied to different scenarios. However, a challenging task is how to select the most appropriate CF model for a specific recommendation task. In this paper, we propose a Unified Collaborative Filtering framework based on Graph Embeddings (UGrec for short) to solve the problem. Specifically, UGrec models user and item interactions within a graph network, and sequential recommendation path is designed as a basic unit to capture the correlations between users and items. Mathematically, we show that many representative recommendation approaches and their variants can be mapped as a recommendation path in the graph. In addition, by applying a carefully designed attention mechanism on the recommendation paths, UGrec can determine the significance of each sequential recommendation path so as to conduct automatic model selection. Compared with state-of-the-art methods, our method shows significant improvements for recommendation quality. This work also leads to a deeper understanding of the connection between graph embeddings and recommendation algorithms.","PeriodicalId":20700,"journal":{"name":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":"18 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73352730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 23
Similarity-Based Synthetic Document Representations for Meta-Feature Generation in Text Classification 基于相似度的文本分类元特征生成合成文档表示
Sérgio D. Canuto, Thiago Salles, Thierson Couto, Marcos André Gonçalves
We propose new solutions that enhance and extend the already very successful application of meta-features to text classification. Our newly proposed meta-features are capable of: (1) improving the correlation of small pieces of evidence shared by neighbors with labeled categories by means of synthetic document representations and (local and global) hyperplane distances; and (2) estimating the level of error introduced by these newly proposed and the existing meta-features in the literature, specially for hard-to-classify regions of the feature space. Our experiments with large and representative number of datasets show that our new solutions produce the best results in all tested scenarios, achieving gains of up to 12% over the strongest meta-feature proposal of the literature.
我们提出了新的解决方案,以增强和扩展已经非常成功的元特征在文本分类中的应用。我们新提出的元特征能够:(1)通过合成文档表示和(局部和全局)超平面距离,改善带有标记类别的邻居共享的小块证据的相关性;(2)估计这些新提出的元特征和文献中已有的元特征引入的误差水平,特别是对特征空间中难以分类的区域。我们对大量具有代表性的数据集进行的实验表明,我们的新解决方案在所有测试场景中都产生了最好的结果,比文献中最强的元特征提案获得了高达12%的收益。
{"title":"Similarity-Based Synthetic Document Representations for Meta-Feature Generation in Text Classification","authors":"Sérgio D. Canuto, Thiago Salles, Thierson Couto, Marcos André Gonçalves","doi":"10.1145/3331184.3331239","DOIUrl":"https://doi.org/10.1145/3331184.3331239","url":null,"abstract":"We propose new solutions that enhance and extend the already very successful application of meta-features to text classification. Our newly proposed meta-features are capable of: (1) improving the correlation of small pieces of evidence shared by neighbors with labeled categories by means of synthetic document representations and (local and global) hyperplane distances; and (2) estimating the level of error introduced by these newly proposed and the existing meta-features in the literature, specially for hard-to-classify regions of the feature space. Our experiments with large and representative number of datasets show that our new solutions produce the best results in all tested scenarios, achieving gains of up to 12% over the strongest meta-feature proposal of the literature.","PeriodicalId":20700,"journal":{"name":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75651549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 15
期刊
Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1