首页 > 最新文献

Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval最新文献

英文 中文
Session details: Session 2C: Knowledge and Entities 会议详情:会议2C:知识和实体
A. D. Vries
{"title":"Session details: Session 2C: Knowledge and Entities","authors":"A. D. Vries","doi":"10.1145/3349680","DOIUrl":"https://doi.org/10.1145/3349680","url":null,"abstract":"","PeriodicalId":20700,"journal":{"name":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":"50 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87591187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Systematic Comparison of Methods for Finding Good Premises for Claims 寻找良好索赔前提方法的系统比较
Lorik Dumani, Ralf Schenkel
Research on computational argumentation has recently become very popular. An argument consists of a claim that is supported or attacked by at least one premise. Its intention is the persuasion of others. An important problem in this field is retrieving good premises for a designated claim from a corpus of arguments. Given a claim, oftentimes existing approaches' first step is finding textually similar claims. In this paper we compare 196 methods systematically for determining similar claims by textual similarity, using a large corpus of (claim, premise) pairs crawled from debate portals. We also evaluate how well textual similarity of claims can predict relevance of the associated premises.
近年来,计算论证的研究变得非常流行。一个论点由至少有一个前提支持或攻击的主张组成。它的目的是说服别人。这个领域的一个重要问题是从论点语料库中为指定的主张检索好的前提。给定一个权利要求,通常现有方法的第一步是寻找文本相似的权利要求。在本文中,我们系统地比较了196种方法,通过文本相似性来确定相似的主张,使用从辩论门户网站抓取的大量(主张,前提)对语料库。我们还评估了声明的文本相似性如何很好地预测相关前提的相关性。
{"title":"A Systematic Comparison of Methods for Finding Good Premises for Claims","authors":"Lorik Dumani, Ralf Schenkel","doi":"10.1145/3331184.3331282","DOIUrl":"https://doi.org/10.1145/3331184.3331282","url":null,"abstract":"Research on computational argumentation has recently become very popular. An argument consists of a claim that is supported or attacked by at least one premise. Its intention is the persuasion of others. An important problem in this field is retrieving good premises for a designated claim from a corpus of arguments. Given a claim, oftentimes existing approaches' first step is finding textually similar claims. In this paper we compare 196 methods systematically for determining similar claims by textual similarity, using a large corpus of (claim, premise) pairs crawled from debate portals. We also evaluate how well textual similarity of claims can predict relevance of the associated premises.","PeriodicalId":20700,"journal":{"name":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":"36 1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89843996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 15
PSGAN
Shuqi Lu, Zhicheng Dou, Xu Jun, Jian-Yun Nie, Ji-rong Wen
Personalized search aims to adapt document ranking to user's personal interests. Traditionally, this is done by extracting click and topical features from historical data in order to construct a user profile. In recent years, deep learning has been successfully used in personalized search due to its ability of automatic feature learning. However, the small amount of noisy personal data poses challenges to deep learning models to learn the personalized classification boundary between relevant and irrelevant results. In this paper, we propose PSGAN, a Generative Adversarial Network (GAN) framework for personalized search. By means of adversarial training, we enforce the model to pay more attention to training data that are difficult to distinguish. We use the discriminator to evaluate personalized relevance of documents and use the generator to learn the distribution of relevant documents. Two alternative ways to construct the generator in the framework are tested: based on the current query or based on a set of generated queries. Experiments on data from a commercial search engine show that our models can yield significant improvements over state-of-the-art models.
{"title":"PSGAN","authors":"Shuqi Lu, Zhicheng Dou, Xu Jun, Jian-Yun Nie, Ji-rong Wen","doi":"10.1145/3331184.3331218","DOIUrl":"https://doi.org/10.1145/3331184.3331218","url":null,"abstract":"Personalized search aims to adapt document ranking to user's personal interests. Traditionally, this is done by extracting click and topical features from historical data in order to construct a user profile. In recent years, deep learning has been successfully used in personalized search due to its ability of automatic feature learning. However, the small amount of noisy personal data poses challenges to deep learning models to learn the personalized classification boundary between relevant and irrelevant results. In this paper, we propose PSGAN, a Generative Adversarial Network (GAN) framework for personalized search. By means of adversarial training, we enforce the model to pay more attention to training data that are difficult to distinguish. We use the discriminator to evaluate personalized relevance of documents and use the generator to learn the distribution of relevant documents. Two alternative ways to construct the generator in the framework are tested: based on the current query or based on a set of generated queries. Experiments on data from a commercial search engine show that our models can yield significant improvements over state-of-the-art models.","PeriodicalId":20700,"journal":{"name":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":"68 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84767256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 38
Multi-Level Matching Networks for Text Matching 用于文本匹配的多级匹配网络
Chunlin Xu, Zhiwei Lin, Shengli Wu, Hui Wang
Text matching aims to establish the matching relationship between two texts. It is an important operation in some information retrieval related tasks such as question duplicate detection, question answering, and dialog systems. Bidirectional long short term memory (BiLSTM) coupled with attention mechanism has achieved state-of-the-art performance in text matching. A major limitation of existing works is that only high level contextualized word representations are utilized to obtain word level matching results without considering other levels of word representations, thus resulting in incorrect matching decisions for cases where two words with different meanings are very close in high level contextualized word representation space. Therefore, instead of making decisions utilizing single level word representations, a multi-level matching network (MMN) is proposed in this paper for text matching, which utilizes multiple levels of word representations to obtain multiple word level matching results for final text level matching decision. Experimental results on two widely used benchmarks, SNLI and Scaitail, show that the proposed MMN achieves the state-of-the-art performance.
文本匹配旨在建立两个文本之间的匹配关系。在一些信息检索相关的任务中,如问题重复检测、问题回答和对话系统中,它是一个重要的操作。双向长短期记忆(BiLSTM)与注意机制相结合,在文本匹配方面取得了较好的效果。现有工作的一个主要局限是只利用高水平语境化词表示来获得词级匹配结果,而没有考虑其他水平的词表示,从而导致在高水平语境化词表示空间中两个不同含义的词非常接近的情况下,会产生不正确的匹配决策。因此,本文提出了一种用于文本匹配的多层匹配网络(MMN),而不是利用单层词表示进行决策。多层匹配网络利用多层词表示获得多个词级匹配结果,从而进行最终的文本级匹配决策。在SNLI和scitail两个广泛使用的基准测试上的实验结果表明,所提出的MMN达到了最先进的性能。
{"title":"Multi-Level Matching Networks for Text Matching","authors":"Chunlin Xu, Zhiwei Lin, Shengli Wu, Hui Wang","doi":"10.1145/3331184.3331276","DOIUrl":"https://doi.org/10.1145/3331184.3331276","url":null,"abstract":"Text matching aims to establish the matching relationship between two texts. It is an important operation in some information retrieval related tasks such as question duplicate detection, question answering, and dialog systems. Bidirectional long short term memory (BiLSTM) coupled with attention mechanism has achieved state-of-the-art performance in text matching. A major limitation of existing works is that only high level contextualized word representations are utilized to obtain word level matching results without considering other levels of word representations, thus resulting in incorrect matching decisions for cases where two words with different meanings are very close in high level contextualized word representation space. Therefore, instead of making decisions utilizing single level word representations, a multi-level matching network (MMN) is proposed in this paper for text matching, which utilizes multiple levels of word representations to obtain multiple word level matching results for final text level matching decision. Experimental results on two widely used benchmarks, SNLI and Scaitail, show that the proposed MMN achieves the state-of-the-art performance.","PeriodicalId":20700,"journal":{"name":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":"40 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86432677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Health Cards for Consumer Health Search 用于消费者健康检索的健康卡
Jimmy, G. Zuccon, B. Koopman, Gianluca Demartini
This paper investigates the impact of health cards in consumer health search (CHS) - people seeking health advice online. Health cards are a concise presentations of a health concept shown along side search results to specific health queries; they have the potential to convey health information in easily digestible form for the general public. However, little evidence exists on how effective health cards actually are for users when searching health advice online, and whether their effectiveness is limited to specific health search intents. To understand the impact of health cards on CHS, we conducted a laboratory study to observe users completing CHS tasks using two search interface variants: one just with result snippets and one containing both result snippets and health cards. Our study makes the following contributions: (1) it reveals how and when health cards are beneficial to users in completing consumer health search tasks, and (2) it identifies the features of health cards that helped users in completing their tasks. This is the first study that thoroughly investigates the effectiveness of health cards in supporting consumer health search.
本文调查了健康卡在消费者健康搜索(CHS)中的影响-人们在网上寻求健康建议。健康卡是一种简洁的健康概念介绍,显示在特定健康查询的搜索结果旁边;它们有可能以易于理解的形式向公众传达健康信息。然而,很少有证据表明,当用户在网上搜索健康建议时,健康卡实际上有多有效,以及它们的有效性是否仅限于特定的健康搜索意图。为了了解健康卡对CHS的影响,我们进行了一项实验室研究,观察使用两种搜索界面变体完成CHS任务的用户:一种只包含结果片段,另一种同时包含结果片段和健康卡。我们的研究有以下贡献:(1)揭示了健康卡如何以及何时有利于用户完成消费者健康搜索任务;(2)确定了健康卡帮助用户完成任务的特征。这是第一个彻底调查健康卡在支持消费者健康搜索方面的有效性的研究。
{"title":"Health Cards for Consumer Health Search","authors":"Jimmy, G. Zuccon, B. Koopman, Gianluca Demartini","doi":"10.1145/3331184.3331194","DOIUrl":"https://doi.org/10.1145/3331184.3331194","url":null,"abstract":"This paper investigates the impact of health cards in consumer health search (CHS) - people seeking health advice online. Health cards are a concise presentations of a health concept shown along side search results to specific health queries; they have the potential to convey health information in easily digestible form for the general public. However, little evidence exists on how effective health cards actually are for users when searching health advice online, and whether their effectiveness is limited to specific health search intents. To understand the impact of health cards on CHS, we conducted a laboratory study to observe users completing CHS tasks using two search interface variants: one just with result snippets and one containing both result snippets and health cards. Our study makes the following contributions: (1) it reveals how and when health cards are beneficial to users in completing consumer health search tasks, and (2) it identifies the features of health cards that helped users in completing their tasks. This is the first study that thoroughly investigates the effectiveness of health cards in supporting consumer health search.","PeriodicalId":20700,"journal":{"name":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":"160 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86445645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 14
Scalable Deep Multimodal Learning for Cross-Modal Retrieval 跨模态检索的可扩展深度多模态学习
Peng Hu, Liangli Zhen, Dezhong Peng, Pei Liu
Cross-modal retrieval takes one type of data as the query to retrieve relevant data of another type. Most of existing cross-modal retrieval approaches were proposed to learn a common subspace in a joint manner, where the data from all modalities have to be involved during the whole training process. For these approaches, the optimal parameters of different modality-specific transformations are dependent on each other and the whole model has to be retrained when handling samples from new modalities. In this paper, we present a novel cross-modal retrieval method, called Scalable Deep Multimodal Learning (SDML). It proposes to predefine a common subspace, in which the between-class variation is maximized while the within-class variation is minimized. Then, it trains m modality-specific networks for m modalities (one network for each modality) to transform the multimodal data into the predefined common subspace to achieve multimodal learning. Unlike many of the existing methods, our method can train different modality-specific networks independently and thus be scalable to the number of modalities. To the best of our knowledge, the proposed SDML could be one of the first works to independently project data of an unfixed number of modalities into a predefined common subspace. Comprehensive experimental results on four widely-used benchmark datasets demonstrate that the proposed method is effective and efficient in multimodal learning and outperforms the state-of-the-art methods in cross-modal retrieval.
跨模式检索以一种类型的数据作为查询,检索另一种类型的相关数据。现有的跨模态检索方法大多是为了联合学习一个公共子空间而提出的,在整个训练过程中需要涉及所有模态的数据。对于这些方法,不同模态特定变换的最优参数是相互依赖的,当处理来自新模态的样本时,整个模型必须重新训练。本文提出了一种新的跨模态检索方法,称为可扩展深度多模态学习(SDML)。提出预先定义一个公共子空间,使类间变化最大,类内变化最小。然后,针对m个模态训练m个特定于模态的网络(每个模态一个网络),将多模态数据转换为预定义的公共子空间,实现多模态学习。与许多现有的方法不同,我们的方法可以独立训练不同的特定于模态的网络,因此可以扩展到模态的数量。据我们所知,所提出的SDML可能是第一个将不固定数量的模态数据独立投影到预定义的公共子空间中的工作之一。在四个广泛使用的基准数据集上的综合实验结果表明,该方法在多模态学习中是有效和高效的,并且在跨模态检索中优于目前最先进的方法。
{"title":"Scalable Deep Multimodal Learning for Cross-Modal Retrieval","authors":"Peng Hu, Liangli Zhen, Dezhong Peng, Pei Liu","doi":"10.1145/3331184.3331213","DOIUrl":"https://doi.org/10.1145/3331184.3331213","url":null,"abstract":"Cross-modal retrieval takes one type of data as the query to retrieve relevant data of another type. Most of existing cross-modal retrieval approaches were proposed to learn a common subspace in a joint manner, where the data from all modalities have to be involved during the whole training process. For these approaches, the optimal parameters of different modality-specific transformations are dependent on each other and the whole model has to be retrained when handling samples from new modalities. In this paper, we present a novel cross-modal retrieval method, called Scalable Deep Multimodal Learning (SDML). It proposes to predefine a common subspace, in which the between-class variation is maximized while the within-class variation is minimized. Then, it trains m modality-specific networks for m modalities (one network for each modality) to transform the multimodal data into the predefined common subspace to achieve multimodal learning. Unlike many of the existing methods, our method can train different modality-specific networks independently and thus be scalable to the number of modalities. To the best of our knowledge, the proposed SDML could be one of the first works to independently project data of an unfixed number of modalities into a predefined common subspace. Comprehensive experimental results on four widely-used benchmark datasets demonstrate that the proposed method is effective and efficient in multimodal learning and outperforms the state-of-the-art methods in cross-modal retrieval.","PeriodicalId":20700,"journal":{"name":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":"36 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86340371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 76
Investigating Passage-level Relevance and Its Role in Document-level Relevance Judgment 文章级关联及其在文件级关联判断中的作用研究
Zhijing Wu, Jiaxin Mao, Yiqun Liu, Min Zhang, Shaoping Ma
The understanding of the process of relevance judgment helps to inspire the design of retrieval models. Traditional retrieval models usually estimate relevance based on document-level signals. Recent works consider a more fine-grain, passage-level relevance information, which can further enhance retrieval performance. However, it lacks a detailed analysis of how passage-level relevance signals determine or influence the relevance judgment of the whole document. To investigate the role of passage-level relevance in the document-level relevance judgment, we construct an ad-hoc retrieval dataset with both passage-level and document-level relevance labels. A thorough analysis reveals that: 1) there is a strong correlation between the document-level relevance and the fractions of irrelevant passages to highly relevant passages; 2) the position, length and query similarity of passages play different roles in the determination of document-level relevance; 3) The sequential passage-level relevance within a document is a potential indicator for the document-level relevance. Based on the relationship between passage-level and document-level relevance, we also show that utilizing passage-level relevance signals can improve existing document ranking models. This study helps us better understand how users perceive relevance for a document and inspire the designing of novel ranking models leveraging fine-grain, passage-level relevance signals.
对关联判断过程的理解有助于启发检索模型的设计。传统的检索模型通常基于文档级信号来估计相关性。最近的研究考虑了更细粒度的、篇章级的相关信息,可以进一步提高检索性能。然而,缺乏对段落级关联信号如何决定或影响整篇文章相关性判断的详细分析。为了研究段落级相关性在文档级相关性判断中的作用,我们构建了一个包含段落级和文档级相关标签的特别检索数据集。深入分析表明:1)文档级相关性与不相关段落与高度相关段落的比例之间存在很强的相关性;2)段落的位置、长度和查询相似度在确定文档级相关性中起着不同的作用;3)文档中的顺序段落级相关性是文档级相关性的潜在指示器。基于段落级和文档级相关性之间的关系,我们还表明利用段落级相关性信号可以改进现有的文档排序模型。这项研究帮助我们更好地理解用户如何感知文档的相关性,并启发我们设计利用细粒度、通道级相关性信号的新型排名模型。
{"title":"Investigating Passage-level Relevance and Its Role in Document-level Relevance Judgment","authors":"Zhijing Wu, Jiaxin Mao, Yiqun Liu, Min Zhang, Shaoping Ma","doi":"10.1145/3331184.3331233","DOIUrl":"https://doi.org/10.1145/3331184.3331233","url":null,"abstract":"The understanding of the process of relevance judgment helps to inspire the design of retrieval models. Traditional retrieval models usually estimate relevance based on document-level signals. Recent works consider a more fine-grain, passage-level relevance information, which can further enhance retrieval performance. However, it lacks a detailed analysis of how passage-level relevance signals determine or influence the relevance judgment of the whole document. To investigate the role of passage-level relevance in the document-level relevance judgment, we construct an ad-hoc retrieval dataset with both passage-level and document-level relevance labels. A thorough analysis reveals that: 1) there is a strong correlation between the document-level relevance and the fractions of irrelevant passages to highly relevant passages; 2) the position, length and query similarity of passages play different roles in the determination of document-level relevance; 3) The sequential passage-level relevance within a document is a potential indicator for the document-level relevance. Based on the relationship between passage-level and document-level relevance, we also show that utilizing passage-level relevance signals can improve existing document ranking models. This study helps us better understand how users perceive relevance for a document and inspire the designing of novel ranking models leveraging fine-grain, passage-level relevance signals.","PeriodicalId":20700,"journal":{"name":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":"12 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86731504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 24
Query-Task Mapping Query-Task映射
Michael Völske, Ehsan Fatehifar, Benno Stein, Matthias Hagen
Several recent task-based search studies aim at splitting query logs into sets of queries for the same task or information need. We address the natural next step: mapping a currently submitted query to an appropriate task in an already task-split log. This query-task mapping can, for instance, enhance query suggestions---rendering efficiency of the mapping, besides accuracy, a key objective. Our main contributions are three large benchmark datasets and preliminary experiments with four query-task mapping approaches: (1) a Trie-based approach, (2) MinHash~LSH, (3) word movers distance in a Word2Vec setup, and (4) an inverted index-based approach. The experiments show that the fast and accurate inverted index-based method forms a strong baseline.
最近一些基于任务的搜索研究旨在将查询日志拆分为同一任务或信息需求的查询集。我们解决了自然的下一步:将当前提交的查询映射到已经任务分割日志中的适当任务。例如,这种查询任务映射可以增强查询建议——映射的呈现效率,除了准确性之外,这是一个关键目标。我们的主要贡献是三个大型基准数据集和四种查询任务映射方法的初步实验:(1)基于trie的方法,(2)MinHash~LSH, (3) Word2Vec设置中的字移动距离,以及(4)基于倒排索引的方法。实验表明,基于倒排索引的方法快速准确地形成了一个强基线。
{"title":"Query-Task Mapping","authors":"Michael Völske, Ehsan Fatehifar, Benno Stein, Matthias Hagen","doi":"10.1145/3331184.3331286","DOIUrl":"https://doi.org/10.1145/3331184.3331286","url":null,"abstract":"Several recent task-based search studies aim at splitting query logs into sets of queries for the same task or information need. We address the natural next step: mapping a currently submitted query to an appropriate task in an already task-split log. This query-task mapping can, for instance, enhance query suggestions---rendering efficiency of the mapping, besides accuracy, a key objective. Our main contributions are three large benchmark datasets and preliminary experiments with four query-task mapping approaches: (1) a Trie-based approach, (2) MinHash~LSH, (3) word movers distance in a Word2Vec setup, and (4) an inverted index-based approach. The experiments show that the fast and accurate inverted index-based method forms a strong baseline.","PeriodicalId":20700,"journal":{"name":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":"174 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82672783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Session details: Session 7A: Relevance and Evaluation 1 会议详情:会议7A:相关性和评估
M. Sanderson
{"title":"Session details: Session 7A: Relevance and Evaluation 1","authors":"M. Sanderson","doi":"10.1145/3349691","DOIUrl":"https://doi.org/10.1145/3349691","url":null,"abstract":"","PeriodicalId":20700,"journal":{"name":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":"15 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81835731","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improving Collaborative Metric Learning with Efficient Negative Sampling 利用高效负抽样改进协同度量学习
Viet-Anh Tran, Romain Hennequin, Jimena Royo-Letelier, Manuel Moussallam
Distance metric learning based on triplet loss has been applied with success in a wide range of applications such as face recognition, image retrieval, speaker change detection and recently recommendation with the Collaborative Metric Learning (CML) model. However, as we show in this article, CML requires large batches to work reasonably well because of a too simplistic uniform negative sampling strategy for selecting triplets. Due to memory limitations, this makes it difficult to scale in high-dimensional scenarios. To alleviate this problem, we propose here a 2-stage negative sampling strategy which finds triplets that are highly informative for learning. Our strategy allows CML to work effectively in terms of accuracy and popularity bias, even when the batch size is an order of magnitude smaller than what would be needed with the default uniform sampling. We demonstrate the suitability of the proposed strategy for recommendation and exhibit consistent positive results across various datasets.
基于三重态损失的距离度量学习在人脸识别、图像检索、说话人变化检测以及最近的协同度量学习(CML)模型推荐等广泛应用中取得了成功。然而,正如我们在本文中所展示的,CML需要大量的批处理才能很好地工作,因为选择三元组的统一负采样策略过于简单。由于内存限制,这使得难以在高维场景中进行扩展。为了缓解这个问题,我们在这里提出了一个两阶段的负抽样策略,该策略可以找到对学习具有高度信息的三胞胎。我们的策略允许CML在准确性和流行偏差方面有效地工作,即使批处理大小比默认均匀抽样所需的小一个数量级。我们证明了所提出的推荐策略的适用性,并在各种数据集上展示了一致的积极结果。
{"title":"Improving Collaborative Metric Learning with Efficient Negative Sampling","authors":"Viet-Anh Tran, Romain Hennequin, Jimena Royo-Letelier, Manuel Moussallam","doi":"10.1145/3331184.3331337","DOIUrl":"https://doi.org/10.1145/3331184.3331337","url":null,"abstract":"Distance metric learning based on triplet loss has been applied with success in a wide range of applications such as face recognition, image retrieval, speaker change detection and recently recommendation with the Collaborative Metric Learning (CML) model. However, as we show in this article, CML requires large batches to work reasonably well because of a too simplistic uniform negative sampling strategy for selecting triplets. Due to memory limitations, this makes it difficult to scale in high-dimensional scenarios. To alleviate this problem, we propose here a 2-stage negative sampling strategy which finds triplets that are highly informative for learning. Our strategy allows CML to work effectively in terms of accuracy and popularity bias, even when the batch size is an order of magnitude smaller than what would be needed with the default uniform sampling. We demonstrate the suitability of the proposed strategy for recommendation and exhibit consistent positive results across various datasets.","PeriodicalId":20700,"journal":{"name":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":"155 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91435185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 16
期刊
Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1