首页 > 最新文献

Quarterly of Applied Mathematics最新文献

英文 中文
Long time gyrokinetic equations 长时间陀螺动力学方程
IF 0.8 4区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2023-06-15 DOI: 10.1090/qam/1666
C. Cheverry, Shahnaz Farhat
The aim of this text is to elucidate the oscillating patterns (see C. Cheverry [Res. Rep. Math. (2018)]) which are generated in a toroidal plasma by a strong external magnetic field and a nonzero electric field. It is also to justify and then study new modulation equations which are valid for longer times than before. Oscillating coherent structures are induced by the collective motions of charged particles which satisfy a system of ODEs implying a large parameter, the gyrofrequency ε − 1 ≫ 1 varepsilon ^{-1} gg 1 . By exploiting the properties of underlying integrable systems, we can complement the KAM picture (see G. Benettin and P. Sempio [Nonlinearity 7 (1994), pp. 281–303]; M. Braun [SIAM Rev. 23 (1981), pp. 61–93]) and go beyond the classical results about gyrokinetics (see M. Bostan [Multiscale Model. Simul. 8 (2010), pp. 1923–1957]; A. J. Brizard and T. S. Hahm [Rev. Modern Phys. 79 (2007), pp. 421–468]). The purely magnetic situation was addressed by C. Cheverry [Comm. Math. Phys. 338 (2015), pp. 641–703; J. Differential Equations 262 (2017), pp. 2987–3033]. We are concerned here with the numerous additional difficulties due to the influence of a nonzero electric field.
本文的目的是阐明振荡模式(见C. Cheverry [Res. Rep. Math])。(2018)]),它们是在强外磁场和非零电场作用下在环形等离子体中产生的。并对新的调制方程进行验证和研究,以期获得比以前更长的有效时间。振荡相干结构是由带电粒子的集体运动引起的,这些带电粒子满足一个包含大参数(陀螺频率ε−1 ^ 1 varepsilon ^{-1} gg 1)的ODEs系统。通过利用底层可积系统的性质,我们可以补充KAM图像(见G. Benettin和P. Sempio[非线性7 (1994),pp. 281-303];M. Braun [SIAM Rev. 23 (1981), pp. 61-93]),并超越了关于陀螺动力学的经典结果(见M. Bostan[多尺度模型]。仿真学报,8 (2010),pp. 1923-1957;[中国科学:自然科学版,2007,p. 421-468]。C. Cheverry [Comm. Math]解决了纯磁性的情况。Phys. 338 (2015), pp. 641-703;[j].微分方程学报,2017,pp. 391 - 391。我们在这里所关心的是由于非零电场的影响而产生的许多额外的困难。
{"title":"Long time gyrokinetic equations","authors":"C. Cheverry, Shahnaz Farhat","doi":"10.1090/qam/1666","DOIUrl":"https://doi.org/10.1090/qam/1666","url":null,"abstract":"The aim of this text is to elucidate the oscillating patterns (see C. Cheverry [Res. Rep. Math. (2018)]) which are generated in a toroidal plasma by a strong external magnetic field and a nonzero electric field. It is also to justify and then study new modulation equations which are valid for longer times than before. Oscillating coherent structures are induced by the collective motions of charged particles which satisfy a system of ODEs implying a large parameter, the gyrofrequency \u0000\u0000 \u0000 \u0000 \u0000 ε\u0000 \u0000 −\u0000 1\u0000 \u0000 \u0000 ≫\u0000 1\u0000 \u0000 varepsilon ^{-1} gg 1\u0000 \u0000\u0000. By exploiting the properties of underlying integrable systems, we can complement the KAM picture (see G. Benettin and P. Sempio [Nonlinearity 7 (1994), pp. 281–303]; M. Braun [SIAM Rev. 23 (1981), pp. 61–93]) and go beyond the classical results about gyrokinetics (see M. Bostan [Multiscale Model. Simul. 8 (2010), pp. 1923–1957]; A. J. Brizard and T. S. Hahm [Rev. Modern Phys. 79 (2007), pp. 421–468]). The purely magnetic situation was addressed by C. Cheverry [Comm. Math. Phys. 338 (2015), pp. 641–703; J. Differential Equations 262 (2017), pp. 2987–3033]. We are concerned here with the numerous additional difficulties due to the influence of a nonzero electric field.","PeriodicalId":20964,"journal":{"name":"Quarterly of Applied Mathematics","volume":" ","pages":""},"PeriodicalIF":0.8,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48458067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Preface for the second special issue in honor of C. M. Dafermos 第二期特刊序言,纪念C.M.Dafermos
IF 0.8 4区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2023-05-15 DOI: 10.1090/qam/1671
Govind Menon
{"title":"Preface for the second special issue in honor of C. M. Dafermos","authors":"Govind Menon","doi":"10.1090/qam/1671","DOIUrl":"https://doi.org/10.1090/qam/1671","url":null,"abstract":"","PeriodicalId":20964,"journal":{"name":"Quarterly of Applied Mathematics","volume":" ","pages":""},"PeriodicalIF":0.8,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43616810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stability of standing waves for a generalized Benney-Roskes system 广义Benney-Roskes系统驻波稳定性
IF 0.8 4区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2023-05-02 DOI: 10.1090/qam/1654
Jose R. Quintero
We analyze the orbital stability of standing waves for a generalized Benney-Roskes system in spatial dimensions N = 2 N=2 , 3 3 . We establish stability of standing waves under certain conditions by reducing the system to a single nonlinear (nonlocal) Schrödinger equation, using the variational characterization of standing waves and a convexity argument.
我们分析了广义Benney-Roskes系统在空间维度N=2N=2,33上驻波的轨道稳定性。我们利用驻波的变分特征和凸性论证,将系统简化为一个非线性(非局部)薛定谔方程,从而在一定条件下建立驻波的稳定性。
{"title":"Stability of standing waves for a generalized Benney-Roskes system","authors":"Jose R. Quintero","doi":"10.1090/qam/1654","DOIUrl":"https://doi.org/10.1090/qam/1654","url":null,"abstract":"We analyze the orbital stability of standing waves for a generalized Benney-Roskes system in spatial dimensions \u0000\u0000 \u0000 \u0000 N\u0000 =\u0000 2\u0000 \u0000 N=2\u0000 \u0000\u0000, \u0000\u0000 \u0000 3\u0000 3\u0000 \u0000\u0000. We establish stability of standing waves under certain conditions by reducing the system to a single nonlinear (nonlocal) Schrödinger equation, using the variational characterization of standing waves and a convexity argument.","PeriodicalId":20964,"journal":{"name":"Quarterly of Applied Mathematics","volume":" ","pages":""},"PeriodicalIF":0.8,"publicationDate":"2023-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47383936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A review of recent applications of the relative entropy method to discontinuous solutions of conservation laws 相对熵法在守恒律不连续解中的最新应用综述
IF 0.8 4区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2023-04-26 DOI: 10.1090/qam/1667
A. Vasseur
Dafermos [Arch. Rational Mech. Anal. 70 (1979), pp. 167–179] proved the weak/strong principle for conservation laws. It states that Lipschitz solutions to conservation laws endowed with convex entropies are unique and stable among weak solutions. The method, based on relative entropy, was extended by Di Perna [Indiana Univ. Math. J. 28 (1979), pp. 137–188] to show the uniqueness of shocks among weak solutions with strong traces. This theory has been recently revisited with the notion of weighted contractions up to shifts. We review in this paper recent applications of this method, including the weak/BV principle and the stability of discontinuous solutions among inviscid double limits of Navier-Stokes systems.
Dafermos[拱。合理的机械。[论文集,70(1979),第167-179页]证明了守恒定律的弱/强原理。说明了具有凸熵的守恒律的Lipschitz解在弱解中是唯一且稳定的。这种基于相对熵的方法,由印第安纳大学数学学院的Di Perna进行了扩展。J. 28 (1979), pp. 137-188],以显示具有强迹的弱解中激波的唯一性。这个理论最近被重新审视,提出了加权收缩到位移的概念。本文综述了该方法的最新应用,包括弱/BV原理和Navier-Stokes系统无粘双极限间不连续解的稳定性。
{"title":"A review of recent applications of the relative entropy method to discontinuous solutions of conservation laws","authors":"A. Vasseur","doi":"10.1090/qam/1667","DOIUrl":"https://doi.org/10.1090/qam/1667","url":null,"abstract":"Dafermos [Arch. Rational Mech. Anal. 70 (1979), pp. 167–179] proved the weak/strong principle for conservation laws. It states that Lipschitz solutions to conservation laws endowed with convex entropies are unique and stable among weak solutions. The method, based on relative entropy, was extended by Di Perna [Indiana Univ. Math. J. 28 (1979), pp. 137–188] to show the uniqueness of shocks among weak solutions with strong traces. This theory has been recently revisited with the notion of weighted contractions up to shifts. We review in this paper recent applications of this method, including the weak/BV principle and the stability of discontinuous solutions among inviscid double limits of Navier-Stokes systems.","PeriodicalId":20964,"journal":{"name":"Quarterly of Applied Mathematics","volume":" ","pages":""},"PeriodicalIF":0.8,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45905661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
HV geometry for signal comparison 高压几何信号比较
IF 0.8 4区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2023-04-23 DOI: 10.1090/qam/1672
Ruiyu Han, Dejan Slepvcev, Yunan Yang
In order to compare and interpolate signals, we investigate a Riemannian geometry on the space of signals. The metric allows discontinuous signals and measures both horizontal (thus providing many benefits of the Wasserstein metric) and vertical deformations. Moreover, it allows for signed signals, which overcomes the main deficiency of optimal transportation-based metrics in signal processing. We characterize the metric properties of the space of signals and establish the regularity and stability of geodesics. Furthermore, we introduce an efficient numerical scheme to compute the geodesics and present several experiments which highlight the nature of the metric.
为了比较和插值信号,我们研究了信号空间上的黎曼几何。该度量允许不连续的信号,并测量水平变形(因此提供了Wasserstein度量的许多优点)和垂直变形。此外,它允许有符号信号,这克服了信号处理中基于最优传输的度量的主要缺陷。我们刻画了信号空间的度量性质,并建立了测地线的正则性和稳定性。此外,我们介绍了一种计算测地线的有效数值格式,并介绍了几个突出度量性质的实验。
{"title":"HV geometry for signal comparison","authors":"Ruiyu Han, Dejan Slepvcev, Yunan Yang","doi":"10.1090/qam/1672","DOIUrl":"https://doi.org/10.1090/qam/1672","url":null,"abstract":"In order to compare and interpolate signals, we investigate a Riemannian geometry on the space of signals. The metric allows discontinuous signals and measures both horizontal (thus providing many benefits of the Wasserstein metric) and vertical deformations. Moreover, it allows for signed signals, which overcomes the main deficiency of optimal transportation-based metrics in signal processing. We characterize the metric properties of the space of signals and establish the regularity and stability of geodesics. Furthermore, we introduce an efficient numerical scheme to compute the geodesics and present several experiments which highlight the nature of the metric.","PeriodicalId":20964,"journal":{"name":"Quarterly of Applied Mathematics","volume":" ","pages":""},"PeriodicalIF":0.8,"publicationDate":"2023-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47887859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On a singular Lifshitz-Slyozov-Wagner model 在一个单一的Lifshitz-Slyozov-Wagner模型上
IF 0.8 4区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2023-04-04 DOI: 10.1090/qam/1652
C. Eichenberg, B. Niethammer, J. Velázquez

We investigate the well-posedness of the classical Lifshitz-Slyozov-Wagner mean-field model for Ostwald ripening with singular coefficients, as they appear, for example in two-dimensional diffusion controlled growth. For Hölder-continuous initial data we prove the existence and uniqueness of a global solution with bounded mean-field. If the data are only in L l o c q ( [ 0 , ) ) L^q_{loc}([0,infty )) for some q > 1 q>1 we establish global existence of a solution with a mean-field that is in general unbounded but in L r ( 0 , T ) L^r(0,T) for some r > 1 r>1 that depends on the coefficients in the model.

我们研究了具有奇异系数的经典Lifshitz-Slyozov-Wagner平均场模型的适定性,因为它们出现在二维扩散控制生长中。对于Hölder-continuous初始数据,证明了具有有界平均域的全局解的存在唯一性。如果数据只在L L o c q([0,∞))L^q_{地点}[0]infty 对于某些q >q >q >1,我们建立了一个解的整体存在性,该解具有一般无界的平均域,但在L r(0,T)中,L^r(0,T)对于某些r >r >r取决于模型中的系数。
{"title":"On a singular Lifshitz-Slyozov-Wagner model","authors":"C. Eichenberg, B. Niethammer, J. Velázquez","doi":"10.1090/qam/1652","DOIUrl":"https://doi.org/10.1090/qam/1652","url":null,"abstract":"<p>We investigate the well-posedness of the classical Lifshitz-Slyozov-Wagner mean-field model for Ostwald ripening with singular coefficients, as they appear, for example in two-dimensional diffusion controlled growth. For Hölder-continuous initial data we prove the existence and uniqueness of a global solution with bounded mean-field. If the data are only in <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L Subscript l o c Superscript q Baseline left-parenthesis left-bracket 0 comma normal infinity right-parenthesis right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:msubsup>\u0000 <mml:mi>L</mml:mi>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi>l</mml:mi>\u0000 <mml:mi>o</mml:mi>\u0000 <mml:mi>c</mml:mi>\u0000 </mml:mrow>\u0000 <mml:mi>q</mml:mi>\u0000 </mml:msubsup>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mo stretchy=\"false\">[</mml:mo>\u0000 <mml:mn>0</mml:mn>\u0000 <mml:mo>,</mml:mo>\u0000 <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">L^q_{loc}([0,infty ))</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> for some <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"q greater-than 1\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>q</mml:mi>\u0000 <mml:mo>></mml:mo>\u0000 <mml:mn>1</mml:mn>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">q>1</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> we establish global existence of a solution with a mean-field that is in general unbounded but in <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L Superscript r Baseline left-parenthesis 0 comma upper T right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:msup>\u0000 <mml:mi>L</mml:mi>\u0000 <mml:mi>r</mml:mi>\u0000 </mml:msup>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mn>0</mml:mn>\u0000 <mml:mo>,</mml:mo>\u0000 <mml:mi>T</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">L^r(0,T)</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> for some <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"r greater-than 1\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>r</mml:mi>\u0000 <mml:mo>></mml:mo>\u0000 <mml:mn>1</mml:mn>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">r>1</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> that depends on the coefficients in the model.</p>","PeriodicalId":20964,"journal":{"name":"Quarterly of Applied Mathematics","volume":" ","pages":""},"PeriodicalIF":0.8,"publicationDate":"2023-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42996868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Discretizing advection equations with rough velocity fields on non-Cartesian grids 非笛卡尔网格上粗糙速度场平流方程的离散化
4区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2023-03-30 DOI: 10.1090/qam/1649
Pierre-Emmanuel Jabin, Datong Zhou
We investigate the properties of discretizations of advection equations on non-Cartesian grids and graphs in general. Advection equations discretized on non-Cartesian grids have remained a long-standing challenge as the structure of the grid can lead to strong oscillations in the solution, even for otherwise constant velocity fields. We introduce a new method to track oscillations of the solution for rough velocity fields on any graph. The method in particular highlights some inherent structural conditions on the mesh for propagating regularity on solutions.
研究了一般非笛卡尔网格和图上平流方程离散化的性质。在非笛卡尔网格上离散的平流方程一直是一个长期的挑战,因为网格的结构可能导致解中的强振荡,即使在其他恒定速度场中也是如此。本文介绍了一种跟踪任意图上粗糙速度场解的振荡的新方法。该方法特别强调了网格在解上传播正则性的一些固有结构条件。
{"title":"Discretizing advection equations with rough velocity fields on non-Cartesian grids","authors":"Pierre-Emmanuel Jabin, Datong Zhou","doi":"10.1090/qam/1649","DOIUrl":"https://doi.org/10.1090/qam/1649","url":null,"abstract":"We investigate the properties of discretizations of advection equations on non-Cartesian grids and graphs in general. Advection equations discretized on non-Cartesian grids have remained a long-standing challenge as the structure of the grid can lead to strong oscillations in the solution, even for otherwise constant velocity fields. We introduce a new method to track oscillations of the solution for rough velocity fields on any graph. The method in particular highlights some inherent structural conditions on the mesh for propagating regularity on solutions.","PeriodicalId":20964,"journal":{"name":"Quarterly of Applied Mathematics","volume":"75 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136264727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Matrix-scaled resilient consensus of discrete-time and continuous-time networks 离散时间和连续时间网络的矩阵尺度弹性一致性
IF 0.8 4区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2023-03-13 DOI: 10.1090/qam/1662
Y. Shang
This paper studies the matrix-scaled resilient consensus problems over multi-agent networks as occurring in computer science and distributed control. Unlike existing works on consensus problems, where the states of agents converge to a common value or reach some prescribed proportions, we take a more general matrix-scaled approach to accommodate the interdependence of multi-dimensional states. We develop a unified analytical framework to deal with matrix-scaled resilient consensus of discrete-time and continuous-time dynamical agents, where the underlying communication network is modeled as a generic directed time-dependent random graph. We propose new distributed protocols to guarantee the matrix-scaled consensus of cooperative agents in the network in the presence of Byzantine agents, who have full knowledge of the system and pose a severe security threat to the collective consensus objective. The cooperative agents feature multiple input and multiple output, and the number and identities of Byzantine agents are not available to the cooperative ones. Our mathematical approach capitalizes on matrix analysis, control theory, graph theory, and martingale convergence. Some numerical examples are presented to demonstrate the effectiveness of our theoretical results.
本文研究了计算机科学和分布式控制中多智能体网络上矩阵尺度的弹性一致性问题。与现有的共识问题研究不同,在共识问题中,主体的状态收敛到一个共同的值或达到一些规定的比例,我们采取了一种更通用的矩阵缩放方法来适应多维状态的相互依赖性。我们开发了一个统一的分析框架来处理离散时间和连续时间动态代理的矩阵尺度弹性一致性,其中底层通信网络被建模为一般的有向时间相关随机图。我们提出了新的分布式协议,以保证在拜占庭代理存在的情况下,网络中协作代理的矩阵级共识,拜占庭代理对系统有充分的了解,并对集体共识目标构成严重的安全威胁。合作代理具有多输入多输出的特点,拜占庭代理的数量和身份对合作代理来说是不可用的。我们的数学方法利用了矩阵分析、控制论、图论和鞅收敛。通过算例验证了理论结果的有效性。
{"title":"Matrix-scaled resilient consensus of discrete-time and continuous-time networks","authors":"Y. Shang","doi":"10.1090/qam/1662","DOIUrl":"https://doi.org/10.1090/qam/1662","url":null,"abstract":"This paper studies the matrix-scaled resilient consensus problems over multi-agent networks as occurring in computer science and distributed control. Unlike existing works on consensus problems, where the states of agents converge to a common value or reach some prescribed proportions, we take a more general matrix-scaled approach to accommodate the interdependence of multi-dimensional states. We develop a unified analytical framework to deal with matrix-scaled resilient consensus of discrete-time and continuous-time dynamical agents, where the underlying communication network is modeled as a generic directed time-dependent random graph. We propose new distributed protocols to guarantee the matrix-scaled consensus of cooperative agents in the network in the presence of Byzantine agents, who have full knowledge of the system and pose a severe security threat to the collective consensus objective. The cooperative agents feature multiple input and multiple output, and the number and identities of Byzantine agents are not available to the cooperative ones. Our mathematical approach capitalizes on matrix analysis, control theory, graph theory, and martingale convergence. Some numerical examples are presented to demonstrate the effectiveness of our theoretical results.","PeriodicalId":20964,"journal":{"name":"Quarterly of Applied Mathematics","volume":" ","pages":""},"PeriodicalIF":0.8,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49657394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In the Aftermath of a Natural Disaster: The Infectious Diseases may Strike Back…. 自然灾害发生后:传染病可能袭击 Back....
4区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2023-03-11 eCollection Date: 2023-03-01 DOI: 10.36519/idcm.2023.225
Murat Akova
{"title":"In the Aftermath of a Natural Disaster: The Infectious Diseases may Strike Back….","authors":"Murat Akova","doi":"10.36519/idcm.2023.225","DOIUrl":"10.36519/idcm.2023.225","url":null,"abstract":"","PeriodicalId":20964,"journal":{"name":"Quarterly of Applied Mathematics","volume":"30 1","pages":"1-3"},"PeriodicalIF":0.0,"publicationDate":"2023-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10986717/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82638448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Using Bernoulli maps to accelerate mixing of a random walk on the torus 使用伯努利映射加速环面上随机游走的混合
IF 0.8 4区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2023-03-06 DOI: 10.1090/qam/1668
Gautam Iyer, E. Lu, J. Nolen
<p>We study the mixing time of a random walk on the torus, alternated with a Lebesgue measure preserving Bernoulli map. Without the Bernoulli map, the mixing time of the random walk alone is <inline-formula content-type="math/mathml"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper O left-parenthesis 1 slash epsilon squared right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mn>1</mml:mn> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:msup> <mml:mi>ε<!-- ε --></mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">O(1/varepsilon ^2)</mml:annotation> </mml:semantics></mml:math></inline-formula>, where <inline-formula content-type="math/mathml"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="epsilon"> <mml:semantics> <mml:mi>ε<!-- ε --></mml:mi> <mml:annotation encoding="application/x-tex">varepsilon</mml:annotation> </mml:semantics></mml:math></inline-formula> is the step size. Our main results show that for a class of Bernoulli maps, when the random walk is alternated with the Bernoulli map <inline-formula content-type="math/mathml"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="phi"> <mml:semantics> <mml:mi>φ<!-- φ --></mml:mi> <mml:annotation encoding="application/x-tex">varphi</mml:annotation> </mml:semantics></mml:math></inline-formula> the mixing time becomes <inline-formula content-type="math/mathml"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper O left-parenthesis StartAbsoluteValue ln epsilon EndAbsoluteValue right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mo fence="false" stretchy="false">|<!-- | --></mml:mo> <mml:mi>ln</mml:mi> <mml:mo>⁡<!-- ⁡ --></mml:mo> <mml:mi>ε<!-- ε --></mml:mi> <mml:mo fence="false" stretchy="false">|<!-- | --></mml:mo> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">O(lvert ln varepsilon rvert )</mml:annotation> </mml:semantics></mml:math></inline-formula>. We also study the <italic>dissipation time</italic> of this process, and obtain <inline-formula content-type="math/mathml"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper O left-parenthesis StartAbsoluteValue ln epsilon EndAbsoluteValue right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mo fence="false" stretchy="false">|<!-- | --></mml:mo> <mml:mi>ln</mml:mi> <mml:mo>⁡<!-- ⁡ --></mml:mo> <mml:mi>ε<!-- ε --></mml:mi> <mml:mo fence="false" stretchy="false">|<!-- | --></mml:mo> <mml:mo stretchy="false">)<
我们研究了环面上随机游走的混合时间,并交替使用勒贝格测度保持伯努利映射。在没有伯努利映射的情况下,随机漫步的混合时间为O(1/ ε 2) O(1/ varepsilon ^2),其中ε varepsilon为步长。我们的主要结果表明,对于一类伯努利映射,当随机漫步与伯努利映射φ varphi交替时,混合时间变为O(| ln (ε |) O(lvertlnvarepsilonrvert)。我们还研究了这一过程的耗散时间,得到了O(| ln (ε |) O(lvertlnvarepsilonrvert)具有显式常数的上界和下界。
{"title":"Using Bernoulli maps to accelerate mixing of a random walk on the torus","authors":"Gautam Iyer, E. Lu, J. Nolen","doi":"10.1090/qam/1668","DOIUrl":"https://doi.org/10.1090/qam/1668","url":null,"abstract":"&lt;p&gt;We study the mixing time of a random walk on the torus, alternated with a Lebesgue measure preserving Bernoulli map. Without the Bernoulli map, the mixing time of the random walk alone is &lt;inline-formula content-type=\"math/mathml\"&gt;\u0000&lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper O left-parenthesis 1 slash epsilon squared right-parenthesis\"&gt;\u0000 &lt;mml:semantics&gt;\u0000 &lt;mml:mrow&gt;\u0000 &lt;mml:mi&gt;O&lt;/mml:mi&gt;\u0000 &lt;mml:mo stretchy=\"false\"&gt;(&lt;/mml:mo&gt;\u0000 &lt;mml:mn&gt;1&lt;/mml:mn&gt;\u0000 &lt;mml:mrow class=\"MJX-TeXAtom-ORD\"&gt;\u0000 &lt;mml:mo&gt;/&lt;/mml:mo&gt;\u0000 &lt;/mml:mrow&gt;\u0000 &lt;mml:msup&gt;\u0000 &lt;mml:mi&gt;ε&lt;!-- ε --&gt;&lt;/mml:mi&gt;\u0000 &lt;mml:mn&gt;2&lt;/mml:mn&gt;\u0000 &lt;/mml:msup&gt;\u0000 &lt;mml:mo stretchy=\"false\"&gt;)&lt;/mml:mo&gt;\u0000 &lt;/mml:mrow&gt;\u0000 &lt;mml:annotation encoding=\"application/x-tex\"&gt;O(1/varepsilon ^2)&lt;/mml:annotation&gt;\u0000 &lt;/mml:semantics&gt;\u0000&lt;/mml:math&gt;\u0000&lt;/inline-formula&gt;, where &lt;inline-formula content-type=\"math/mathml\"&gt;\u0000&lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"epsilon\"&gt;\u0000 &lt;mml:semantics&gt;\u0000 &lt;mml:mi&gt;ε&lt;!-- ε --&gt;&lt;/mml:mi&gt;\u0000 &lt;mml:annotation encoding=\"application/x-tex\"&gt;varepsilon&lt;/mml:annotation&gt;\u0000 &lt;/mml:semantics&gt;\u0000&lt;/mml:math&gt;\u0000&lt;/inline-formula&gt; is the step size. Our main results show that for a class of Bernoulli maps, when the random walk is alternated with the Bernoulli map &lt;inline-formula content-type=\"math/mathml\"&gt;\u0000&lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"phi\"&gt;\u0000 &lt;mml:semantics&gt;\u0000 &lt;mml:mi&gt;φ&lt;!-- φ --&gt;&lt;/mml:mi&gt;\u0000 &lt;mml:annotation encoding=\"application/x-tex\"&gt;varphi&lt;/mml:annotation&gt;\u0000 &lt;/mml:semantics&gt;\u0000&lt;/mml:math&gt;\u0000&lt;/inline-formula&gt; the mixing time becomes &lt;inline-formula content-type=\"math/mathml\"&gt;\u0000&lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper O left-parenthesis StartAbsoluteValue ln epsilon EndAbsoluteValue right-parenthesis\"&gt;\u0000 &lt;mml:semantics&gt;\u0000 &lt;mml:mrow&gt;\u0000 &lt;mml:mi&gt;O&lt;/mml:mi&gt;\u0000 &lt;mml:mo stretchy=\"false\"&gt;(&lt;/mml:mo&gt;\u0000 &lt;mml:mo fence=\"false\" stretchy=\"false\"&gt;|&lt;!-- | --&gt;&lt;/mml:mo&gt;\u0000 &lt;mml:mi&gt;ln&lt;/mml:mi&gt;\u0000 &lt;mml:mo&gt;⁡&lt;!-- ⁡ --&gt;&lt;/mml:mo&gt;\u0000 &lt;mml:mi&gt;ε&lt;!-- ε --&gt;&lt;/mml:mi&gt;\u0000 &lt;mml:mo fence=\"false\" stretchy=\"false\"&gt;|&lt;!-- | --&gt;&lt;/mml:mo&gt;\u0000 &lt;mml:mo stretchy=\"false\"&gt;)&lt;/mml:mo&gt;\u0000 &lt;/mml:mrow&gt;\u0000 &lt;mml:annotation encoding=\"application/x-tex\"&gt;O(lvert ln varepsilon rvert )&lt;/mml:annotation&gt;\u0000 &lt;/mml:semantics&gt;\u0000&lt;/mml:math&gt;\u0000&lt;/inline-formula&gt;. We also study the &lt;italic&gt;dissipation time&lt;/italic&gt; of this process, and obtain &lt;inline-formula content-type=\"math/mathml\"&gt;\u0000&lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper O left-parenthesis StartAbsoluteValue ln epsilon EndAbsoluteValue right-parenthesis\"&gt;\u0000 &lt;mml:semantics&gt;\u0000 &lt;mml:mrow&gt;\u0000 &lt;mml:mi&gt;O&lt;/mml:mi&gt;\u0000 &lt;mml:mo stretchy=\"false\"&gt;(&lt;/mml:mo&gt;\u0000 &lt;mml:mo fence=\"false\" stretchy=\"false\"&gt;|&lt;!-- | --&gt;&lt;/mml:mo&gt;\u0000 &lt;mml:mi&gt;ln&lt;/mml:mi&gt;\u0000 &lt;mml:mo&gt;⁡&lt;!-- ⁡ --&gt;&lt;/mml:mo&gt;\u0000 &lt;mml:mi&gt;ε&lt;!-- ε --&gt;&lt;/mml:mi&gt;\u0000 &lt;mml:mo fence=\"false\" stretchy=\"false\"&gt;|&lt;!-- | --&gt;&lt;/mml:mo&gt;\u0000 &lt;mml:mo stretchy=\"false\"&gt;)&lt;","PeriodicalId":20964,"journal":{"name":"Quarterly of Applied Mathematics","volume":" ","pages":""},"PeriodicalIF":0.8,"publicationDate":"2023-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47786720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
期刊
Quarterly of Applied Mathematics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1