首页 > 最新文献

R J.最新文献

英文 中文
robslopes: Efficient Computation of the (Repeated) Median Slope robslopes:(重复)中位数斜率的有效计算
Pub Date : 2023-02-10 DOI: 10.32614/rj-2023-012
Jakob Raymaekers, Ku Leuven
{"title":"robslopes: Efficient Computation of the (Repeated) Median Slope","authors":"Jakob Raymaekers, Ku Leuven","doi":"10.32614/rj-2023-012","DOIUrl":"https://doi.org/10.32614/rj-2023-012","url":null,"abstract":"","PeriodicalId":20974,"journal":{"name":"R J.","volume":"89 1","pages":"38-49"},"PeriodicalIF":0.0,"publicationDate":"2023-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82525812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
OTrecod: An R Package for Data Fusion using Optimal Transportation Theory 基于最优传输理论的数据融合R包
Pub Date : 2023-02-10 DOI: 10.32614/rj-2023-006
G. Guernec, Valérie Garès, J. Omer, Philippe Saint-Pierre, N. Savy
The advances of information technologies often confront users with a large amount of data which is essential to integrate easily. In this context, creating a single database from multiple separate data sources can appear as an attractive but complex issue when same information of interest is stored in at least two distinct encodings. In this situation, merging the data sources consists in finding a common recoding scale to fill the incomplete information in a synthetic database. The OTrecod package provides R-users two functions dedicated to solve this recoding problem using optimal transportation theory. Specific arguments of these functions enrich the algorithms by relaxing distributional constraints or adding a regularization term to make the data fusion more flexible. The OTrecod package also provides a set of support functions dedicated to the harmonization of separate data sources, the handling of incomplete information and the selection of matching variables. This paper gives all the keys to quickly understand and master the original algorithms implemented in the OTrecod package, assisting step by step the user in its data fusion project.
随着信息技术的发展,用户经常需要面对大量的数据,而这些数据对于易于集成至关重要。在这种情况下,当感兴趣的相同信息以至少两种不同的编码存储时,从多个独立的数据源创建单个数据库似乎是一个吸引人但复杂的问题。在这种情况下,合并数据源包括找到一个通用的重新编码尺度来填充合成数据库中的不完整信息。OTrecod包为r用户提供了两个函数,专门用于使用最优传输理论解决这个重新编码问题。这些函数的具体参数通过放宽分布约束或添加正则化项来丰富算法,使数据融合更加灵活。OTrecod包还提供了一组专门用于协调独立数据源、处理不完整信息和选择匹配变量的支持函数。本文给出了快速理解和掌握OTrecod包中实现的原始算法的所有关键,帮助用户逐步完成其数据融合项目。
{"title":"OTrecod: An R Package for Data Fusion using Optimal Transportation Theory","authors":"G. Guernec, Valérie Garès, J. Omer, Philippe Saint-Pierre, N. Savy","doi":"10.32614/rj-2023-006","DOIUrl":"https://doi.org/10.32614/rj-2023-006","url":null,"abstract":"The advances of information technologies often confront users with a large amount of data which is essential to integrate easily. In this context, creating a single database from multiple separate data sources can appear as an attractive but complex issue when same information of interest is stored in at least two distinct encodings. In this situation, merging the data sources consists in finding a common recoding scale to fill the incomplete information in a synthetic database. The OTrecod package provides R-users two functions dedicated to solve this recoding problem using optimal transportation theory. Specific arguments of these functions enrich the algorithms by relaxing distributional constraints or adding a regularization term to make the data fusion more flexible. The OTrecod package also provides a set of support functions dedicated to the harmonization of separate data sources, the handling of incomplete information and the selection of matching variables. This paper gives all the keys to quickly understand and master the original algorithms implemented in the OTrecod package, assisting step by step the user in its data fusion project.","PeriodicalId":20974,"journal":{"name":"R J.","volume":"43 1","pages":"195-222"},"PeriodicalIF":0.0,"publicationDate":"2023-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83181551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
eat: An R Package for fitting Efficiency Analysis Trees 一个用于拟合效率分析树的R包
Pub Date : 2022-12-20 DOI: 10.32614/rj-2022-054
Miriam Esteve, Victor España, J. Aparicio, Xavier Barber
{"title":"eat: An R Package for fitting Efficiency Analysis Trees","authors":"Miriam Esteve, Victor España, J. Aparicio, Xavier Barber","doi":"10.32614/rj-2022-054","DOIUrl":"https://doi.org/10.32614/rj-2022-054","url":null,"abstract":"","PeriodicalId":20974,"journal":{"name":"R J.","volume":"8 1","pages":"249-281"},"PeriodicalIF":0.0,"publicationDate":"2022-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74227025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
WLinfer: Statistical Inference for Weighted Lindley Distribution 加权林德利分布的统计推断
Pub Date : 2022-12-20 DOI: 10.32614/rj-2022-042
Yu-Hyeong Jang, Sung-Bum Kim, Hyunjoo Jung, Hyoung-Moon Kim
{"title":"WLinfer: Statistical Inference for Weighted Lindley Distribution","authors":"Yu-Hyeong Jang, Sung-Bum Kim, Hyunjoo Jung, Hyoung-Moon Kim","doi":"10.32614/rj-2022-042","DOIUrl":"https://doi.org/10.32614/rj-2022-042","url":null,"abstract":"","PeriodicalId":20974,"journal":{"name":"R J.","volume":"1 1","pages":"13-19"},"PeriodicalIF":0.0,"publicationDate":"2022-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84147480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
logitFD: an R package for functional principal component logit regression logitFD:一个R包,用于功能主成分logit回归
Pub Date : 2022-12-20 DOI: 10.32614/rj-2022-053
M. Escabias, A. M. Aguilera, Christian Acal
{"title":"logitFD: an R package for functional principal component logit regression","authors":"M. Escabias, A. M. Aguilera, Christian Acal","doi":"10.32614/rj-2022-053","DOIUrl":"https://doi.org/10.32614/rj-2022-053","url":null,"abstract":"","PeriodicalId":20974,"journal":{"name":"R J.","volume":"17 1","pages":"231-248"},"PeriodicalIF":0.0,"publicationDate":"2022-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81542997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Will the Real Hopkins Statistic Please Stand Up? 真正的霍普金斯统计数据会站起来吗?
Pub Date : 2022-12-20 DOI: 10.32614/rj-2022-055
Kevin Wright
{"title":"Will the Real Hopkins Statistic Please Stand Up?","authors":"Kevin Wright","doi":"10.32614/rj-2022-055","DOIUrl":"https://doi.org/10.32614/rj-2022-055","url":null,"abstract":"","PeriodicalId":20974,"journal":{"name":"R J.","volume":"55 1","pages":"282-292"},"PeriodicalIF":0.0,"publicationDate":"2022-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81640815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
HDiR: An R Package for Computation and Nonparametric Plug-in Estimation of Directional Highest Density Regions and General Level Sets HDiR:一个用于方向最高密度区域和一般水平集计算和非参数插件估计的R包
Pub Date : 2022-12-20 DOI: 10.32614/rj-2022-046
P. Saavedra-Nieves, R. Crujeiras
{"title":"HDiR: An R Package for Computation and Nonparametric Plug-in Estimation of Directional Highest Density Regions and General Level Sets","authors":"P. Saavedra-Nieves, R. Crujeiras","doi":"10.32614/rj-2022-046","DOIUrl":"https://doi.org/10.32614/rj-2022-046","url":null,"abstract":"","PeriodicalId":20974,"journal":{"name":"R J.","volume":"46 1","pages":"121-141"},"PeriodicalIF":0.0,"publicationDate":"2022-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89063626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
rbw: An R Package for Constructing Residual Balancing Weights rbw:一个构造剩余平衡权值的R包
Pub Date : 2022-12-20 DOI: 10.32614/rj-2022-049
Derick S. Baum, Xiang Zhou
We describe the R package rbw, which implements the method of residual balancing weights (RBW) for estimating marginal structural models. In contrast to other methods such as inverse probability weighting (IPW) and covariate balancing propensity scores (CBPS), RBW involves modeling the conditional means of post-treatment confounders instead of the conditional distributions of the treatment to construct the weights. RBW is thus easier to use with continuous treatments, and the method is less susceptible to model misspecification issues that often arise when modeling the conditional distributions of treatments. RBW is also advantageous from a computational perspective. Because its weighting procedure involves a convex optimization problem, RBW typically locates a solution considerably faster than other methods whose optimization relies on nonconvex loss functions — such as the recently proposed nonparametric version of CBPS. We explain the rationale behind RBW, describe the functions in rbw, and then use real-world data to illustrate their applications in three scenarios: effect estimation for point treatments, causal mediation analysis, and effect estimation for time-varying treatments with time-varying confounders.
我们描述了R包rbw,它实现了残差平衡权(rbw)估计边缘结构模型的方法。与其他方法如逆概率加权(IPW)和协变量平衡倾向评分(CBPS)相比,RBW涉及对处理后混杂因素的条件均值建模,而不是处理的条件分布来构建权重。因此,RBW更容易用于连续处理,并且该方法不易受到模型规格错误问题的影响,这种问题在对处理的条件分布进行建模时经常出现。从计算的角度来看,RBW也是有利的。因为它的加权过程涉及一个凸优化问题,RBW通常比其他依赖于非凸损失函数的优化方法(例如最近提出的CBPS的非参数版本)更快地定位解决方案。我们解释了RBW背后的基本原理,描述了RBW中的功能,然后用实际数据说明了它们在三种情况下的应用:点治疗的效果估计、因果中介分析和时变治疗的效果估计。
{"title":"rbw: An R Package for Constructing Residual Balancing Weights","authors":"Derick S. Baum, Xiang Zhou","doi":"10.32614/rj-2022-049","DOIUrl":"https://doi.org/10.32614/rj-2022-049","url":null,"abstract":"We describe the R package rbw, which implements the method of residual balancing weights (RBW) for estimating marginal structural models. In contrast to other methods such as inverse probability weighting (IPW) and covariate balancing propensity scores (CBPS), RBW involves modeling the conditional means of post-treatment confounders instead of the conditional distributions of the treatment to construct the weights. RBW is thus easier to use with continuous treatments, and the method is less susceptible to model misspecification issues that often arise when modeling the conditional distributions of treatments. RBW is also advantageous from a computational perspective. Because its weighting procedure involves a convex optimization problem, RBW typically locates a solution considerably faster than other methods whose optimization relies on nonconvex loss functions — such as the recently proposed nonparametric version of CBPS. We explain the rationale behind RBW, describe the functions in rbw, and then use real-world data to illustrate their applications in three scenarios: effect estimation for point treatments, causal mediation analysis, and effect estimation for time-varying treatments with time-varying confounders.","PeriodicalId":20974,"journal":{"name":"R J.","volume":"112 1","pages":"174-192"},"PeriodicalIF":0.0,"publicationDate":"2022-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89344151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The R Package HDSpatialScan for the Detection of Clusters of Multivariate and Functional Data using Spatial Scan Statistics R包HDSpatialScan用于检测使用空间扫描统计的多元和功能数据簇
Pub Date : 2022-12-20 DOI: 10.32614/rj-2022-045
Camille Frévent, M. Ahmed, J. Soula, L. Cucala, Zaineb Smida, S. Dabo‐Niang, M. Génin
{"title":"The R Package HDSpatialScan for the Detection of Clusters of Multivariate and Functional Data using Spatial Scan Statistics","authors":"Camille Frévent, M. Ahmed, J. Soula, L. Cucala, Zaineb Smida, S. Dabo‐Niang, M. Génin","doi":"10.32614/rj-2022-045","DOIUrl":"https://doi.org/10.32614/rj-2022-045","url":null,"abstract":"","PeriodicalId":20974,"journal":{"name":"R J.","volume":"48 1","pages":"95-120"},"PeriodicalIF":0.0,"publicationDate":"2022-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88041133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tidy Data Neatly Resolves Mass-Spectrometry's Ragged Arrays 整齐的数据巧妙地解决了质谱的不规则阵列
Pub Date : 2022-12-20 DOI: 10.32614/rj-2022-050
William Kumler, A. Ingalls
{"title":"Tidy Data Neatly Resolves Mass-Spectrometry's Ragged Arrays","authors":"William Kumler, A. Ingalls","doi":"10.32614/rj-2022-050","DOIUrl":"https://doi.org/10.32614/rj-2022-050","url":null,"abstract":"","PeriodicalId":20974,"journal":{"name":"R J.","volume":"58 1","pages":"193-202"},"PeriodicalIF":0.0,"publicationDate":"2022-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79462311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
R J.
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1