Introduction: Abelmoschus esculentus (okra) from the Malvaceae family is widely used in culinary applications and is reported to have many potential therapeutic effects attributed to the compounds isolated from it. In this work, we set out to explore its seed proteome for the isolation of lectins and characterize them Method: A protein of about 21kDa was isolated and purified using chromatography techniques from the ammonium sulphate crude protein extract. It was evaluated for hemagglutination activity on rabbit erythrocyte suspension, trypsin inhibitory activity using chemical assay, and evaluation of anti-cancer activity using cell lines. Mass and transcriptome analysis were done to deduce the complete sequence of the isolated protein.
Results: Using functional, mass, and transcriptome analysis, the protein was identified as AEL (Abelmoschus esculentus lectin), which was reported earlier. Only a partial sequence of AEL was known, and in this work, we have deduced its complete sequence. It showed significant anti-- cancer activity against HeLa (cervical cancer) and T84 (colon cancer) with MIC (Minimum inhibitory concentration) of 20μg/ml and 40% and 30% reduction in cell viability at 100μg/ml and insignificant effect on ACHN (adenocarcinoma) cell lines. No significant effect was seen with the tested doses on normal control human cell lines HEK293 (human embryonic kidney cells). The purified protein shows specificity for lactose and galactose in the hemagglutination assay and trypsin inhibition activity.
Discussion: Studies of okra seed proteome lead to purification of AEL, a 21 kDa protein with dual hemagglutination activity and trypsin inhibitory activity. It showed potential anticancer activity in cervical, colon cancer cell lines and minimal effects on adenocarcinoma and control cell lines, suggesting specificity. The complete sequence of AEL was elucidated which will aid in its bioinformatics analysis, was isolated from okra seeds.
Conclusion: There are very few reported dual-acting lectins with potential anticancer activity, and this work will help understand their mechanistic interactions better.
{"title":"Evaluation of Anti-cancer Potential of Abelmoschus esculentus (Okra).","authors":"Maanniya Gakhar, Lovepreet Singh, Sanjeev Routh, Arunika Mukhopadhaya, Desh Deepak Singh","doi":"10.2174/0109298665365981250801110725","DOIUrl":"https://doi.org/10.2174/0109298665365981250801110725","url":null,"abstract":"<p><strong>Introduction: </strong>Abelmoschus esculentus (okra) from the Malvaceae family is widely used in culinary applications and is reported to have many potential therapeutic effects attributed to the compounds isolated from it. In this work, we set out to explore its seed proteome for the isolation of lectins and characterize them Method: A protein of about 21kDa was isolated and purified using chromatography techniques from the ammonium sulphate crude protein extract. It was evaluated for hemagglutination activity on rabbit erythrocyte suspension, trypsin inhibitory activity using chemical assay, and evaluation of anti-cancer activity using cell lines. Mass and transcriptome analysis were done to deduce the complete sequence of the isolated protein.</p><p><strong>Results: </strong>Using functional, mass, and transcriptome analysis, the protein was identified as AEL (Abelmoschus esculentus lectin), which was reported earlier. Only a partial sequence of AEL was known, and in this work, we have deduced its complete sequence. It showed significant anti-- cancer activity against HeLa (cervical cancer) and T84 (colon cancer) with MIC (Minimum inhibitory concentration) of 20μg/ml and 40% and 30% reduction in cell viability at 100μg/ml and insignificant effect on ACHN (adenocarcinoma) cell lines. No significant effect was seen with the tested doses on normal control human cell lines HEK293 (human embryonic kidney cells). The purified protein shows specificity for lactose and galactose in the hemagglutination assay and trypsin inhibition activity.</p><p><strong>Discussion: </strong>Studies of okra seed proteome lead to purification of AEL, a 21 kDa protein with dual hemagglutination activity and trypsin inhibitory activity. It showed potential anticancer activity in cervical, colon cancer cell lines and minimal effects on adenocarcinoma and control cell lines, suggesting specificity. The complete sequence of AEL was elucidated which will aid in its bioinformatics analysis, was isolated from okra seeds.</p><p><strong>Conclusion: </strong>There are very few reported dual-acting lectins with potential anticancer activity, and this work will help understand their mechanistic interactions better.</p>","PeriodicalId":20736,"journal":{"name":"Protein and Peptide Letters","volume":" ","pages":""},"PeriodicalIF":1.1,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144966262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Introduction: Mycobacterium tuberculosis (Mtb) is a Gram-positive bacterium that causes tuberculosis (TB). It remains viable for extended periods within host macrophages by entering a dormant state. Alpha crystallin 1 (Acr1) is a 16 kDa protein of Mtb and is reported to be highly upregulated in latent TB. Acr1 suppresses the host's immune system by impairing the differentiation and maturation of dendritic cells and macrophages. We hypothesize that Mtb judiciously utilizes its Acr1 protein to paralyse the immune system of the host by inducing the release of IL-10 and generating an immunosuppressive environment.
Methods: We employed in silico tools to identify highly promiscuous, IL-10-inducing and IL-6- non-inducing epitopes of Mtb. Moreover, the selected epitope was synthesized and tested for its suppressive activity and generation of Tregs.
Results: We identified the presence of a specific epitope in Acr1 (F18) that is responsible for bolstering the release of IL-10 and Tregs through in silico tools and verified the activity by in vitro assays. In hPBMCs, the F18 epitope could suppress the proliferation of CD4 T cells stimulated with PHA and expand the pool of Tregs in a dose-dependent manner.
Discussion: The F18 epitope from Mtb's Acr1 protein promotes IL-10 and Treg responses without triggering pro-inflammatory IL-6, suggesting a potential immunoregulatory role. While it holds potential for treating autoimmune diseases, its impact on infection tolerance in tuberculosis should be further investigated.
Conclusion: Our findings suggest that the F18 epitope induces IL-10 production and Treg differentiation while inhibiting CD4+ T cell proliferation and IL-6 secretion, thereby promoting an immunosuppressive environment. Furthermore, this study highlights the potential of Acr1 and its immunosuppressive epitope F18 as therapeutic agents for inducing suppressive Tregs in the management of autoimmune diseases.
{"title":"F18 Promiscuous Epitope of Acr1 Protein of Mycobacterium tuberculosis Induces the Secretion of IL-10 and Tregs But Not IL-6.","authors":"Taruna Lamba, Shivank Prajapati, Arnab Chowdhury, Anupam Bandyopadhyay, Javed N Agrewala","doi":"10.2174/0109298665398349250728195645","DOIUrl":"https://doi.org/10.2174/0109298665398349250728195645","url":null,"abstract":"<p><strong>Introduction: </strong>Mycobacterium tuberculosis (Mtb) is a Gram-positive bacterium that causes tuberculosis (TB). It remains viable for extended periods within host macrophages by entering a dormant state. Alpha crystallin 1 (Acr1) is a 16 kDa protein of Mtb and is reported to be highly upregulated in latent TB. Acr1 suppresses the host's immune system by impairing the differentiation and maturation of dendritic cells and macrophages. We hypothesize that Mtb judiciously utilizes its Acr1 protein to paralyse the immune system of the host by inducing the release of IL-10 and generating an immunosuppressive environment.</p><p><strong>Methods: </strong>We employed in silico tools to identify highly promiscuous, IL-10-inducing and IL-6- non-inducing epitopes of Mtb. Moreover, the selected epitope was synthesized and tested for its suppressive activity and generation of Tregs.</p><p><strong>Results: </strong>We identified the presence of a specific epitope in Acr1 (F18) that is responsible for bolstering the release of IL-10 and Tregs through in silico tools and verified the activity by in vitro assays. In hPBMCs, the F18 epitope could suppress the proliferation of CD4 T cells stimulated with PHA and expand the pool of Tregs in a dose-dependent manner.</p><p><strong>Discussion: </strong>The F18 epitope from Mtb's Acr1 protein promotes IL-10 and Treg responses without triggering pro-inflammatory IL-6, suggesting a potential immunoregulatory role. While it holds potential for treating autoimmune diseases, its impact on infection tolerance in tuberculosis should be further investigated.</p><p><strong>Conclusion: </strong>Our findings suggest that the F18 epitope induces IL-10 production and Treg differentiation while inhibiting CD4+ T cell proliferation and IL-6 secretion, thereby promoting an immunosuppressive environment. Furthermore, this study highlights the potential of Acr1 and its immunosuppressive epitope F18 as therapeutic agents for inducing suppressive Tregs in the management of autoimmune diseases.</p>","PeriodicalId":20736,"journal":{"name":"Protein and Peptide Letters","volume":" ","pages":""},"PeriodicalIF":1.1,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144837483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-08-01DOI: 10.2174/0109298665387985250710041016
Kalyani R Thombre, Krishna R Gupta, Tejaswini P Masne, Milind Janrao Umekar
Recombinant proteins, which are produced using recombinant DNA technology, have transformed the domains of biotechnology and biomedicine by allowing the production of proteins that are often expensive or difficult to obtain from natural sources. More than 130 recombinant proteins are currently in clinical use by the US FDA, demonstrating the importance of these proteins in both research and therapeutic applications. Bacterial, yeast, mammalian cell cultures, and hybridoma technology are examples of recombinant protein production systems that have enabled the large-scale production of therapeutic proteins, including monoclonal antibodies, which are now essential tools in disease treatment. From their origins with human insulin in the 1980s to the most recent developments in third-generation proteins, this brief review examines the development of recombinant protein therapies. The first generation concentrated on natural structures; the second generation focused on enhancing safety, pharmacokinetics, and specificity; and the third generation is ready to present innovative formulations and delivery systems. This review also covers the use of recombinant proteins in cancer treatment, different protein production systems, and design techniques that keep improving the safety and effectiveness profiles of protein therapies.
{"title":"Recombinant Proteins: Evolution to their Therapeutic Potential.","authors":"Kalyani R Thombre, Krishna R Gupta, Tejaswini P Masne, Milind Janrao Umekar","doi":"10.2174/0109298665387985250710041016","DOIUrl":"https://doi.org/10.2174/0109298665387985250710041016","url":null,"abstract":"<p><p>Recombinant proteins, which are produced using recombinant DNA technology, have transformed the domains of biotechnology and biomedicine by allowing the production of proteins that are often expensive or difficult to obtain from natural sources. More than 130 recombinant proteins are currently in clinical use by the US FDA, demonstrating the importance of these proteins in both research and therapeutic applications. Bacterial, yeast, mammalian cell cultures, and hybridoma technology are examples of recombinant protein production systems that have enabled the large-scale production of therapeutic proteins, including monoclonal antibodies, which are now essential tools in disease treatment. From their origins with human insulin in the 1980s to the most recent developments in third-generation proteins, this brief review examines the development of recombinant protein therapies. The first generation concentrated on natural structures; the second generation focused on enhancing safety, pharmacokinetics, and specificity; and the third generation is ready to present innovative formulations and delivery systems. This review also covers the use of recombinant proteins in cancer treatment, different protein production systems, and design techniques that keep improving the safety and effectiveness profiles of protein therapies.</p>","PeriodicalId":20736,"journal":{"name":"Protein and Peptide Letters","volume":" ","pages":""},"PeriodicalIF":1.1,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144785124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-07-16DOI: 10.2174/0109298665377738250626233111
Mariana C L Aguieiras, Érica O Mello, Larissa M Resende, Gabriel B Taveira, Thaynã A M Souza, Milena B Cherene, Arielle P B F Oliveira, Celso S Nagano, Renata P Chaves, Andre O Carvalho, Rosana Rodrigues, Fernanda Trindade, Maura Da Cunha, Valdirene M Gomes
Background: The increasing resistance of fungal pathogens to conventional antifungal treatments has led to a global rise in fungal infections, affecting human health (Candida spp.) and agricultural productivity (Colletotrichum and Fusarium spp.). Antimicrobial peptides (AMPs), such as defensins, have gained attention for their potential in controlling these infections due to their broad-spectrum activity.
Objectives: The aim of this study was to partially purify and characterize the antifungal activity of a defensin-enriched fraction (F3) from Capsicum chinense fruits. Specifically, we sought to evaluate its efficacy against pathogenic fungi and yeasts, and to assess the relative abundance of defensins in the fraction.
Methods: The F3 fraction was obtained using ion exchange and molecular exclusion chromatography. Reverse-phase chromatography (HPLC) was then employed for further purification. The antifungal activity of F3 was tested against Colletotrichum, Fusarium, and Candida species. Mass spectrometry was used to identify and characterize the defensin (CcDef3) within the fraction. The presence of the defensin relative to other components was inferred from electrophoretic profiles and peptide analysis.
Results: The F3 fraction exhibited significant antifungal activity, with growth inhibition of Colletotrichum lindemuthianum of 51% and 60.9% at concentrations of 100 and 200 μg mL-1, respectively. The fraction also inhibited the growth of several Candida species, notably C. nivariensis (93.8%) and C. bracarensis (79.6%) at 100 μg mL-1. Cell viability analysis indicated a fungistatic effect. Fluorescence microscopy assays showed that F3 induced membrane permeabilization in C. parapsilosis and C. lindemuthianum, and increased ROS production in C. pelliculosa and F. solani. The defensin-rich H8 fraction, containing a 6.5 kDa protein (CcDef3), was identified as a major component via mass spectrometry.
Conclusion: These results suggest that the F3 fraction, particularly the defensin CcDef3, has potential as an antifungal agent for biotechnological and therapeutic applications. However, further studies are needed to quantify the contribution of CcDef3 relative to other components in the fraction and to fully isolate the defensin for in-depth analysis.
{"title":"Antimicrobial Activity of a Defensin-Rich Fraction from Capsicum Chinense Fruits: Insights for Biotechnological Applications against Fungal Infections.","authors":"Mariana C L Aguieiras, Érica O Mello, Larissa M Resende, Gabriel B Taveira, Thaynã A M Souza, Milena B Cherene, Arielle P B F Oliveira, Celso S Nagano, Renata P Chaves, Andre O Carvalho, Rosana Rodrigues, Fernanda Trindade, Maura Da Cunha, Valdirene M Gomes","doi":"10.2174/0109298665377738250626233111","DOIUrl":"https://doi.org/10.2174/0109298665377738250626233111","url":null,"abstract":"<p><strong>Background: </strong>The increasing resistance of fungal pathogens to conventional antifungal treatments has led to a global rise in fungal infections, affecting human health (Candida spp.) and agricultural productivity (Colletotrichum and Fusarium spp.). Antimicrobial peptides (AMPs), such as defensins, have gained attention for their potential in controlling these infections due to their broad-spectrum activity.</p><p><strong>Objectives: </strong>The aim of this study was to partially purify and characterize the antifungal activity of a defensin-enriched fraction (F3) from Capsicum chinense fruits. Specifically, we sought to evaluate its efficacy against pathogenic fungi and yeasts, and to assess the relative abundance of defensins in the fraction.</p><p><strong>Methods: </strong>The F3 fraction was obtained using ion exchange and molecular exclusion chromatography. Reverse-phase chromatography (HPLC) was then employed for further purification. The antifungal activity of F3 was tested against Colletotrichum, Fusarium, and Candida species. Mass spectrometry was used to identify and characterize the defensin (CcDef3) within the fraction. The presence of the defensin relative to other components was inferred from electrophoretic profiles and peptide analysis.</p><p><strong>Results: </strong>The F3 fraction exhibited significant antifungal activity, with growth inhibition of Colletotrichum lindemuthianum of 51% and 60.9% at concentrations of 100 and 200 μg mL-1, respectively. The fraction also inhibited the growth of several Candida species, notably C. nivariensis (93.8%) and C. bracarensis (79.6%) at 100 μg mL-1. Cell viability analysis indicated a fungistatic effect. Fluorescence microscopy assays showed that F3 induced membrane permeabilization in C. parapsilosis and C. lindemuthianum, and increased ROS production in C. pelliculosa and F. solani. The defensin-rich H8 fraction, containing a 6.5 kDa protein (CcDef3), was identified as a major component via mass spectrometry.</p><p><strong>Conclusion: </strong>These results suggest that the F3 fraction, particularly the defensin CcDef3, has potential as an antifungal agent for biotechnological and therapeutic applications. However, further studies are needed to quantify the contribution of CcDef3 relative to other components in the fraction and to fully isolate the defensin for in-depth analysis.</p>","PeriodicalId":20736,"journal":{"name":"Protein and Peptide Letters","volume":" ","pages":""},"PeriodicalIF":1.0,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144660020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-11DOI: 10.2174/0109298665373399250319082357
Cleverson Diniz Teixeira de Freitas, Jefferson Soares de Oliveira
Peptidases play crucial roles in numerous physiological processes within living organisms. Therefore, they have been employed in various pharmaceutical applications. Plant peptidases have attracted considerable attention in various areas due to their specificity, stability across a diverse range of pH and temperatures, and safety profile. Here, we have focused on the use of plant peptidases, mostly papain and bromelain, to produce biologically active peptides, which confer various health advantages, including antioxidant, antimicrobial, antihypertensive, analgesic, antidiabetic, and anti-inflammatory effects. We have also discussed the importance of the action mechanism of peptidases for generating bioactive peptides with specific sequences and functions, the ecological and sustainability benefits of plant-derived peptidases compared to animal alternatives, digestive stability and bioavailability of peptides, as well as some obstacles to the commercialization of bioactive peptides and key challenges in peptidase-based industrial applications. Finally, we have examined enzyme immobilization as a viable method to enhance the production of bioactive peptides, offering numerous advantages in both research and industry contexts.
{"title":"Use of Plant Peptidases for the Production of Therapeutic Peptides.","authors":"Cleverson Diniz Teixeira de Freitas, Jefferson Soares de Oliveira","doi":"10.2174/0109298665373399250319082357","DOIUrl":"https://doi.org/10.2174/0109298665373399250319082357","url":null,"abstract":"<p><p>Peptidases play crucial roles in numerous physiological processes within living organisms. Therefore, they have been employed in various pharmaceutical applications. Plant peptidases have attracted considerable attention in various areas due to their specificity, stability across a diverse range of pH and temperatures, and safety profile. Here, we have focused on the use of plant peptidases, mostly papain and bromelain, to produce biologically active peptides, which confer various health advantages, including antioxidant, antimicrobial, antihypertensive, analgesic, antidiabetic, and anti-inflammatory effects. We have also discussed the importance of the action mechanism of peptidases for generating bioactive peptides with specific sequences and functions, the ecological and sustainability benefits of plant-derived peptidases compared to animal alternatives, digestive stability and bioavailability of peptides, as well as some obstacles to the commercialization of bioactive peptides and key challenges in peptidase-based industrial applications. Finally, we have examined enzyme immobilization as a viable method to enhance the production of bioactive peptides, offering numerous advantages in both research and industry contexts.</p>","PeriodicalId":20736,"journal":{"name":"Protein and Peptide Letters","volume":" ","pages":""},"PeriodicalIF":1.0,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144014341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The incidences of immune-related disorders have drastically increased in recent years across the world population. Treatment and management of these diseases, especially autoimmune disorders, are complex and challenging. Available synthetic drugs are not completely effective and also pose serious side effects for the patients. Cyclotides are a class of plant-derived cyclic peptides (28-37 amino acids) with three conserved disulfide linkages establishing a cyclic cystine knot (CCK) motif that makes them very stable biomolecules. Their inherent stability, bioavailability and membrane-penetrating capabilities render them attractive potential pharmacological agents. Studies have demonstrated that cyclotides can either enhance or suppress immune responses, making them versatile candidates for treating various immune-related disorders. Of more than 1000 cyclotides discovered to date, only up to 15 native cyclotides (e.g. kalata B1, pase and caripe cyclotides) have been screened to demonstrate their immunomodulatory activity. Of special significance is the chemically synthesised lysine mutant of kalata B1 viz. [T20K], where preclinical studies have shown promise in the treatment of the autoimmune disorder, multiple sclerosis. In vivo studies in mice models have demonstrated that daily administration of 1mg/day of [T20K] led to a significant decrease in the level of cytokine secretion, lesser demyelination (<1%) and very low inflammatory index (<0.5), in the immunized mice. Moreover, when compared with other immunosuppressive drugs (azathioprine, prednisolone, and cyclosporine A) there was a notable drop in mortality and morbidity in mice administered with [T20K]. The cyclotides, kalata B1 and MCoTI-I have also been used as scaffolds to graft bioactive peptides with immunomodulatory activity. Subsequent in vitro and in vivo studies of these grafted cyclotides have demonstrated their therapeutic ability. Keeping in view the therapeutic potential of cyclotides as immunomodulatory peptides, the present review discusses its current research scenario and implications for the future in tackling immune-related disorders.
{"title":"Plant-derived Cyclotides in Immunomodulation and their Therapeutic Potential.","authors":"Reema Mishra, Preeti Agarwal, Anshita Sharma, Meenal Mittal, Pooja Gulati, Aparajita Mohanty","doi":"10.2174/0109298665364479250214101422","DOIUrl":"https://doi.org/10.2174/0109298665364479250214101422","url":null,"abstract":"<p><p>The incidences of immune-related disorders have drastically increased in recent years across the world population. Treatment and management of these diseases, especially autoimmune disorders, are complex and challenging. Available synthetic drugs are not completely effective and also pose serious side effects for the patients. Cyclotides are a class of plant-derived cyclic peptides (28-37 amino acids) with three conserved disulfide linkages establishing a cyclic cystine knot (CCK) motif that makes them very stable biomolecules. Their inherent stability, bioavailability and membrane-penetrating capabilities render them attractive potential pharmacological agents. Studies have demonstrated that cyclotides can either enhance or suppress immune responses, making them versatile candidates for treating various immune-related disorders. Of more than 1000 cyclotides discovered to date, only up to 15 native cyclotides (e.g. kalata B1, pase and caripe cyclotides) have been screened to demonstrate their immunomodulatory activity. Of special significance is the chemically synthesised lysine mutant of kalata B1 viz. [T20K], where preclinical studies have shown promise in the treatment of the autoimmune disorder, multiple sclerosis. In vivo studies in mice models have demonstrated that daily administration of 1mg/day of [T20K] led to a significant decrease in the level of cytokine secretion, lesser demyelination (<1%) and very low inflammatory index (<0.5), in the immunized mice. Moreover, when compared with other immunosuppressive drugs (azathioprine, prednisolone, and cyclosporine A) there was a notable drop in mortality and morbidity in mice administered with [T20K]. The cyclotides, kalata B1 and MCoTI-I have also been used as scaffolds to graft bioactive peptides with immunomodulatory activity. Subsequent in vitro and in vivo studies of these grafted cyclotides have demonstrated their therapeutic ability. Keeping in view the therapeutic potential of cyclotides as immunomodulatory peptides, the present review discusses its current research scenario and implications for the future in tackling immune-related disorders.</p>","PeriodicalId":20736,"journal":{"name":"Protein and Peptide Letters","volume":" ","pages":""},"PeriodicalIF":1.0,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143664383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01DOI: 10.2174/0109298665347753241028072130
Yihui Chen, Shichai Hong, Zhefeng Wang, Xiang Hong, Gang Chen, Yulong Huang, Yue Lin, Xinsheng Xie, Chenwei Lin, Weifeng Lu
Objective: This study aimed to explore whether excessive HIF2α can amplify the impact of human Umbilical Cord Mesenchymal Stem Cell-derived Extracellular Vesicles (hUC-MSC- EVs) on endothelial cells.
Methods: In this study, we created HIF2α-overexpressing hUC-MSC-EVs and compared their pro-angiogenic effects with control EVs on Human Umbilical Vein Endothelial Cells (HUVECs). MTT assay and Edu staining were used to detect the viability and proliferation ability of HUVECs, and Transwell and Tube Formation Assays were used to detect cell migration and tube formation ability. qPCR assay was used to detect the expression of cellular angiogenic markers. Subsequently, miRNAs that might be regulated by HIF2α were predicted by bioinformatics analysis, and qPCR was used to detect the relative expression of miRNAs in HUVECs treated with hUC-MSC- EV, which over-expresses HIF2α. Subsequently, miR-146a inhibitors were used to investigate the role of miR-146a in mediating the pro-angiogenic effect of HIF2α on HUVECs by detecting cell viability, proliferation, migration, tube-forming ability, and expression of angiogenic markers. Finally, AKT/ERK phosphorylation and Spred1 expression were detected using Western blotting.
Results: Our findings have indicated that overexpression of HIF2α significantly enhances the ability of hUC-MSC-EVs to stimulate proliferation, migration, and tube formation in HUVECs, as demonstrated by MTT/Edu staining, Transwell assay, and tube formation assay results, respectively. Mechanistically, excessive HIF2α has been found to induce the expression of miR-146a in HUVECs and the overexpression of a miR-146a inhibitor to negate the influence of excessive HIF2α on hUC-MSC-EV-induced activity in HUVECs.
Conclusion: The overexpression of HIF2α is an effective strategy for enhancing the pro-angiogenic function of hUC-MSC-EVs.
{"title":"Overexpression of HIF2α Enhances the Angiogenesis-Promoting Effect of hUC-MSC-Derived Extracellular Vesicles by Stimulating miR-146a.","authors":"Yihui Chen, Shichai Hong, Zhefeng Wang, Xiang Hong, Gang Chen, Yulong Huang, Yue Lin, Xinsheng Xie, Chenwei Lin, Weifeng Lu","doi":"10.2174/0109298665347753241028072130","DOIUrl":"10.2174/0109298665347753241028072130","url":null,"abstract":"<p><strong>Objective: </strong>This study aimed to explore whether excessive HIF2α can amplify the impact of human Umbilical Cord Mesenchymal Stem Cell-derived Extracellular Vesicles (hUC-MSC- EVs) on endothelial cells.</p><p><strong>Methods: </strong>In this study, we created HIF2α-overexpressing hUC-MSC-EVs and compared their pro-angiogenic effects with control EVs on Human Umbilical Vein Endothelial Cells (HUVECs). MTT assay and Edu staining were used to detect the viability and proliferation ability of HUVECs, and Transwell and Tube Formation Assays were used to detect cell migration and tube formation ability. qPCR assay was used to detect the expression of cellular angiogenic markers. Subsequently, miRNAs that might be regulated by HIF2α were predicted by bioinformatics analysis, and qPCR was used to detect the relative expression of miRNAs in HUVECs treated with hUC-MSC- EV, which over-expresses HIF2α. Subsequently, miR-146a inhibitors were used to investigate the role of miR-146a in mediating the pro-angiogenic effect of HIF2α on HUVECs by detecting cell viability, proliferation, migration, tube-forming ability, and expression of angiogenic markers. Finally, AKT/ERK phosphorylation and Spred1 expression were detected using Western blotting.</p><p><strong>Results: </strong>Our findings have indicated that overexpression of HIF2α significantly enhances the ability of hUC-MSC-EVs to stimulate proliferation, migration, and tube formation in HUVECs, as demonstrated by MTT/Edu staining, Transwell assay, and tube formation assay results, respectively. Mechanistically, excessive HIF2α has been found to induce the expression of miR-146a in HUVECs and the overexpression of a miR-146a inhibitor to negate the influence of excessive HIF2α on hUC-MSC-EV-induced activity in HUVECs.</p><p><strong>Conclusion: </strong>The overexpression of HIF2α is an effective strategy for enhancing the pro-angiogenic function of hUC-MSC-EVs.</p>","PeriodicalId":20736,"journal":{"name":"Protein and Peptide Letters","volume":" ","pages":"62-74"},"PeriodicalIF":1.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142732135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01DOI: 10.2174/0109298665358634241217094220
Olugbenga Samuel Oladimeji, Olasunkanmi Kayode Awote, Nzubechi Olympian Elum
Introduction: Vigna unguiculata (Cowpea), a legume rich in phytochemicals, has been traditionally used to improve fertility and treat various ailments. This study used in-silico and invivo methods to evaluate the effects of cowpea protein isolate and essential oil on reproductive hormonal and antioxidant indices.
Methods: Forty (40) female rats were divided into eight groups (n=5). After 14 days of treatment, hormone levels (progesterone, prolactin, testosterone and estradiol) and antioxidant activities (superoxide dismutase (SOD), catalase (CAT) were assessed using biochemical kits and standard procedures. Molecular docking studies were performed using PyRx and Biovia Discovery Studio 2021. The ligands generated through gas chromatography-mass spectroscopy (GCMS) analysis of cowpea oil and the target proteins (SOD and CAT) were from downloaded PubChem and RCSB Protein Data Bank, respectively.
Results: The results of this study showed that cowpea essential oil and protein isolate significantly (p<0.05) reduced plasma CAT and SOD activities while increasing their activities in the ovary and liver tissues compared to the infertile untreated group. Consistent administration of either cowpea oil or protein isolate was observed to positively regulate the hormonal indices in the infertile treated groups. Phthalic acid, 2-cyclohexyl ethyl isobutyl ester demonstrated a strong binding affinity and binding constant with SOD and CAT, which suggests that the ligands from cowpea essential oil may have antioxidant and pro-fertility properties that could be developed to treat fertility- related issues.
Conclusion: Based on the results of this study, it can be concluded that V. unguiculata has antioxidant property, and can promote fertility, possibly through its rich embedded phytochemicals, which substantiates its traditional claim.
简介:豇豆(豇豆)是一种富含植物化学物质的豆科植物,传统上被用来提高生育力和治疗各种疾病。本研究采用体内法和体外法研究了豇豆分离蛋白和精油对生殖激素和抗氧化指标的影响。方法:雌性大鼠40只,随机分为8组(n=5)。治疗14天后,采用生化试剂盒和标准程序评估激素水平(孕酮、催乳素、睾酮、雌二醇)和抗氧化活性(超氧化物歧化酶(SOD)、过氧化氢酶(CAT))。使用PyRx和Biovia Discovery Studio 2021进行分子对接研究。豇豆油气相色谱-质谱(GCMS)分析生成的配体和靶蛋白(SOD和CAT)分别来自PubChem和RCSB蛋白质数据库。结果:本研究结果表明,豇豆油和分离蛋白具有显著的促育作用(p)。结论:基于本研究结果,可知豇豆油具有促育作用,可能是通过其丰富的内含植物化学物质,证实了其传统说法。
{"title":"Pro-fertility and <i>Antioxidant Potentials</i> of <i>Vigna unguiculata</i> (Cowpea) Protein Isolate and Essential Oil: An <i>In vivo</i> and <i>In silico</i> Studies.","authors":"Olugbenga Samuel Oladimeji, Olasunkanmi Kayode Awote, Nzubechi Olympian Elum","doi":"10.2174/0109298665358634241217094220","DOIUrl":"10.2174/0109298665358634241217094220","url":null,"abstract":"<p><strong>Introduction: </strong><i>Vigna unguiculata</i> (Cowpea), a legume rich in phytochemicals, has been traditionally used to improve fertility and treat various ailments. This study used <i>in-silico</i> and <i>invivo</i> methods to evaluate the effects of cowpea protein isolate and essential oil on reproductive hormonal and antioxidant indices.</p><p><strong>Methods: </strong>Forty (40) female rats were divided into eight groups (n=5). After 14 days of treatment, hormone levels (progesterone, prolactin, testosterone and estradiol) and antioxidant activities (superoxide dismutase (SOD), catalase (CAT) were assessed using biochemical kits and standard procedures. Molecular docking studies were performed using PyRx and Biovia Discovery Studio 2021. The ligands generated through gas chromatography-mass spectroscopy (GCMS) analysis of cowpea oil and the target proteins (SOD and CAT) were from downloaded PubChem and RCSB Protein Data Bank, respectively.</p><p><strong>Results: </strong>The results of this study showed that cowpea essential oil and protein isolate significantly (p<0.05) reduced plasma CAT and SOD activities while increasing their activities in the ovary and liver tissues compared to the infertile untreated group. Consistent administration of either cowpea oil or protein isolate was observed to positively regulate the hormonal indices in the infertile treated groups. Phthalic acid, 2-cyclohexyl ethyl isobutyl ester demonstrated a strong binding affinity and binding constant with SOD and CAT, which suggests that the ligands from cowpea essential oil may have antioxidant and pro-fertility properties that could be developed to treat fertility- related issues.</p><p><strong>Conclusion: </strong>Based on the results of this study, it can be concluded that <i>V. unguiculata</i> has antioxidant property, and can promote fertility, possibly through its rich embedded phytochemicals, which substantiates its traditional claim.</p>","PeriodicalId":20736,"journal":{"name":"Protein and Peptide Letters","volume":" ","pages":"111-123"},"PeriodicalIF":1.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142953979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01DOI: 10.2174/0109298665363873250623103811
Jingjing Li, Xuepeng Bian
Athletes frequently encounter sleep deprivation due to the demands of high-intensity training and competition, which can significantly impair their physical recovery and athletic performance. α-Lactalbumin (α-LA), a key component of whey protein that is rich in tryptophan, has been shown to promote the synthesis of serotonin and melatonin, thereby regulating sleep cycles. Moreover, α-LA has demonstrated the ability to reduce inflammation and oxidative stress associated with fatigue and stress, further contributing to improved sleep quality. This review provides a critical evaluation of the current evidence supporting the role of α-LA in enhancing sleep quality in athletes through mechanisms such as neurotransmitter regulation, immune function improvement, and enhancement of antioxidant defenses. Additionally, it highlights the necessity for further research into the differential effects of α -LA on sleep across various sports and gender groups, as well as its potential synergistic interactions with other nutrients. These insights are essential for developing optimized nutritional interventions aimed at enhancing athletic performance.
{"title":"Optimizing Sleep in Athletes: The Potential of α-Lactalbumin in Nutrition Intervention.","authors":"Jingjing Li, Xuepeng Bian","doi":"10.2174/0109298665363873250623103811","DOIUrl":"10.2174/0109298665363873250623103811","url":null,"abstract":"<p><p>Athletes frequently encounter sleep deprivation due to the demands of high-intensity training and competition, which can significantly impair their physical recovery and athletic performance. α-Lactalbumin (α-LA), a key component of whey protein that is rich in tryptophan, has been shown to promote the synthesis of serotonin and melatonin, thereby regulating sleep cycles. Moreover, α-LA has demonstrated the ability to reduce inflammation and oxidative stress associated with fatigue and stress, further contributing to improved sleep quality. This review provides a critical evaluation of the current evidence supporting the role of α-LA in enhancing sleep quality in athletes through mechanisms such as neurotransmitter regulation, immune function improvement, and enhancement of antioxidant defenses. Additionally, it highlights the necessity for further research into the differential effects of α -LA on sleep across various sports and gender groups, as well as its potential synergistic interactions with other nutrients. These insights are essential for developing optimized nutritional interventions aimed at enhancing athletic performance.</p>","PeriodicalId":20736,"journal":{"name":"Protein and Peptide Letters","volume":" ","pages":"402-413"},"PeriodicalIF":1.1,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12678987/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144637802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
<p><strong>Background: </strong>Pancreatic adenocarcinoma (PAAD) is one of the most prevalent cancers, and it has high death rates. Only 10% of PAAD patients can survive until 5 years. Hence, the improvement of survival rate of the patients should be improved.</p><p><strong>Aim: </strong>The present study used a computational approach to identify novel biomarkers and potentially effective small drug-like molecules in PAAD.</p><p><strong>Objective: </strong>The objective of this study was to identify the Differentially Expressed Genes (DEGs) and survival rate affecting genes (SDEGs) to single out the specific gene responsible for pancreatic cancer and predict the efficacy of interactions with hesperetin and emodin. Further, another objective was to validate the predicted efficacies using an MTT assay.</p><p><strong>Methods: </strong>The GEPIA2 database was used to analyze the TCGA-PAAD dataset and identify DEGs and SDEGs. Venn identified the commonly scattered genes between the DEGs and SDEGs. Network Analyst v3.0, CytoScape v3.10.1, and cytoHubbawere used to construct protein-protein interactions (PPI) network and identifying hub genes which were described as target proteins. The Protein Data Bank (PDB) and PubChem were utilized to obtain the PDB structure of the target proteins and 13 phytocompounds in SDF format. Molecular docking studies were carried out and visualized by utilizing Autodock vina and Discovery Studio Visualizer v19.1.0.1828. The cytotoxicity was measured in the MiaPaCa-2 cell line after being treated with hesperetin and emodin.</p><p><strong>Results: </strong>A total of 9219 Differentially Expressed Genes (DEGs) from the TCGA-PAAD dataset were identified. Among them, 8740 and 479 genes were up and down-regulated with the statistical significance of P ≤ 0.05, respectively. Likely, 500 most survival rate affecting genes (SDEGs) in PAAD patients with a statistical significance of P ≤ 0.05 were identified. The common 137 genes were identified between these obtained DEGs and SDEGs. The survival heat map was delineated for the predicted 137 common genes. Ninety-six genes were identified as the most hazardous genes (highlighted in red). After that, the network was constructed by using PPI for the most hazardous 96 genes. From the constructed PPI network, the highly interacted top 10 genes were identified. The survival analysis was carried out to identify the most hazardous genes and revealed that all the identified genes significantly reduced the survival rate of the patients affected by PAAD. From that, high survival affecting 5 genes, such as CDK1, CENPE, NCAPG, KIF20A, and c-MET, were selected for further analysis. The molecular docking studies were carried out for the identified top 5 genes, with the 13 phytocompounds reviewed previously for anti-- cancer activity. The molecular docking analysis revealed that the hesperetin (binding affinity (BA) = -8.0 kcal/mol; Root mean square deviation (RMSD) = 2.012 Å) and emodin (BA = -8.6 k
{"title":"Unveiling the Potential Role of Hesperetin and Emodin as a Combination Therapy to Inhibit the Pancreatic Cancer Progression against the C-Met Gene.","authors":"Rangaraj Kaviyaprabha, Thandaserry Vasudevan Miji, Puthupparambil Shaji Sreelakshmi, Sridhar Muthusami, Palanisamy Arulselvan, Muruganantham Bharathi","doi":"10.2174/0109298665363165250225100109","DOIUrl":"10.2174/0109298665363165250225100109","url":null,"abstract":"<p><strong>Background: </strong>Pancreatic adenocarcinoma (PAAD) is one of the most prevalent cancers, and it has high death rates. Only 10% of PAAD patients can survive until 5 years. Hence, the improvement of survival rate of the patients should be improved.</p><p><strong>Aim: </strong>The present study used a computational approach to identify novel biomarkers and potentially effective small drug-like molecules in PAAD.</p><p><strong>Objective: </strong>The objective of this study was to identify the Differentially Expressed Genes (DEGs) and survival rate affecting genes (SDEGs) to single out the specific gene responsible for pancreatic cancer and predict the efficacy of interactions with hesperetin and emodin. Further, another objective was to validate the predicted efficacies using an MTT assay.</p><p><strong>Methods: </strong>The GEPIA2 database was used to analyze the TCGA-PAAD dataset and identify DEGs and SDEGs. Venn identified the commonly scattered genes between the DEGs and SDEGs. Network Analyst v3.0, CytoScape v3.10.1, and cytoHubbawere used to construct protein-protein interactions (PPI) network and identifying hub genes which were described as target proteins. The Protein Data Bank (PDB) and PubChem were utilized to obtain the PDB structure of the target proteins and 13 phytocompounds in SDF format. Molecular docking studies were carried out and visualized by utilizing Autodock vina and Discovery Studio Visualizer v19.1.0.1828. The cytotoxicity was measured in the MiaPaCa-2 cell line after being treated with hesperetin and emodin.</p><p><strong>Results: </strong>A total of 9219 Differentially Expressed Genes (DEGs) from the TCGA-PAAD dataset were identified. Among them, 8740 and 479 genes were up and down-regulated with the statistical significance of P ≤ 0.05, respectively. Likely, 500 most survival rate affecting genes (SDEGs) in PAAD patients with a statistical significance of P ≤ 0.05 were identified. The common 137 genes were identified between these obtained DEGs and SDEGs. The survival heat map was delineated for the predicted 137 common genes. Ninety-six genes were identified as the most hazardous genes (highlighted in red). After that, the network was constructed by using PPI for the most hazardous 96 genes. From the constructed PPI network, the highly interacted top 10 genes were identified. The survival analysis was carried out to identify the most hazardous genes and revealed that all the identified genes significantly reduced the survival rate of the patients affected by PAAD. From that, high survival affecting 5 genes, such as CDK1, CENPE, NCAPG, KIF20A, and c-MET, were selected for further analysis. The molecular docking studies were carried out for the identified top 5 genes, with the 13 phytocompounds reviewed previously for anti-- cancer activity. The molecular docking analysis revealed that the hesperetin (binding affinity (BA) = -8.0 kcal/mol; Root mean square deviation (RMSD) = 2.012 Å) and emodin (BA = -8.6 k","PeriodicalId":20736,"journal":{"name":"Protein and Peptide Letters","volume":" ","pages":"280-298"},"PeriodicalIF":1.1,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143701385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}