Pub Date : 2024-02-01DOI: 10.1016/j.pneurobio.2024.102584
Jianbao Wang , Xiao Du , Songping Yao , Lihui Li , Hisashi Tanigawa , Xiaotong Zhang , Anna Wang Roe
In human and nonhuman primate brains, columnar (mesoscale) organization has been demonstrated to underlie both lower and higher order aspects of visual information processing. Previous studies have focused on identifying functional preferences of mesoscale domains in specific areas; but there has been little understanding of how mesoscale domains may cooperatively respond to single visual stimuli across dorsal and ventral pathways. Here, we have developed ultrahigh-field 7 T fMRI methods to enable simultaneous mapping, in individual macaque monkeys, of response in both dorsal and ventral pathways to single simple color and motion stimuli. We provide the first evidence that anatomical V2 cytochrome oxidase-stained stripes are well aligned with fMRI maps of V2 stripes, settling a long-standing controversy. In the ventral pathway, a systematic array of paired color and luminance processing domains across V4 was revealed, suggesting a novel organization for surface information processing. In the dorsal pathway, in addition to high quality motion direction maps of MT, MST and V3A, alternating color and motion direction domains in V3 are revealed. As well, submillimeter motion domains were observed in peripheral LIPd and LIPv. In sum, our study provides a novel global snapshot of how mesoscale networks in the ventral and dorsal visual pathways form the organizational basis of visual objection recognition and vision for action.
{"title":"Mesoscale organization of ventral and dorsal visual pathways in macaque monkey revealed by 7T fMRI","authors":"Jianbao Wang , Xiao Du , Songping Yao , Lihui Li , Hisashi Tanigawa , Xiaotong Zhang , Anna Wang Roe","doi":"10.1016/j.pneurobio.2024.102584","DOIUrl":"10.1016/j.pneurobio.2024.102584","url":null,"abstract":"<div><p>In human and nonhuman primate brains, columnar (mesoscale) organization has been demonstrated to underlie both lower and higher order aspects of visual information processing. Previous studies have focused on identifying functional preferences of mesoscale domains in specific areas; but there has been little understanding of how mesoscale domains may cooperatively respond to single visual stimuli across dorsal and ventral pathways. Here, we have developed ultrahigh-field 7 T fMRI methods to enable simultaneous mapping, in individual macaque monkeys, of response in both dorsal and ventral pathways to single simple color and motion stimuli. We provide the first evidence that anatomical V2 cytochrome oxidase-stained stripes are well aligned with fMRI maps of V2 stripes, settling a long-standing controversy. In the ventral pathway, a systematic array of paired color and luminance processing domains across V4 was revealed, suggesting a novel organization for surface information processing. In the dorsal pathway, in addition to high quality motion direction maps of MT, MST and V3A, alternating color and motion direction domains in V3 are revealed. As well, submillimeter motion domains were observed in peripheral LIPd and LIPv. In sum, our study provides a novel global snapshot of how mesoscale networks in the ventral and dorsal visual pathways form the organizational basis of visual objection recognition and vision for action.</p></div>","PeriodicalId":20851,"journal":{"name":"Progress in Neurobiology","volume":null,"pages":null},"PeriodicalIF":6.7,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0301008224000200/pdfft?md5=07dcf6174ef25060bc337fe8ff6ae01b&pid=1-s2.0-S0301008224000200-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139662757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-26DOI: 10.1016/j.pneurobio.2024.102575
Mario O. Caracci , Héctor Pizarro , Carlos Alarcón-Godoy , Luz M. Fuentealba , Pamela Farfán , Raffaella De Pace , Natacha Santibañez , Viviana A. Cavieres , Tammy P. Pástor , Juan S. Bonifacino , Gonzalo A. Mardones , María-Paz Marzolo
Adaptor protein complex 4 (AP-4) is a heterotetrameric complex that promotes export of selected cargo proteins from the trans-Golgi network. Mutations in each of the AP-4 subunits cause a complicated form of Hereditary Spastic Paraplegia (HSP). Herein, we report that ApoER2, a receptor in the Reelin signaling pathway, is a cargo of the AP-4 complex. We identify the motif ISSF/Y within the ApoER2 cytosolic domain as necessary for interaction with the canonical signal-binding pocket of the µ4 (AP4M1) subunit of AP-4. AP4E1- knock-out (KO) HeLa cells and hippocampal neurons from Ap4e1-KO mice display increased co-localization of ApoER2 with Golgi markers. Furthermore, hippocampal neurons from Ap4e1-KO mice and AP4M1-KO human iPSC-derived cortical i3Neurons exhibit reduced ApoER2 protein expression. Analyses of biosynthetic transport of ApoER2 reveal differential post-Golgi trafficking of the receptor, with lower axonal distribution in KO compared to wild-type neurons, indicating a role of AP-4 and the ISSF/Y motif in the axonal localization of ApoER2. Finally, analyses of Reelin signaling in mouse hippocampal and human cortical KO neurons show that AP4 deficiency causes no changes in Reelin-dependent activation of the AKT pathway and only mild changes in Reelin-induced dendritic arborization, but reduces Reelin-induced ERK phosphorylation, CREB activation, and Golgi deployment. This work thus establishes ApoER2 as a novel cargo of the AP-4 complex, suggesting that defects in the trafficking of this receptor and in the Reelin signaling pathway could contribute to the pathogenesis of HSP caused by mutations in AP-4 subunits.
{"title":"The Reelin receptor ApoER2 is a cargo for the adaptor protein complex AP-4: Implications for Hereditary Spastic Paraplegia","authors":"Mario O. Caracci , Héctor Pizarro , Carlos Alarcón-Godoy , Luz M. Fuentealba , Pamela Farfán , Raffaella De Pace , Natacha Santibañez , Viviana A. Cavieres , Tammy P. Pástor , Juan S. Bonifacino , Gonzalo A. Mardones , María-Paz Marzolo","doi":"10.1016/j.pneurobio.2024.102575","DOIUrl":"10.1016/j.pneurobio.2024.102575","url":null,"abstract":"<div><p>Adaptor protein complex 4 (AP-4) is a heterotetrameric complex that promotes export of selected cargo proteins from the <em>trans</em>-Golgi network. Mutations in each of the AP-4 subunits cause a complicated form of Hereditary Spastic Paraplegia (HSP). Herein, we report that ApoER2, a receptor in the Reelin signaling pathway, is a cargo of the AP-4 complex. We identify the motif ISSF/Y within the ApoER2 cytosolic domain as necessary for interaction with the canonical signal-binding pocket of the µ4 (AP4M1) subunit of AP-4. <em>AP4E1</em>- knock-out (KO) HeLa cells and hippocampal neurons from <em>Ap4e1</em>-KO mice display increased co-localization of ApoER2 with Golgi markers. Furthermore, hippocampal neurons from <em>Ap4e1</em>-KO mice and <em>AP4M1</em>-KO human iPSC-derived cortical i3Neurons exhibit reduced ApoER2 protein expression. Analyses of biosynthetic transport of ApoER2 reveal differential post-Golgi trafficking of the receptor, with lower axonal distribution in KO compared to wild-type neurons, indicating a role of AP-4 and the ISSF/Y motif in the axonal localization of ApoER2. Finally, analyses of Reelin signaling in mouse hippocampal and human cortical KO neurons show that AP4 deficiency causes no changes in Reelin-dependent activation of the AKT pathway and only mild changes in Reelin-induced dendritic arborization, but reduces Reelin-induced ERK phosphorylation, CREB activation, and Golgi deployment. This work thus establishes ApoER2 as a novel cargo of the AP-4 complex, suggesting that defects in the trafficking of this receptor and in the Reelin signaling pathway could contribute to the pathogenesis of HSP caused by mutations in AP-4 subunits.</p></div>","PeriodicalId":20851,"journal":{"name":"Progress in Neurobiology","volume":null,"pages":null},"PeriodicalIF":6.7,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139571235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-22DOI: 10.1016/j.pneurobio.2024.102571
Andrew Eisen , Maiken Nedergaard , Emma Gray , Matthew C. Kiernan
The glymphatic system and the meningeal lymphatic vessels provide a pathway for transport of solutes and clearance of toxic material from the brain. Of specific relevance to ALS, this is applicable for TDP-43 and glutamate, both major elements in disease pathogenesis. Flow is propelled by arterial pulsation, respiration, posture, as well as the positioning and proportion of aquaporin-4 channels (AQP4). Non-REM slow wave sleep is the is key to glymphatic drainage which discontinues during wakefulness. In Parkinson’s disease and Alzheimer’s disease, sleep impairment is known to predate the development of characteristic clinical features by several years and is associated with progressive accumulation of toxic proteinaceous products. While sleep issues are well described in ALS, consideration of preclinical sleep impairment or the potential of a failing glymphatic system in ALS has rarely been considered. Here we review how the glymphatic system may impact ALS. Preclinical sleep impairment as an unrecognized major risk factor for ALS is considered, while potential therapeutic options to improve glymphatic flow are explored.
脑淋巴系统和脑膜淋巴管是运输溶质和清除脑内有毒物质的通道。与渐冻症特别相关的是,这适用于 TDP-43 和谷氨酸,两者都是疾病发病机制的主要因素。水流受动脉搏动、呼吸、姿势以及水蒸发素-4 通道(AQP4)的位置和比例的影响。非快速眼动期慢波睡眠是甘油排泄的关键,而清醒时甘油排泄会中断。在帕金森病和阿尔茨海默病中,睡眠障碍比特征性临床特征的出现要早数年,并且与有毒蛋白质产物的逐渐积累有关。虽然 ALS 中的睡眠问题已被充分描述,但临床前睡眠障碍或 ALS 中潜在的甘液系统衰竭却很少被考虑。在此,我们回顾一下糖尿系统可能对 ALS 产生的影响。临床前睡眠障碍是导致 ALS 的一个未被发现的主要风险因素,同时我们还探讨了改善甘液流动的潜在治疗方案。
{"title":"The glymphatic system and Amyotrophic lateral sclerosis","authors":"Andrew Eisen , Maiken Nedergaard , Emma Gray , Matthew C. Kiernan","doi":"10.1016/j.pneurobio.2024.102571","DOIUrl":"10.1016/j.pneurobio.2024.102571","url":null,"abstract":"<div><p><span><span>The glymphatic system and the meningeal lymphatic vessels provide a pathway for transport of solutes and clearance of toxic material from the brain. Of specific relevance to </span>ALS, this is applicable for TDP-43 and </span>glutamate<span>, both major elements in disease pathogenesis. Flow is propelled by arterial pulsation, respiration, posture, as well as the positioning and proportion of aquaporin-4 channels (AQP4). Non-REM slow wave sleep is the is key to glymphatic drainage which discontinues during wakefulness. In Parkinson’s disease and Alzheimer’s disease, sleep impairment is known to predate the development of characteristic clinical features by several years and is associated with progressive accumulation of toxic proteinaceous products. While sleep issues are well described in ALS, consideration of preclinical sleep impairment or the potential of a failing glymphatic system in ALS has rarely been considered. Here we review how the glymphatic system may impact ALS. Preclinical sleep impairment as an unrecognized major risk factor for ALS is considered, while potential therapeutic options to improve glymphatic flow are explored.</span></p></div>","PeriodicalId":20851,"journal":{"name":"Progress in Neurobiology","volume":null,"pages":null},"PeriodicalIF":6.7,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139523481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Historically, aging research has largely centered on disease pathology rather than promoting healthy aging. The World Health Organization’s (WHO) policy framework (2015–2030) underscores the significance of fostering the contributions of older individuals to their families, communities, and economies. The WHO has introduced the concept of intrinsic capacity (IC) as a key metric for healthy aging, encompassing five primary domains: locomotion, vitality, sensory, cognitive, and psychological. Past AD research, constrained by methodological limitations, has focused on single outcome measures, sidelining the complexity of the disease. Our current scientific milieu, however, is primed to adopt the IC concept. This is due to three critical considerations: (I) the decline in IC is linked to neurocognitive disorders, including AD, (II) cognition, a key component of IC, is deeply affected in AD, and (III) the cognitive decline associated with AD involves multiple factors and pathophysiological pathways. Our study explores the application of the IC concept to AD patients, offering a comprehensive model that could revolutionize the disease’s diagnosis and prognosis. There is a dearth of information on the biological characteristics of IC, which are a result of complex interactions within biological systems. Employing a systems biology approach, integrating omics technologies, could aid in unraveling these interactions and understanding IC from a holistic viewpoint. This comprehensive analysis of IC could be leveraged in clinical settings, equipping healthcare providers to assess AD patients’ health status more effectively and devise personalized therapeutic interventions in accordance with the precision medicine paradigm. We aimed to determine whether the IC concept could be extended from older individuals to patients with AD, thereby presenting a model that could significantly enhance the diagnosis and prognosis of this disease.
从历史上看,老龄化研究主要集中在疾病病理方面,而不是促进健康老龄化。世界卫生组织(WHO)的政策框架(2015-2030 年)强调了促进老年人为家庭、社区和经济做出贡献的重要性。世卫组织提出了内在能力(IC)的概念,将其作为衡量健康老龄化的关键指标,包括五个主要领域:运动、活力、感官、认知和心理。过去的注意力缺失症研究受方法论限制,只关注单一的结果测量,忽略了疾病的复杂性。然而,我们当前的科学环境已经为采用 IC 概念做好了准备。这主要是基于以下三点考虑:(I) 集成电路的衰退与神经认知障碍(包括注意力缺失症)有关;(II) 认知是集成电路的关键组成部分,在注意力缺失症中深受影响;(III) 与注意力缺失症相关的认知衰退涉及多种因素和病理生理途径。我们的研究探讨了 IC 概念在 AD 患者中的应用,提供了一个全面的模型,可以彻底改变该疾病的诊断和预后。IC是生物系统内部复杂相互作用的结果,目前有关IC生物学特征的信息还很匮乏。采用系统生物学的方法,并结合 Omics 技术,有助于揭示这些相互作用,并从整体角度理解 IC。这种对集成电路的全面分析可在临床环境中加以利用,使医疗服务提供者能够更有效地评估注意力缺失症患者的健康状况,并根据精准医疗范例制定个性化的治疗干预措施。我们的目的是确定能否将 IC 概念从老年人扩展到注意力缺失症患者,从而提出一种可显著提高该疾病诊断和预后的模型。
{"title":"Digging into the intrinsic capacity concept: Can it be applied to Alzheimer’s disease?","authors":"Susana López-Ortiz , Giuseppe Caruso , Enzo Emanuele , Héctor Menéndez , Saúl Peñín-Grandes , Claudia Savia Guerrera , Filippo Caraci , Robert Nisticò , Alejandro Lucia , Alejandro Santos-Lozano , Simone Lista","doi":"10.1016/j.pneurobio.2024.102574","DOIUrl":"10.1016/j.pneurobio.2024.102574","url":null,"abstract":"<div><p>Historically, aging research has largely centered on disease pathology rather than promoting healthy aging. The World Health Organization’s (WHO) policy framework (2015–2030) underscores the significance of fostering the contributions of older individuals to their families, communities, and economies. The WHO has introduced the concept of intrinsic capacity (IC) as a key metric for healthy aging, encompassing five primary domains: locomotion, vitality, sensory, cognitive, and psychological. Past AD research, constrained by methodological limitations, has focused on single outcome measures, sidelining the complexity of the disease. Our current scientific milieu, however, is primed to adopt the IC concept. This is due to three critical considerations: (I) the decline in IC is linked to neurocognitive disorders, including AD, (II) cognition, a key component of IC, is deeply affected in AD, and (III) the cognitive decline associated with AD involves multiple factors and pathophysiological pathways. Our study explores the application of the IC concept to AD patients, offering a comprehensive model that could revolutionize the disease’s diagnosis and prognosis. There is a dearth of information on the biological characteristics of IC, which are a result of complex interactions within biological systems. Employing a systems biology approach, integrating omics technologies, could aid in unraveling these interactions and understanding IC from a holistic viewpoint. This comprehensive analysis of IC could be leveraged in clinical settings, equipping healthcare providers to assess AD patients’ health status more effectively and devise personalized therapeutic interventions in accordance with the precision medicine paradigm. We aimed to determine whether the IC concept could be extended from older individuals to patients with AD, thereby presenting a model that could significantly enhance the diagnosis and prognosis of this disease.</p></div>","PeriodicalId":20851,"journal":{"name":"Progress in Neurobiology","volume":null,"pages":null},"PeriodicalIF":6.7,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139523191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-20DOI: 10.1016/j.pneurobio.2024.102572
A. Muñoz-Juan , N. Benseny-Cases , S. Guha , I. Barba , K.A. Caldwell , G.A Caldwell , L. Agulló , V.J. Yuste , A. Laromaine , E. Dalfó
Patients with Parkinson’s disease (PD) display non-motor symptoms arising prior to the appearance of motor signs and before a clear diagnosis. Motor and non-motor symptoms correlate with progressive deposition of the protein alpha-synuclein (Asyn) both within and outside of the central nervous system, and its accumulation parallels neurodegeneration. The genome of Caenorhabditis elegans does not encode a homolog of Asyn, thus rendering this nematode an invaluable system with which to investigate PD-related mechanisms in the absence of interference from endogenous Asyn aggregation. CED-10 is the nematode homolog of human RAC1, a small GTPase needed to maintain the function and survival of dopaminergic neurons against human Asyn-induced toxicity in C. elegans. Here, we introduce C. elegans RAC1/ced-10 mutants as a predictive tool to investigate early PD symptoms before neurodegeneration occurs. Deep phenotyping of these animals reveals that, early in development, they displayed altered defecation cycles, GABAergic abnormalities and an increased oxidation index. Moreover, they exhibited altered lipid metabolism evidenced by the accumulation of lipid droplets. Lipidomic fingerprinting indicates that phosphatidylcholine and sphingomyelin, but not phosphatidylethanolamine or phosphatidylserine, were elevated in RAC1/ced-10 mutant nematodes. These collective characteristics reflect the non-motor dysfunction, GABAergic neurotransmission defects, upregulation of stress response mechanisms, and metabolic changes associated with early-onset PD. Thus, we put forward an easy-to-manipulate preclinical animal model to deepen our understanding of early-stage PD and accelerate the translational path for therapeutic target discovery.
{"title":"Caenorhabditis elegans RAC1/ced-10 mutants as a new animal model to study very early stages of Parkinson’s disease","authors":"A. Muñoz-Juan , N. Benseny-Cases , S. Guha , I. Barba , K.A. Caldwell , G.A Caldwell , L. Agulló , V.J. Yuste , A. Laromaine , E. Dalfó","doi":"10.1016/j.pneurobio.2024.102572","DOIUrl":"10.1016/j.pneurobio.2024.102572","url":null,"abstract":"<div><p>Patients with Parkinson’s disease (PD) display non-motor symptoms arising prior to the appearance of motor signs and before a clear diagnosis. Motor and non-motor symptoms correlate with progressive deposition of the protein alpha-synuclein (Asyn) both within and outside of the central nervous system, and its accumulation parallels neurodegeneration. The genome of <em>Caenorhabditis elegans</em> does not encode a homolog of Asyn, thus rendering this nematode an invaluable system with which to investigate PD-related mechanisms in the absence of interference from endogenous Asyn aggregation. CED-10 is the nematode homolog of human RAC1, a small GTPase needed to maintain the function and survival of dopaminergic neurons against human Asyn-induced toxicity in <em>C. elegans</em>. Here, we introduce <em>C. elegans RAC1/ced-10</em> mutants as a predictive tool to investigate early PD symptoms before neurodegeneration occurs. Deep phenotyping of these animals reveals that, early in development, they displayed altered defecation cycles, GABAergic abnormalities and an increased oxidation index. Moreover, they exhibited altered lipid metabolism evidenced by the accumulation of lipid droplets. Lipidomic fingerprinting indicates that phosphatidylcholine and sphingomyelin, but not phosphatidylethanolamine or phosphatidylserine, were elevated in <em>RAC1/ced-10</em> mutant nematodes. These collective characteristics reflect the non-motor dysfunction, GABAergic neurotransmission defects, upregulation of stress response mechanisms, and metabolic changes associated with early-onset PD. Thus, we put forward an easy-to-manipulate preclinical animal model to deepen our understanding of early-stage PD and accelerate the translational path for therapeutic target discovery.</p></div>","PeriodicalId":20851,"journal":{"name":"Progress in Neurobiology","volume":null,"pages":null},"PeriodicalIF":6.7,"publicationDate":"2024-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S030100822400008X/pdfft?md5=928a28aa42498e03b97b437f4c3cb18b&pid=1-s2.0-S030100822400008X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139508056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-19DOI: 10.1016/j.pneurobio.2023.102564
Simona Plutino , Emel Laghouati , Guillaume Jarre , Antoine Depaulis , Isabelle Guillemain , Ingrid Bureau
During development of the sensory cortex, the ascending innervation from deep to upper layers provides a temporary scaffold for the construction of other circuits that remain at adulthood. Whether an alteration in this sequence leads to brain dysfunction in neuro-developmental diseases remains unknown. Using functional approaches in a genetic model of Absence Epilepsy (GAERS), we investigated in barrel cortex, the site of seizure initiation, the maturation of excitatory and inhibitory innervations onto layer 2/3 pyramidal neurons and cell organization into neuronal assemblies. We found that cortical development in GAERS lacks the early surge of connections originating from deep layers observed at the end of the second postnatal week in normal rats and the concomitant structuring into multiple assemblies. Later on, at seizure onset (1 month old), excitatory neurons are hyper-excitable in GAERS when compared to Wistar rats. These findings suggest that early defects in the development of connectivity could promote this typical epileptic feature and/or its comorbidities.
{"title":"Barrel cortex development lacks a key stage of hyperconnectivity from deep to superficial layers in a rat model of Absence Epilepsy","authors":"Simona Plutino , Emel Laghouati , Guillaume Jarre , Antoine Depaulis , Isabelle Guillemain , Ingrid Bureau","doi":"10.1016/j.pneurobio.2023.102564","DOIUrl":"10.1016/j.pneurobio.2023.102564","url":null,"abstract":"<div><p>During development of the sensory cortex, the ascending innervation from deep to upper layers provides a temporary scaffold for the construction of other circuits that remain at adulthood. Whether an alteration in this sequence leads to brain dysfunction in neuro-developmental diseases remains unknown. Using functional approaches in a genetic model of Absence Epilepsy (GAERS), we investigated in barrel cortex, the site of seizure initiation, the maturation of excitatory and inhibitory innervations onto layer 2/3 pyramidal neurons and cell organization into neuronal assemblies. We found that cortical development in GAERS lacks the early surge of connections originating from deep layers observed at the end of the second postnatal week in normal rats and the concomitant structuring into multiple assemblies. Later on, at seizure onset (1 month old), excitatory neurons are hyper-excitable in GAERS when compared to Wistar rats. These findings suggest that early defects in the development of connectivity could promote this typical epileptic feature and/or its comorbidities.</p></div>","PeriodicalId":20851,"journal":{"name":"Progress in Neurobiology","volume":null,"pages":null},"PeriodicalIF":6.7,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S030100822300165X/pdfft?md5=2a870c7477d8d0ecd3792442846a43d0&pid=1-s2.0-S030100822300165X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139499613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-15DOI: 10.1016/j.pneurobio.2024.102570
Siyang Li , Zhipeng Li , Qiuyi Liu , Peng Ren , Lili Sun , Zaixu Cui , Xia Liang
Just as navigating a physical environment, navigating through the landscapes of spontaneous brain states may also require an internal cognitive map. Contemporary computation theories propose modeling a cognitive map from a reinforcement learning perspective and argue that the map would be predictive in nature, representing each state as its upcoming states. Here, we used resting-state fMRI to test the hypothesis that the spaces of spontaneously reoccurring brain states are cognitive map-like, and may exhibit future-oriented predictivity. We identified two discrete brain states of the navigation-related brain networks during rest. By combining pattern similarity and dimensional reduction analysis, we embedded the occurrences of each brain state in a two-dimensional space. Successor representation modeling analysis recognized that these brain state occurrences exhibit place cell-like representations, akin to those observed in a physical space. Moreover, we observed predictive transitions of reoccurring brain states, which strongly covaried with individual cognitive and emotional assessments. Our findings offer a novel perspective on the cognitive significance of spontaneous brain activity and support the theory of cognitive map as a unifying framework for mental navigation.
{"title":"Predictable navigation through spontaneous brain states with cognitive-map-like representations","authors":"Siyang Li , Zhipeng Li , Qiuyi Liu , Peng Ren , Lili Sun , Zaixu Cui , Xia Liang","doi":"10.1016/j.pneurobio.2024.102570","DOIUrl":"10.1016/j.pneurobio.2024.102570","url":null,"abstract":"<div><p>Just as navigating a physical environment, navigating through the landscapes of spontaneous brain states may also require an internal cognitive map. Contemporary computation theories propose modeling a cognitive map from a reinforcement learning perspective and argue that the map would be predictive in nature, representing each state as its upcoming states. Here, we used resting-state fMRI to test the hypothesis that the spaces of spontaneously reoccurring brain states are cognitive map-like, and may exhibit future-oriented predictivity. We identified two discrete brain states of the navigation-related brain networks during rest. By combining pattern similarity and dimensional reduction analysis, we embedded the occurrences of each brain state in a two-dimensional space. Successor representation modeling analysis recognized that these brain state occurrences exhibit place cell-like representations, akin to those observed in a physical space. Moreover, we observed predictive transitions of reoccurring brain states, which strongly covaried with individual cognitive and emotional assessments. Our findings offer a novel perspective on the cognitive significance of spontaneous brain activity and support the theory of cognitive map as a unifying framework for mental navigation.</p></div>","PeriodicalId":20851,"journal":{"name":"Progress in Neurobiology","volume":null,"pages":null},"PeriodicalIF":6.7,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139469274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-15DOI: 10.1016/j.pneurobio.2024.102569
Dong Chen , Nikolai Axmacher , Liang Wang
Grid cells fire at multiple positions that organize the vertices of equilateral triangles tiling a 2D space and are well studied in rodents. The last decade witnessed rapid progress in two other research lines on grid codes—empirical studies on distributed human grid-like representations in physical and multiple non-physical spaces, and cognitive computational models addressing the function of grid cells based on principles of efficient and predictive coding. Here, we review the progress in these fields and integrate these lines into a systematic organization. We also discuss the coordinate mechanisms of grid codes in the human entorhinal cortex and medial prefrontal cortex and their role in neurological and psychiatric diseases.
{"title":"Grid codes underlie multiple cognitive maps in the human brain","authors":"Dong Chen , Nikolai Axmacher , Liang Wang","doi":"10.1016/j.pneurobio.2024.102569","DOIUrl":"10.1016/j.pneurobio.2024.102569","url":null,"abstract":"<div><p>Grid cells fire at multiple positions that organize the vertices of equilateral triangles tiling a 2D space and are well studied in rodents. The last decade witnessed rapid progress in two other research lines on grid codes—empirical studies on distributed human grid-like representations in physical and multiple non-physical spaces, and cognitive computational models addressing the function of grid cells based on principles of efficient and predictive coding. Here, we review the progress in these fields and integrate these lines into a systematic organization. We also discuss the coordinate mechanisms of grid codes in the human entorhinal cortex and medial prefrontal cortex and their role in neurological and psychiatric diseases.</p></div>","PeriodicalId":20851,"journal":{"name":"Progress in Neurobiology","volume":null,"pages":null},"PeriodicalIF":6.7,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139469587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-10DOI: 10.1016/j.pneurobio.2024.102568
Xingliang Zhu , Yuyoung Joo , Simone Bossi , Ross A. McDevitt , Aoji Xie , Yue Wang , Yutong Xue , Shuaikun Su , Seung Kyu Lee , Nirnath Sah , Shiliang Zhang , Rong Ye , Alejandro Pinto , Yongqing Zhang , Kimi Araki , Masatake Araki , Marisela Morales , Mark P. Mattson , Henriette van Praag , Weidong Wang
The Topoisomerase 3B (Top3b) - Tudor domain containing 3 (Tdrd3) protein complex is the only dual-activity topoisomerase complex that can alter both DNA and RNA topology in animals. TOP3B mutations in humans are associated with schizophrenia, autism and cognitive disorders; and Top3b-null mice exhibit several phenotypes observed in animal models of psychiatric and cognitive disorders, including impaired cognitive and emotional behaviors, aberrant neurogenesis and synaptic plasticity, and transcriptional defects. Similarly, human TDRD3 genomic variants have been associated with schizophrenia, verbal short-term memory and educational attainment. However, the importance of Tdrd3 in normal brain function has not been examined in animal models. Here we generated a Tdrd3-null mouse strain and demonstrate that these mice display both shared and unique defects when compared to Top3b-null mice. Shared defects were observed in cognitive behaviors, synaptic plasticity, adult neurogenesis, newborn neuron morphology, and neuronal activity-dependent transcription; whereas defects unique to Tdrd3-deficient mice include hyperactivity, changes in anxiety-like behaviors, olfaction, increased new neuron complexity, and reduced myelination. Interestingly, multiple genes critical for neurodevelopment and cognitive function exhibit reduced levels in mature but not nascent transcripts. We infer that the entire Top3b-Tdrd3 complex is essential for normal brain function, and that defective post-transcriptional regulation could contribute to cognitive and psychiatric disorders.
{"title":"Tdrd3-null mice show post-transcriptional and behavioral impairments associated with neurogenesis and synaptic plasticity","authors":"Xingliang Zhu , Yuyoung Joo , Simone Bossi , Ross A. McDevitt , Aoji Xie , Yue Wang , Yutong Xue , Shuaikun Su , Seung Kyu Lee , Nirnath Sah , Shiliang Zhang , Rong Ye , Alejandro Pinto , Yongqing Zhang , Kimi Araki , Masatake Araki , Marisela Morales , Mark P. Mattson , Henriette van Praag , Weidong Wang","doi":"10.1016/j.pneurobio.2024.102568","DOIUrl":"10.1016/j.pneurobio.2024.102568","url":null,"abstract":"<div><p>The <u>Top</u>oisomerase <u>3B</u> (Top3b) - <u>T</u>u<u>d</u>o<u>r d</u>omain containing <u>3</u><span> (Tdrd3) protein complex is the only dual-activity topoisomerase complex that can alter both DNA and RNA topology in animals. </span><em>TOP3B</em><span> mutations in humans are associated with schizophrenia<span><span>, autism and </span>cognitive disorders; and </span></span><em>Top3b</em><span>-null mice exhibit several phenotypes observed in animal models of psychiatric and cognitive disorders, including impaired cognitive and emotional behaviors<span>, aberrant neurogenesis<span> and synaptic plasticity, and transcriptional defects. Similarly, human </span></span></span><em>TDRD3</em> genomic variants have been associated with schizophrenia, verbal short-term memory and educational attainment. However, the importance of <em>Tdrd3</em> in normal brain function has not been examined in animal models. Here we generated a <em>Tdrd3</em>-null mouse strain and demonstrate that these mice display both shared and unique defects when compared to <em>Top3b-</em>null mice. Shared defects were observed in cognitive behaviors, synaptic plasticity, adult neurogenesis, newborn neuron morphology, and neuronal activity-dependent transcription; whereas defects unique to <em>Tdrd3</em><span><span>-deficient mice include hyperactivity, changes in anxiety-like behaviors, olfaction<span>, increased new neuron complexity, and reduced myelination. Interestingly, multiple genes critical for </span></span>neurodevelopment and cognitive function exhibit reduced levels in mature but not nascent transcripts. We infer that the entire Top3b-Tdrd3 complex is essential for normal brain function, and that defective post-transcriptional regulation could contribute to cognitive and psychiatric disorders.</span></p></div>","PeriodicalId":20851,"journal":{"name":"Progress in Neurobiology","volume":null,"pages":null},"PeriodicalIF":6.7,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139422235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1016/j.pneurobio.2023.102561
Yang Xue, Siyi Mo, Yuan Li, Ye Cao, Xiaoxiang Xu, Qiufei Xie
Chronic craniofacial pain is intractable and its mechanisms remain unclarified. The rostral ventromedial medulla (RVM) plays a crucial role in descending pain facilitation and inhibition. It is unclear how the descending circuits from the RVM to spinal trigeminal nucleus (Sp5) are organized to bidirectionally modulate craniofacial nociception. We used viral tracing, in vivo optogenetics, calcium signaling recording, and chemogenetic manipulations to investigate the structure and function of RVM-Sp5 circuits. We found that most RVM neurons projecting to Sp5 were GABAergic or glutamatergic and facilitated or inhibited craniofacial nociception, respectively. Both GABAergic interneurons and glutamatergic projection neurons in Sp5 received RVM inputs: the former were antinociceptive, whereas the latter were pronociceptive. Furthermore, we demonstrated activation of both GABAergic and glutamatergic Sp5 neurons receiving RVM inputs in inflammation- or dysfunction-induced masseter hyperalgesia. Activating GABAergic Sp5 neurons or inhibiting glutamatergic Sp5 neurons that receive RVM projections reversed masseter hyperalgesia. Our study identifies specific cell types and projections of RVM-Sp5 circuits involved in facilitating or inhibiting craniofacial nociception respectively. Selective manipulation of RVM-Sp5 circuits can be used as potential treatment strategy to relieve chronic craniofacial muscle pain.
{"title":"Dissecting neural circuits from rostral ventromedial medulla to spinal trigeminal nucleus bidirectionally modulating craniofacial mechanical sensitivity","authors":"Yang Xue, Siyi Mo, Yuan Li, Ye Cao, Xiaoxiang Xu, Qiufei Xie","doi":"10.1016/j.pneurobio.2023.102561","DOIUrl":"10.1016/j.pneurobio.2023.102561","url":null,"abstract":"<div><p><span><span><span>Chronic craniofacial pain is intractable and its mechanisms remain unclarified. The rostral ventromedial medulla (RVM) plays a crucial role in descending pain facilitation and inhibition. It is unclear how the descending circuits from the RVM to </span>spinal trigeminal nucleus (Sp5) are organized to bidirectionally modulate craniofacial </span>nociception. We used viral tracing, </span><em>in vivo</em><span><span> optogenetics, </span>calcium signaling<span> recording, and chemogenetic manipulations to investigate the structure and function of RVM-Sp5 circuits. We found that most RVM neurons projecting to Sp5 were GABAergic or glutamatergic and facilitated or inhibited craniofacial nociception, respectively. Both GABAergic interneurons<span> and glutamatergic projection neurons in Sp5 received RVM inputs: the former were antinociceptive, whereas the latter were pronociceptive. Furthermore, we demonstrated activation of both GABAergic and glutamatergic Sp5 neurons receiving RVM inputs in inflammation- or dysfunction-induced masseter hyperalgesia. Activating GABAergic Sp5 neurons or inhibiting glutamatergic Sp5 neurons that receive RVM projections reversed masseter hyperalgesia. Our study identifies specific cell types and projections of RVM-Sp5 circuits involved in facilitating or inhibiting craniofacial nociception respectively. Selective manipulation of RVM-Sp5 circuits can be used as potential treatment strategy to relieve chronic craniofacial muscle pain.</span></span></span></p></div>","PeriodicalId":20851,"journal":{"name":"Progress in Neurobiology","volume":null,"pages":null},"PeriodicalIF":6.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139015281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}