首页 > 最新文献

Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval最新文献

英文 中文
Session details: Session 6A: Social Media 会议详情:6A:社交媒体
J. Mothe
{"title":"Session details: Session 6A: Social Media","authors":"J. Mothe","doi":"10.1145/3349689","DOIUrl":"https://doi.org/10.1145/3349689","url":null,"abstract":"","PeriodicalId":20700,"journal":{"name":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":"221 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72578140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sequence and Time Aware Neighborhood for Session-based Recommendations: STAN 基于会话的推荐的序列和时间感知邻域:STAN
Diksha Garg, Priyanka Gupta, Pankaj Malhotra, L. Vig, Gautam M. Shroff
Recent advances in sequence-aware approaches for session-based recommendation, such as those based on recurrent neural networks, highlight the importance of leveraging sequential information from a session while making recommendations. Further, a session based k-nearest-neighbors approach (SKNN) has proven to be a strong baseline for session-based recommendations. However, SKNN does not take into account the readily available sequential and temporal information from sessions. In this work, we propose Sequence and Time Aware Neighborhood (STAN), with vanilla SKNN as its special case. STAN takes into account the following factors for making recommendations: i) position of an item in the current session, ii) recency of a past session w.r.t. to the current session, and iii) position of a recommendable item in a neighboring session. The importance of above factors for a specific application can be adjusted via controllable decay factors. Despite being simple, intuitive and easy to implement, empirical evaluation on three real-world datasets shows that STAN significantly improves over SKNN, and is even comparable to the recently proposed state-of-the-art deep learning approaches. Our results suggest that STAN can be considered as a strong baseline for evaluating session-based recommendation algorithms in future.
基于会话的推荐的序列感知方法的最新进展,例如基于递归神经网络的方法,强调了在进行推荐时利用会话序列信息的重要性。此外,基于会话的k近邻方法(SKNN)已被证明是基于会话的推荐的强大基线。然而,SKNN不考虑从会话中随时可用的顺序和时间信息。在这项工作中,我们提出了序列和时间感知邻域(STAN),并以香草SKNN为特例。STAN在提出建议时会考虑以下因素:i)项目在当前会议中的位置,ii)过去的会议与当前会议的距离,以及iii)可推荐的项目在相邻会议中的位置。上述因素对于特定应用的重要性可以通过可控的衰减因子来调整。尽管简单、直观且易于实现,但对三个现实世界数据集的经验评估表明,STAN比SKNN有显著改善,甚至可以与最近提出的最先进的深度学习方法相媲美。我们的研究结果表明,STAN可以被认为是未来评估基于会话的推荐算法的一个强有力的基线。
{"title":"Sequence and Time Aware Neighborhood for Session-based Recommendations: STAN","authors":"Diksha Garg, Priyanka Gupta, Pankaj Malhotra, L. Vig, Gautam M. Shroff","doi":"10.1145/3331184.3331322","DOIUrl":"https://doi.org/10.1145/3331184.3331322","url":null,"abstract":"Recent advances in sequence-aware approaches for session-based recommendation, such as those based on recurrent neural networks, highlight the importance of leveraging sequential information from a session while making recommendations. Further, a session based k-nearest-neighbors approach (SKNN) has proven to be a strong baseline for session-based recommendations. However, SKNN does not take into account the readily available sequential and temporal information from sessions. In this work, we propose Sequence and Time Aware Neighborhood (STAN), with vanilla SKNN as its special case. STAN takes into account the following factors for making recommendations: i) position of an item in the current session, ii) recency of a past session w.r.t. to the current session, and iii) position of a recommendable item in a neighboring session. The importance of above factors for a specific application can be adjusted via controllable decay factors. Despite being simple, intuitive and easy to implement, empirical evaluation on three real-world datasets shows that STAN significantly improves over SKNN, and is even comparable to the recently proposed state-of-the-art deep learning approaches. Our results suggest that STAN can be considered as a strong baseline for evaluating session-based recommendation algorithms in future.","PeriodicalId":20700,"journal":{"name":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":"67 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72644553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 88
From Text to Sound: A Preliminary Study on Retrieving Sound Effects to Radio Stories 从文本到声音:广播故事音效检索的初步研究
Songwei Ge, Curtis Xuan, Ruihua Song, Chao Zou, Wei Liu, Jin Zhou
Sound effects play an essential role in producing high-quality radio stories but require enormous labor cost to add. In this paper, we address the problem of automatically adding sound effects to radio stories with a retrieval-based model. However, directly implementing a tag-based retrieval model leads to high false positives due to the ambiguity of story contents. To solve this problem, we introduce a retrieval-based framework hybridized with a semantic inference model which helps to achieve robust retrieval results. Our model relies on fine-designed features extracted from the context of candidate triggers. We collect two story dubbing datasets through crowdsourcing to analyze the setting of adding sound effects and to train and test our proposed methods. We further discuss the importance of each feature and introduce several heuristic rules for the trade-off between precision and recall. Together with the text-to-speech technology, our results reveal a promising automatic pipeline on producing high-quality radio stories.
声音效果在制作高质量的广播故事中起着至关重要的作用,但需要大量的劳动力成本。在本文中,我们使用基于检索的模型解决了自动向广播故事添加声音效果的问题。然而,由于故事内容的模糊性,直接实现基于标签的检索模型会导致高误报。为了解决这个问题,我们引入了一个基于检索的框架和一个语义推理模型,以帮助实现鲁棒的检索结果。我们的模型依赖于从候选触发器的上下文中提取的精心设计的特征。我们通过众包收集了两个故事配音数据集来分析添加音效的设置,并训练和测试我们提出的方法。我们进一步讨论了每个特征的重要性,并引入了几个启发式规则来权衡精度和召回率。结合文本转语音技术,我们的研究结果揭示了一个有前途的生产高质量广播故事的自动管道。
{"title":"From Text to Sound: A Preliminary Study on Retrieving Sound Effects to Radio Stories","authors":"Songwei Ge, Curtis Xuan, Ruihua Song, Chao Zou, Wei Liu, Jin Zhou","doi":"10.1145/3331184.3331274","DOIUrl":"https://doi.org/10.1145/3331184.3331274","url":null,"abstract":"Sound effects play an essential role in producing high-quality radio stories but require enormous labor cost to add. In this paper, we address the problem of automatically adding sound effects to radio stories with a retrieval-based model. However, directly implementing a tag-based retrieval model leads to high false positives due to the ambiguity of story contents. To solve this problem, we introduce a retrieval-based framework hybridized with a semantic inference model which helps to achieve robust retrieval results. Our model relies on fine-designed features extracted from the context of candidate triggers. We collect two story dubbing datasets through crowdsourcing to analyze the setting of adding sound effects and to train and test our proposed methods. We further discuss the importance of each feature and introduce several heuristic rules for the trade-off between precision and recall. Together with the text-to-speech technology, our results reveal a promising automatic pipeline on producing high-quality radio stories.","PeriodicalId":20700,"journal":{"name":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74648903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Legal Intelligence for E-commerce: Multi-task Learning by Leveraging Multiview Dispute Representation 电子商务的法律智能:利用多视角纠纷表示的多任务学习
Xin Zhou, Yating Zhang, Xiaozhong Liu, Changlong Sun, Luo Si
Various e-commerce platforms produce millions of transactions per day with many transaction disputes. This generates the demand for effective and efficient dispute resolutions for e-commerce transactions. This paper proposes a novel research task of Legal Dispute Judgment (LDJ) prediction for e-commerce transactions, which connects two yet isolated domains, e-commerce data mining and legal intelligence. Different from traditional legal intelligence with the focus on textual evidence of the dispute itself, the new research utilizes multiview information such as past behavior information of seller and buyer as well as textual evidence of the current transaction. The multiview dispute representation is integrated into an innovative multi-task learning framework for predicting the legal result. An extensive set of experiments with a large dispute case dataset collected from a world leading e-commerce platform shows that the proposed model can more accurately characterize a dispute case through buyer, seller, and transaction viewpoints for legal judgment prediction against several alternatives.
各种电子商务平台每天产生数百万笔交易,交易纠纷也很多。这就产生了对电子商务交易中有效和高效的争议解决方案的需求。本文提出了一个新的研究课题——电子商务交易的法律纠纷判决预测,它将电子商务数据挖掘和法律智能两个孤立的领域联系起来。与传统的法律情报侧重于争议本身的文本证据不同,新的研究利用了卖方和买方过去的行为信息以及当前交易的文本证据等多视角信息。将多视角纠纷表示集成到一个创新的多任务学习框架中,用于预测法律结果。从世界领先的电子商务平台收集的大型争议案件数据集进行的大量实验表明,所提出的模型可以更准确地通过买方,卖方和交易观点来描述争议案件,以便针对几种替代方案进行法律判决预测。
{"title":"Legal Intelligence for E-commerce: Multi-task Learning by Leveraging Multiview Dispute Representation","authors":"Xin Zhou, Yating Zhang, Xiaozhong Liu, Changlong Sun, Luo Si","doi":"10.1145/3331184.3331212","DOIUrl":"https://doi.org/10.1145/3331184.3331212","url":null,"abstract":"Various e-commerce platforms produce millions of transactions per day with many transaction disputes. This generates the demand for effective and efficient dispute resolutions for e-commerce transactions. This paper proposes a novel research task of Legal Dispute Judgment (LDJ) prediction for e-commerce transactions, which connects two yet isolated domains, e-commerce data mining and legal intelligence. Different from traditional legal intelligence with the focus on textual evidence of the dispute itself, the new research utilizes multiview information such as past behavior information of seller and buyer as well as textual evidence of the current transaction. The multiview dispute representation is integrated into an innovative multi-task learning framework for predicting the legal result. An extensive set of experiments with a large dispute case dataset collected from a world leading e-commerce platform shows that the proposed model can more accurately characterize a dispute case through buyer, seller, and transaction viewpoints for legal judgment prediction against several alternatives.","PeriodicalId":20700,"journal":{"name":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":"46 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75007716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 17
Normalized Query Commitment Revisited 重新访问规范化查询承诺
Haggai Roitman
We revisit the Normalized Query Commitment (NQC) query performance prediction (QPP) method. To this end, we suggest a scaled extension to a discriminative QPP framework and use it to analyze NQC. Using this analysis allows us to redesign NQC and suggest several options for improvement.
我们回顾了规范化查询承诺(NQC)查询性能预测(QPP)方法。为此,我们建议对判别性QPP框架进行扩展,并将其用于NQC分析。利用这种分析,我们可以重新设计NQC,并提出几个改进方案。
{"title":"Normalized Query Commitment Revisited","authors":"Haggai Roitman","doi":"10.1145/3331184.3331334","DOIUrl":"https://doi.org/10.1145/3331184.3331334","url":null,"abstract":"We revisit the Normalized Query Commitment (NQC) query performance prediction (QPP) method. To this end, we suggest a scaled extension to a discriminative QPP framework and use it to analyze NQC. Using this analysis allows us to redesign NQC and suggest several options for improvement.","PeriodicalId":20700,"journal":{"name":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":"15 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74084262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Family History Discovery through Search at Ancestry 通过祖先搜索发现家族史
Peng Jiang, Yingrui Yang, Gann Bierner, F. Li, Ruhan Wang, Azadeh Moghtaderi
At Ancestry, we apply learning to rank algorithms to a new area to assist our customers in better understanding their family history. The foundation of our service is an extensive and unique collection of billions of historical records that we have digitized and indexed. Currently, our content collection includes 20 billion historical records. The record data consists of birth records, death records, marriage records, adoption records, census records, obituary records, among many others types. It is important for us to return relevant records from diversified record types in order to assist our customers to better understand their family history.
在Ancestry,我们将学习算法应用到一个新的领域,以帮助我们的客户更好地了解他们的家族史。我们服务的基础是一个广泛而独特的收集数十亿的历史记录,我们已经数字化和索引。目前,我们的内容集合包括200亿条历史记录。记录数据包括出生记录、死亡记录、婚姻记录、收养记录、人口普查记录、讣告记录以及许多其他类型的记录。为了帮助我们的客户更好地了解他们的家族史,我们必须从不同的记录类型中归还相关的记录。
{"title":"Family History Discovery through Search at Ancestry","authors":"Peng Jiang, Yingrui Yang, Gann Bierner, F. Li, Ruhan Wang, Azadeh Moghtaderi","doi":"10.1145/3331184.3331430","DOIUrl":"https://doi.org/10.1145/3331184.3331430","url":null,"abstract":"At Ancestry, we apply learning to rank algorithms to a new area to assist our customers in better understanding their family history. The foundation of our service is an extensive and unique collection of billions of historical records that we have digitized and indexed. Currently, our content collection includes 20 billion historical records. The record data consists of birth records, death records, marriage records, adoption records, census records, obituary records, among many others types. It is important for us to return relevant records from diversified record types in order to assist our customers to better understand their family history.","PeriodicalId":20700,"journal":{"name":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":"75 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75070138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Deep Chit-Chat: Deep Learning for Chatbots 深度聊天:用于聊天机器人的深度学习
Wei Wu, Rui Yan
The tutorial is based on our long-term research on open domain conversation, rich hands-on experience on development of Microsoft XiaoIce, and our previous tutorials on EMNLP 2018 and the Web Conference 2019. It starts from a summary of recent achievement made by both academia and industry on chatbots, and then performs a thorough and systematic introduction to state-of-the-art methods for open domain conversation modeling including both retrieval-based methods and generation-based methods. In addition to these, the tutorial also covers some new progress on both groups of methods, such as transition from model design to model learning, transition from knowledge agnostic conversation to knowledge aware conversation, and transition from single-modal conversation to multi-modal conversation. The tutorial is ended by some promising future directions such as how to combine non-task-oriented dialogue systems with task-oriented dialogue systems and how to enhance language learning with chatbots.
本教程基于我们对开放域会话的长期研究,微软小冰开发的丰富实践经验,以及我们之前关于EMNLP 2018和Web Conference 2019的教程。本文首先总结了学术界和工业界在聊天机器人方面取得的最新成就,然后对开放领域对话建模的最新方法进行了全面而系统的介绍,包括基于检索的方法和基于生成的方法。除此之外,本教程还涵盖了两组方法的一些新进展,例如从模型设计到模型学习的过渡,从知识不可知论对话到知识感知对话的过渡,以及从单模态对话到多模态对话的过渡。教程的最后介绍了一些有前景的未来方向,比如如何将非任务导向的对话系统与任务导向的对话系统结合起来,以及如何利用聊天机器人增强语言学习。
{"title":"Deep Chit-Chat: Deep Learning for Chatbots","authors":"Wei Wu, Rui Yan","doi":"10.1145/3331184.3331388","DOIUrl":"https://doi.org/10.1145/3331184.3331388","url":null,"abstract":"The tutorial is based on our long-term research on open domain conversation, rich hands-on experience on development of Microsoft XiaoIce, and our previous tutorials on EMNLP 2018 and the Web Conference 2019. It starts from a summary of recent achievement made by both academia and industry on chatbots, and then performs a thorough and systematic introduction to state-of-the-art methods for open domain conversation modeling including both retrieval-based methods and generation-based methods. In addition to these, the tutorial also covers some new progress on both groups of methods, such as transition from model design to model learning, transition from knowledge agnostic conversation to knowledge aware conversation, and transition from single-modal conversation to multi-modal conversation. The tutorial is ended by some promising future directions such as how to combine non-task-oriented dialogue systems with task-oriented dialogue systems and how to enhance language learning with chatbots.","PeriodicalId":20700,"journal":{"name":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":"232 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72896521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
Dynamic Sampling Meets Pooling 动态抽样满足池化
G. Cormack, Haotian Zhang, Nimesh Ghelani, Mustafa Abualsaud, Mark D. Smucker, Maura R. Grossman, Shahin Rahbariasl, Amira Ghenai
A team of six assessors used Dynamic Sampling (Cormack and Grossman 2018) and one hour of assessment effort per topic to form, without pooling, a test collection for the TREC 2018 Common Core Track. Later, official relevance assessments were rendered by NIST for documents selected by depth-10 pooling augmented by move-to-front (MTF) pooling (Cormack et al. 1998), as well as the documents selected by our Dynamic Sampling effort. MAP estimates rendered from dynamically sampled assessments using the xinfAP statistical evaluator are comparable to those rendered from the complete set of official assessments using the standard trec_eval tool. MAP estimates rendered using only documents selected by pooling, on the other hand, differ substantially. The results suggest that the use of Dynamic Sampling without pooling can, for an order of magnitude less assessment effort, yield information-retrieval effectiveness estimates that exhibit lower bias, lower error, and comparable ability to rank system effectiveness.
一个由六名评估人员组成的团队使用动态抽样(Cormack和Grossman 2018)和每个主题一小时的评估工作,形成TREC 2018年共同核心轨道的测试集合,而不是汇集。后来,NIST对深度-10池选择的通过移动到前端(MTF)池(Cormack et al. 1998)增强的文档以及我们的动态采样工作选择的文档进行了官方相关性评估。使用xinfAP统计评估器从动态采样评估中呈现的MAP估计与使用标准tre_eval工具从完整的官方评估集呈现的MAP估计相当。另一方面,仅使用池选择的文档呈现的MAP估计有很大不同。结果表明,使用没有池化的动态抽样可以在一个数量级上减少评估工作,产生具有更低偏差、更低误差的信息检索有效性估计,并具有对系统有效性排序的可比较能力。
{"title":"Dynamic Sampling Meets Pooling","authors":"G. Cormack, Haotian Zhang, Nimesh Ghelani, Mustafa Abualsaud, Mark D. Smucker, Maura R. Grossman, Shahin Rahbariasl, Amira Ghenai","doi":"10.1145/3331184.3331354","DOIUrl":"https://doi.org/10.1145/3331184.3331354","url":null,"abstract":"A team of six assessors used Dynamic Sampling (Cormack and Grossman 2018) and one hour of assessment effort per topic to form, without pooling, a test collection for the TREC 2018 Common Core Track. Later, official relevance assessments were rendered by NIST for documents selected by depth-10 pooling augmented by move-to-front (MTF) pooling (Cormack et al. 1998), as well as the documents selected by our Dynamic Sampling effort. MAP estimates rendered from dynamically sampled assessments using the xinfAP statistical evaluator are comparable to those rendered from the complete set of official assessments using the standard trec_eval tool. MAP estimates rendered using only documents selected by pooling, on the other hand, differ substantially. The results suggest that the use of Dynamic Sampling without pooling can, for an order of magnitude less assessment effort, yield information-retrieval effectiveness estimates that exhibit lower bias, lower error, and comparable ability to rank system effectiveness.","PeriodicalId":20700,"journal":{"name":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72933854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Session details: Session 1B: Health and Social Media 会议详情:会议1B:健康和社交媒体
Mark D. Smucker
{"title":"Session details: Session 1B: Health and Social Media","authors":"Mark D. Smucker","doi":"10.1145/3349676","DOIUrl":"https://doi.org/10.1145/3349676","url":null,"abstract":"","PeriodicalId":20700,"journal":{"name":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":"30 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90301308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reinforcement Learning for User Intent Prediction in Customer Service Bots 客服机器人中用户意图预测的强化学习
Cen Chen, Chilin Fu, Xujun Hu, Xiaolu Zhang, Jun Zhou, Xiaolong Li, F. S. Bao
A customer service bot is now a necessary component of an e-commerce platform. As a core module of the customer service bot, user intent prediction can help predict user questions before they ask. A typical solution is to find top candidate questions that a user will be interested in. Such solution ignores the inter-relationship between questions and often aims to maximize the immediate reward such as clicks, which may not be ideal in practice. Hence, we propose to view the problem as a sequential decision making process to better capture the long-term effects of each recommendation in the list. Intuitively, we formulate the problem as a Markov decision process and consider using reinforcement learning for the problem. With this approach, questions presented to users are both relevant and diverse. Experiments on offline real-world dataset and online system demonstrate the effectiveness of our proposed approach.
客户服务机器人现在是电子商务平台的必要组成部分。用户意图预测是客服机器人的核心模块,可以在用户提问之前预测用户的问题。一个典型的解决方案是找到用户可能感兴趣的最佳候选问题。这样的解决方案忽略了问题之间的相互关系,通常旨在最大化点击等即时奖励,这在实践中可能并不理想。因此,我们建议将问题视为一个连续的决策制定过程,以更好地捕获列表中每个建议的长期影响。直观地,我们将问题表述为马尔可夫决策过程,并考虑使用强化学习来解决问题。通过这种方法,呈现给用户的问题既相关又多样。在离线真实数据集和在线系统上的实验证明了该方法的有效性。
{"title":"Reinforcement Learning for User Intent Prediction in Customer Service Bots","authors":"Cen Chen, Chilin Fu, Xujun Hu, Xiaolu Zhang, Jun Zhou, Xiaolong Li, F. S. Bao","doi":"10.1145/3331184.3331370","DOIUrl":"https://doi.org/10.1145/3331184.3331370","url":null,"abstract":"A customer service bot is now a necessary component of an e-commerce platform. As a core module of the customer service bot, user intent prediction can help predict user questions before they ask. A typical solution is to find top candidate questions that a user will be interested in. Such solution ignores the inter-relationship between questions and often aims to maximize the immediate reward such as clicks, which may not be ideal in practice. Hence, we propose to view the problem as a sequential decision making process to better capture the long-term effects of each recommendation in the list. Intuitively, we formulate the problem as a Markov decision process and consider using reinforcement learning for the problem. With this approach, questions presented to users are both relevant and diverse. Experiments on offline real-world dataset and online system demonstrate the effectiveness of our proposed approach.","PeriodicalId":20700,"journal":{"name":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":"12 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81381496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 15
期刊
Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1