Pub Date : 2022-01-01Epub Date: 2022-06-02DOI: 10.1016/bs.pmch.2022.04.001
Werngard Czechtizky, Wu Su, Lena Ripa, Stefan Schiesser, Andreas Höijer, Rhona J Cox
Inhalation of small molecule drugs has proven very efficacious for the treatment of respiratory diseases due to enhanced efficacy and a favourable therapeutic index compared with other dosing routes. It enables targeted delivery to the lung with rapid onset of therapeutic action, low systemic drug exposure, and thereby reduced systemic side effects. An increasing number of pharmaceutical companies and biotechs are investing in new modalities-for this review defined as therapeutic molecules with a molecular weight >800Da and therefore beyond usual inhaled small molecule drug-like space. However, our experience with inhaled administration of PROTACs, peptides, oligonucleotides (antisense oligonucleotides, siRNAs, miRs and antagomirs), diverse protein scaffolds, antibodies and antibody fragments is still limited. Investigating the retention and metabolism of these types of molecules in lung tissue and fluid will contribute to understanding which are best suited for inhalation. Nonetheless, the first such therapeutic molecules have already reached the clinic. This review will provide information on the physiology of healthy and diseased lungs and their capacity for drug metabolism. It will outline the stability, aggregation and immunogenicity aspects of new modalities, as well as recap on formulation and delivery aspects. It concludes by summarising clinical trial outcomes with inhaled new modalities based on information available at the end of 2021.
{"title":"Advances in the design of new types of inhaled medicines.","authors":"Werngard Czechtizky, Wu Su, Lena Ripa, Stefan Schiesser, Andreas Höijer, Rhona J Cox","doi":"10.1016/bs.pmch.2022.04.001","DOIUrl":"https://doi.org/10.1016/bs.pmch.2022.04.001","url":null,"abstract":"<p><p>Inhalation of small molecule drugs has proven very efficacious for the treatment of respiratory diseases due to enhanced efficacy and a favourable therapeutic index compared with other dosing routes. It enables targeted delivery to the lung with rapid onset of therapeutic action, low systemic drug exposure, and thereby reduced systemic side effects. An increasing number of pharmaceutical companies and biotechs are investing in new modalities-for this review defined as therapeutic molecules with a molecular weight >800Da and therefore beyond usual inhaled small molecule drug-like space. However, our experience with inhaled administration of PROTACs, peptides, oligonucleotides (antisense oligonucleotides, siRNAs, miRs and antagomirs), diverse protein scaffolds, antibodies and antibody fragments is still limited. Investigating the retention and metabolism of these types of molecules in lung tissue and fluid will contribute to understanding which are best suited for inhalation. Nonetheless, the first such therapeutic molecules have already reached the clinic. This review will provide information on the physiology of healthy and diseased lungs and their capacity for drug metabolism. It will outline the stability, aggregation and immunogenicity aspects of new modalities, as well as recap on formulation and delivery aspects. It concludes by summarising clinical trial outcomes with inhaled new modalities based on information available at the end of 2021.</p>","PeriodicalId":20755,"journal":{"name":"Progress in medicinal chemistry","volume":"61 ","pages":"93-162"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40400187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01Epub Date: 2022-06-06DOI: 10.1016/bs.pmch.2022.04.002
Elizabeth Hann, Karine Malagu, Andrew Stott, Huw Vater
Plasma protein binding and tissue binding are arguably two of the most critical parameters that are measured as part of a drug discovery program since, according to the free drug hypothesis, it is the free drug that is responsible for both efficacy and toxicity. This chapter aims to deconstruct the role of plasma protein and tissue binding in drug discovery programs, and to consider the conclusion made by Pfizer and Genentech/Depomed a decade ago that optimising plasma protein binding as an independent parameter does not significantly influence efficacy. This chapter will also examine how binding metrics are applied in drug discovery programs and explore circumstances where optimising plasma protein or tissue binding can be an effective strategy to deliver a candidate molecule for preclinical development with an early indication of sufficient therapeutic index.
{"title":"The importance of plasma protein and tissue binding in a drug discovery program to successfully deliver a preclinical candidate.","authors":"Elizabeth Hann, Karine Malagu, Andrew Stott, Huw Vater","doi":"10.1016/bs.pmch.2022.04.002","DOIUrl":"https://doi.org/10.1016/bs.pmch.2022.04.002","url":null,"abstract":"<p><p>Plasma protein binding and tissue binding are arguably two of the most critical parameters that are measured as part of a drug discovery program since, according to the free drug hypothesis, it is the free drug that is responsible for both efficacy and toxicity. This chapter aims to deconstruct the role of plasma protein and tissue binding in drug discovery programs, and to consider the conclusion made by Pfizer and Genentech/Depomed a decade ago that optimising plasma protein binding as an independent parameter does not significantly influence efficacy. This chapter will also examine how binding metrics are applied in drug discovery programs and explore circumstances where optimising plasma protein or tissue binding can be an effective strategy to deliver a candidate molecule for preclinical development with an early indication of sufficient therapeutic index.</p>","PeriodicalId":20755,"journal":{"name":"Progress in medicinal chemistry","volume":"61 ","pages":"163-214"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40400662","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01Epub Date: 2022-06-07DOI: 10.1016/bs.pmch.2022.05.001
Rick Cousins
Hearing loss is a severe high unmet need condition affecting more than 1.5 billion people globally. There are no licensed medicines for the prevention, treatment or restoration of hearing. Prosthetic devices, such as hearing aids and cochlear implants, do not restore natural hearing and users struggle with speech in the presence of background noise. Hearing loss drug discovery is immature, and small molecule approaches include repurposing existing drugs, combination therapeutics, late-stage discovery optimisation of known chemotypes for identified molecular targets of interest, phenotypic tissue screening and high-throughput cell-based screening. Hearing loss drug discovery requires the integration of specialist therapeutic area biology and otology clinical expertise. Small molecule drug discovery projects in the global clinical portfolio for hearing loss are here collated and reviewed. An overview is provided of human hearing, inner ear anatomy, inner ear delivery, types of hearing loss and hearing measurement. Small molecule experimental drugs in clinical development for hearing loss are reviewed, including their underpinning biology, discovery strategy and activities, medicinal chemistry, calculated physicochemical properties, pharmacokinetics and clinical trial status. SwissADME BOILED-Egg permeability modelling is applied to the molecules reviewed, and these results are considered. Non-small molecule hearing loss assets in clinical development are briefly noted in this review. Future opportunities in hearing loss drug discovery for human genomics and targeted protein degradation are highlighted.
{"title":"Hearing loss drug discovery and medicinal chemistry: Current status, challenges, and opportunities.","authors":"Rick Cousins","doi":"10.1016/bs.pmch.2022.05.001","DOIUrl":"https://doi.org/10.1016/bs.pmch.2022.05.001","url":null,"abstract":"<p><p>Hearing loss is a severe high unmet need condition affecting more than 1.5 billion people globally. There are no licensed medicines for the prevention, treatment or restoration of hearing. Prosthetic devices, such as hearing aids and cochlear implants, do not restore natural hearing and users struggle with speech in the presence of background noise. Hearing loss drug discovery is immature, and small molecule approaches include repurposing existing drugs, combination therapeutics, late-stage discovery optimisation of known chemotypes for identified molecular targets of interest, phenotypic tissue screening and high-throughput cell-based screening. Hearing loss drug discovery requires the integration of specialist therapeutic area biology and otology clinical expertise. Small molecule drug discovery projects in the global clinical portfolio for hearing loss are here collated and reviewed. An overview is provided of human hearing, inner ear anatomy, inner ear delivery, types of hearing loss and hearing measurement. Small molecule experimental drugs in clinical development for hearing loss are reviewed, including their underpinning biology, discovery strategy and activities, medicinal chemistry, calculated physicochemical properties, pharmacokinetics and clinical trial status. SwissADME BOILED-Egg permeability modelling is applied to the molecules reviewed, and these results are considered. Non-small molecule hearing loss assets in clinical development are briefly noted in this review. Future opportunities in hearing loss drug discovery for human genomics and targeted protein degradation are highlighted.</p>","PeriodicalId":20755,"journal":{"name":"Progress in medicinal chemistry","volume":"61 ","pages":"1-91"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40400661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01DOI: 10.1016/S0079-6468(22)00011-X
David R Witty, Brian Cox
{"title":"Preface.","authors":"David R Witty, Brian Cox","doi":"10.1016/S0079-6468(22)00011-X","DOIUrl":"https://doi.org/10.1016/S0079-6468(22)00011-X","url":null,"abstract":"","PeriodicalId":20755,"journal":{"name":"Progress in medicinal chemistry","volume":"61 ","pages":"ix-x"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40400188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01Epub Date: 2021-06-07DOI: 10.1016/bs.pmch.2021.01.003
Paula L Nichols
Having always been driven by the need to get new treatments to patients as quickly as possible, drug discovery is a constantly evolving process. This chapter will review how medicinal chemistry was established, how it has changed over the years due to the emergence of new enabling technologies, and how early advances in synthesis, purification and analysis, have provided the foundations upon which the current automated and enabling technologies are built. Looking beyond the established technologies, this chapter will also consider technologies that are now emerging, and their impact on the future of drug discovery and the role of medicinal chemists.
{"title":"Automated and enabling technologies for medicinal chemistry.","authors":"Paula L Nichols","doi":"10.1016/bs.pmch.2021.01.003","DOIUrl":"https://doi.org/10.1016/bs.pmch.2021.01.003","url":null,"abstract":"<p><p>Having always been driven by the need to get new treatments to patients as quickly as possible, drug discovery is a constantly evolving process. This chapter will review how medicinal chemistry was established, how it has changed over the years due to the emergence of new enabling technologies, and how early advances in synthesis, purification and analysis, have provided the foundations upon which the current automated and enabling technologies are built. Looking beyond the established technologies, this chapter will also consider technologies that are now emerging, and their impact on the future of drug discovery and the role of medicinal chemists.</p>","PeriodicalId":20755,"journal":{"name":"Progress in medicinal chemistry","volume":"60 ","pages":"191-272"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/bs.pmch.2021.01.003","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39249137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01Epub Date: 2021-06-08DOI: 10.1016/bs.pmch.2021.05.001
Thomas Kendall, Sam Stratford, Adam R Patterson, Ruth A Lunt, Dyanne Cruickshank, Thierry Bonnaud, C Daniel Scott
Active pharmaceutical ingredients are commonly marketed as a solid form due to ease of transport, storage and administration. In the design of a drug formulation, the selection of the solid form is incredibly important and is traditionally based on what polymorphs, hydrates or salts are available for that compound. Co-crystals, another potential solid form available, are currently not as readily considered as a viable solid form for the development process. Even though co-crystals are gaining an ever-increasing level of interest within the pharmaceutical community, their acceptance and application is still not as standard as other solid forms such as the ubiquitous pharmaceutical salt and stabilised amorphous formulations. Presented in this chapter is information that would allow for a co-crystal screen to be planned and conducted as well as scaled up using solution and mechanochemistry based methods commonly employed in both the literature and industry. Also presented are methods for identifying the formation of a co-crystal using a variety of analytical techniques as well as the importance of confirming the formation of co-crystals from a legal perspective and demonstrating the legal precedent by looking at co-crystalline products already on the market. The benefits of co-crystals have been well established, and presented in this chapter are a selection of examples which best exemplify their potential. The goal of this chapter is to increase the understanding of co-crystals and how they may be successfully exploited in early stage development.
{"title":"An industrial perspective on co-crystals: Screening, identification and development of the less utilised solid form in drug discovery and development.","authors":"Thomas Kendall, Sam Stratford, Adam R Patterson, Ruth A Lunt, Dyanne Cruickshank, Thierry Bonnaud, C Daniel Scott","doi":"10.1016/bs.pmch.2021.05.001","DOIUrl":"https://doi.org/10.1016/bs.pmch.2021.05.001","url":null,"abstract":"<p><p>Active pharmaceutical ingredients are commonly marketed as a solid form due to ease of transport, storage and administration. In the design of a drug formulation, the selection of the solid form is incredibly important and is traditionally based on what polymorphs, hydrates or salts are available for that compound. Co-crystals, another potential solid form available, are currently not as readily considered as a viable solid form for the development process. Even though co-crystals are gaining an ever-increasing level of interest within the pharmaceutical community, their acceptance and application is still not as standard as other solid forms such as the ubiquitous pharmaceutical salt and stabilised amorphous formulations. Presented in this chapter is information that would allow for a co-crystal screen to be planned and conducted as well as scaled up using solution and mechanochemistry based methods commonly employed in both the literature and industry. Also presented are methods for identifying the formation of a co-crystal using a variety of analytical techniques as well as the importance of confirming the formation of co-crystals from a legal perspective and demonstrating the legal precedent by looking at co-crystalline products already on the market. The benefits of co-crystals have been well established, and presented in this chapter are a selection of examples which best exemplify their potential. The goal of this chapter is to increase the understanding of co-crystals and how they may be successfully exploited in early stage development.</p>","PeriodicalId":20755,"journal":{"name":"Progress in medicinal chemistry","volume":"60 ","pages":"345-442"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/bs.pmch.2021.05.001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39249140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01Epub Date: 2021-03-27DOI: 10.1016/bs.pmch.2021.01.001
Carol M Trim, Lee J Byrne, Steven A Trim
Difficult drug targets are becoming the normal course of business in drug discovery, sometimes due to large interacting surfaces or only small differences in selectivity regions. For these, a different approach is merited: compounds lying somewhere between the small molecule and the large antibody in terms of many properties including stability, biodistribution and pharmacokinetics. Venoms have evolved over millions of years to be complex mixtures of stable molecules derived from other somatic molecules, the stability comes from the pressure to be ready for delivery at a moment's notice. Snakes, spiders, scorpions, jellyfish, wasps, fish and even mammals have evolved independent venom systems with complex mixtures in their chemical arsenal. These venom-derived molecules have been proven to be useful tools, such as for the development of antihypotensive angiotensin converting enzyme (ACE) inhibitors and have also made successful drugs such as Byetta® (Exenatide), Integrilin® (Eptifibatide) and Echistatin. Only a small percentage of the available chemical space from venoms has been investigated so far and this is growing. In a new era of biological therapeutics, venom peptides present opportunities for larger target engagement surface with greater stability than antibodies or human peptides. There are challenges for oral absorption and target engagement, but there are venom structures that overcome these and thus provide substrate for engineering novel molecules that combine all desired properties. Venom researchers are characterising new venoms, species, and functions all the time, these provide great substrate for solving the challenges presented by today's difficult targets.
{"title":"Utilisation of compounds from venoms in drug discovery.","authors":"Carol M Trim, Lee J Byrne, Steven A Trim","doi":"10.1016/bs.pmch.2021.01.001","DOIUrl":"https://doi.org/10.1016/bs.pmch.2021.01.001","url":null,"abstract":"<p><p>Difficult drug targets are becoming the normal course of business in drug discovery, sometimes due to large interacting surfaces or only small differences in selectivity regions. For these, a different approach is merited: compounds lying somewhere between the small molecule and the large antibody in terms of many properties including stability, biodistribution and pharmacokinetics. Venoms have evolved over millions of years to be complex mixtures of stable molecules derived from other somatic molecules, the stability comes from the pressure to be ready for delivery at a moment's notice. Snakes, spiders, scorpions, jellyfish, wasps, fish and even mammals have evolved independent venom systems with complex mixtures in their chemical arsenal. These venom-derived molecules have been proven to be useful tools, such as for the development of antihypotensive angiotensin converting enzyme (ACE) inhibitors and have also made successful drugs such as Byetta® (Exenatide), Integrilin® (Eptifibatide) and Echistatin. Only a small percentage of the available chemical space from venoms has been investigated so far and this is growing. In a new era of biological therapeutics, venom peptides present opportunities for larger target engagement surface with greater stability than antibodies or human peptides. There are challenges for oral absorption and target engagement, but there are venom structures that overcome these and thus provide substrate for engineering novel molecules that combine all desired properties. Venom researchers are characterising new venoms, species, and functions all the time, these provide great substrate for solving the challenges presented by today's difficult targets.</p>","PeriodicalId":20755,"journal":{"name":"Progress in medicinal chemistry","volume":"60 ","pages":"1-66"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/bs.pmch.2021.01.001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39249136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01DOI: 10.1016/S0079-6468(21)00013-8
David R Witty, Brian Cox
{"title":"Preface.","authors":"David R Witty, Brian Cox","doi":"10.1016/S0079-6468(21)00013-8","DOIUrl":"https://doi.org/10.1016/S0079-6468(21)00013-8","url":null,"abstract":"","PeriodicalId":20755,"journal":{"name":"Progress in medicinal chemistry","volume":"60 ","pages":"ix-x"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0079-6468(21)00013-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39247093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01Epub Date: 2021-05-27DOI: 10.1016/bs.pmch.2021.01.004
Francesca Stanzione, Ilenia Giangreco, Jason C Cole
Molecular docking has become an important component of the drug discovery process. Since first being developed in the 1980s, advancements in the power of computer hardware and the increasing number of and ease of access to small molecule and protein structures have contributed to the development of improved methods, making docking more popular in both industrial and academic settings. Over the years, the modalities by which docking is used to assist the different tasks of drug discovery have changed. Although initially developed and used as a standalone method, docking is now mostly employed in combination with other computational approaches within integrated workflows. Despite its invaluable contribution to the drug discovery process, molecular docking is still far from perfect. In this chapter we will provide an introduction to molecular docking and to the different docking procedures with a focus on several considerations and protocols, including protonation states, active site waters and consensus, that can greatly improve the docking results.
{"title":"Use of molecular docking computational tools in drug discovery.","authors":"Francesca Stanzione, Ilenia Giangreco, Jason C Cole","doi":"10.1016/bs.pmch.2021.01.004","DOIUrl":"https://doi.org/10.1016/bs.pmch.2021.01.004","url":null,"abstract":"<p><p>Molecular docking has become an important component of the drug discovery process. Since first being developed in the 1980s, advancements in the power of computer hardware and the increasing number of and ease of access to small molecule and protein structures have contributed to the development of improved methods, making docking more popular in both industrial and academic settings. Over the years, the modalities by which docking is used to assist the different tasks of drug discovery have changed. Although initially developed and used as a standalone method, docking is now mostly employed in combination with other computational approaches within integrated workflows. Despite its invaluable contribution to the drug discovery process, molecular docking is still far from perfect. In this chapter we will provide an introduction to molecular docking and to the different docking procedures with a focus on several considerations and protocols, including protonation states, active site waters and consensus, that can greatly improve the docking results.</p>","PeriodicalId":20755,"journal":{"name":"Progress in medicinal chemistry","volume":"60 ","pages":"273-343"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/bs.pmch.2021.01.004","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39249139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}