首页 > 最新文献

R J.最新文献

英文 中文
Refreg: An R Package for Estimating Conditional Reference Regions 参考:一个估算条件参考区域的R包
Pub Date : 2022-09-27 DOI: 10.32614/rj-2022-029
Ó. Lado-Baleato, J. Roca-Pardiñas, C. Cadarso-Suárez, Francisco Gude
{"title":"Refreg: An R Package for Estimating Conditional Reference Regions","authors":"Ó. Lado-Baleato, J. Roca-Pardiñas, C. Cadarso-Suárez, Francisco Gude","doi":"10.32614/rj-2022-029","DOIUrl":"https://doi.org/10.32614/rj-2022-029","url":null,"abstract":"","PeriodicalId":20974,"journal":{"name":"R J.","volume":"11 1","pages":"136-152"},"PeriodicalIF":0.0,"publicationDate":"2022-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74517038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Power and Sample Size for Longitudinal Models in R - The longpower Package and Shiny App R中纵向模型的功率和样本量-长功率包和Shiny应用程序
Pub Date : 2022-07-04 DOI: 10.32614/rj-2022-022
S. Iddi, M. Donohue
{"title":"Power and Sample Size for Longitudinal Models in R - The longpower Package and Shiny App","authors":"S. Iddi, M. Donohue","doi":"10.32614/rj-2022-022","DOIUrl":"https://doi.org/10.32614/rj-2022-022","url":null,"abstract":"","PeriodicalId":20974,"journal":{"name":"R J.","volume":"145 1","pages":"264-282"},"PeriodicalIF":0.0,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86213557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
kStatistics: Unbiased Estimates of Joint Cumulant Products from the Multivariate Faà Di Bruno's Formula 统计学:多元fa<s:1>迪·布鲁诺公式联合累积积的无偏估计
Pub Date : 2022-06-30 DOI: 10.32614/rj-2022-033
E. Nardo, G. Guarino
kStatistics is a package in R that serves as a unified framework for estimating univariate and multivariate cumulants as well as products of univariate and multivariate cumulants of a random sample, using unbiased estimators with minimum variance. The main computational machinery of kStatistics is an algorithm for computing multi-index partitions. The same algorithm underlies the general-purpose multivariate Fa`a di Bruno's formula, which has been therefore included in the last release of the package. This formula gives the coefficients of formal power series compositions as well as the partial derivatives of multivariable function compositions. One of the most significant applications of this formula is the possibility to generate many well-known polynomial families as special cases. So, in the package, there are special functions for generating very popular polynomial families, such as the Bell polynomials. However further families can be obtained, for suitable choices of the formal power series involved in the composition or when suitable symbolic strategies are employed. In both cases, we give examples on how to modify the R codes of the package to accomplish this task. Future developments are addressed at the end of the paper.
kStatistics是R中的一个包,它作为一个统一的框架,用于估计单变量和多变量累积量,以及随机样本的单变量和多变量累积量的乘积,使用方差最小的无偏估计量。kStatistics的主要计算机制是用于计算多索引分区的算法。相同的算法是通用多元Fa ' a di Bruno公式的基础,因此该公式已包含在软件包的最后一个版本中。这个公式给出了形式幂级数组合的系数以及多变量函数组合的偏导数。这个公式最重要的应用之一是可以生成许多众所周知的多项式族作为特殊情况。在这个包里,有一些特殊的函数用来生成非常流行的多项式族,比如贝尔多项式。然而,如果选择合适的形式幂级数或采用合适的符号策略,则可以得到更多的族。在这两种情况下,我们都给出了如何修改包的R代码来完成此任务的示例。论文最后对未来的发展进行了展望。
{"title":"kStatistics: Unbiased Estimates of Joint Cumulant Products from the Multivariate Faà Di Bruno's Formula","authors":"E. Nardo, G. Guarino","doi":"10.32614/rj-2022-033","DOIUrl":"https://doi.org/10.32614/rj-2022-033","url":null,"abstract":"kStatistics is a package in R that serves as a unified framework for estimating univariate and multivariate cumulants as well as products of univariate and multivariate cumulants of a random sample, using unbiased estimators with minimum variance. The main computational machinery of kStatistics is an algorithm for computing multi-index partitions. The same algorithm underlies the general-purpose multivariate Fa`a di Bruno's formula, which has been therefore included in the last release of the package. This formula gives the coefficients of formal power series compositions as well as the partial derivatives of multivariable function compositions. One of the most significant applications of this formula is the possibility to generate many well-known polynomial families as special cases. So, in the package, there are special functions for generating very popular polynomial families, such as the Bell polynomials. However further families can be obtained, for suitable choices of the formal power series involved in the composition or when suitable symbolic strategies are employed. In both cases, we give examples on how to modify the R codes of the package to accomplish this task. Future developments are addressed at the end of the paper.","PeriodicalId":20974,"journal":{"name":"R J.","volume":"30 1","pages":"209-229"},"PeriodicalIF":0.0,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86003074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
starvars: An R Package for Analysing Nonlinearities in Multivariate Time Series 一个分析多元时间序列非线性的R包
Pub Date : 2022-06-21 DOI: 10.32614/rj-2022-018
Andrea Bucci, Giulio Palomba, E. Rossi
Although linear autoregressive models are useful to practitioners in different fields, often a nonlinear specification would be more appropriate in time series analysis. In general, there are many alternative approaches to nonlinearity modelling, one consists in assuming multiple regimes. Among the possible specifications that account for regime changes in the multivariate framework, smooth transition models are the most general, since they nest both linear and threshold autoregressive models. This paper introduces the starvars package which estimates and predicts the Vector Logistic Smooth Transition model in a very general setting which also includes predetermined variables. In comparison to the existing R packages, starvars offers the estimation of the Vector Smooth Transition model both by maximum likelihood and nonlinear least squares. The package allows also to test for nonlinearity in a multivariate setting and detect the presence of common breaks. Furthermore, the package computes multi-step-ahead forecasts. Finally, an illustration with financial time series is provided to show its usage.
尽管线性自回归模型对不同领域的实践者都很有用,但在时间序列分析中,非线性规范往往更合适。一般来说,非线性建模有许多可选择的方法,其中之一是假设多个区域。在解释多变量框架中的制度变化的可能规范中,平滑转换模型是最通用的,因为它们嵌套线性和阈值自回归模型。本文介绍了在包含预定变量的非常一般的情况下估计和预测向量Logistic平滑过渡模型的starvars包。与现有的R包相比,starvars提供了向量平滑过渡模型的最大似然和非线性最小二乘估计。该软件包还允许在多变量设置中测试非线性,并检测常见中断的存在。此外,该软件包计算多步提前预测。最后,以金融时间序列为例说明其用法。
{"title":"starvars: An R Package for Analysing Nonlinearities in Multivariate Time Series","authors":"Andrea Bucci, Giulio Palomba, E. Rossi","doi":"10.32614/rj-2022-018","DOIUrl":"https://doi.org/10.32614/rj-2022-018","url":null,"abstract":"Although linear autoregressive models are useful to practitioners in different fields, often a nonlinear specification would be more appropriate in time series analysis. In general, there are many alternative approaches to nonlinearity modelling, one consists in assuming multiple regimes. Among the possible specifications that account for regime changes in the multivariate framework, smooth transition models are the most general, since they nest both linear and threshold autoregressive models. This paper introduces the starvars package which estimates and predicts the Vector Logistic Smooth Transition model in a very general setting which also includes predetermined variables. In comparison to the existing R packages, starvars offers the estimation of the Vector Smooth Transition model both by maximum likelihood and nonlinear least squares. The package allows also to test for nonlinearity in a multivariate setting and detect the presence of common breaks. Furthermore, the package computes multi-step-ahead forecasts. Finally, an illustration with financial time series is provided to show its usage.","PeriodicalId":20974,"journal":{"name":"R J.","volume":"66 1","pages":"208-226"},"PeriodicalIF":0.0,"publicationDate":"2022-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87578756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Palmer Archipelago Penguins Data in the palmerpenguins R Package - An Alternative to Anderson's Irises 帕尔默群岛企鹅数据在帕尔默企鹅R包-替代安德森的虹膜
Pub Date : 2022-06-21 DOI: 10.32614/rj-2022-020
Allison M. Horst, Alison Presmanes Hill, K. Gorman
{"title":"Palmer Archipelago Penguins Data in the palmerpenguins R Package - An Alternative to Anderson's Irises","authors":"Allison M. Horst, Alison Presmanes Hill, K. Gorman","doi":"10.32614/rj-2022-020","DOIUrl":"https://doi.org/10.32614/rj-2022-020","url":null,"abstract":"","PeriodicalId":20974,"journal":{"name":"R J.","volume":"146 1","pages":"244-254"},"PeriodicalIF":0.0,"publicationDate":"2022-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82895402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Revisiting Historical Bar Graphics on Epidemics in the Era of R ggplot2 回顾rggplo2时代流行病的历史条形图
Pub Date : 2022-06-21 DOI: 10.32614/rj-2022-010
Sami Aldag, Dogukan Topcuoglu, G. Inan
{"title":"Revisiting Historical Bar Graphics on Epidemics in the Era of R ggplot2","authors":"Sami Aldag, Dogukan Topcuoglu, G. Inan","doi":"10.32614/rj-2022-010","DOIUrl":"https://doi.org/10.32614/rj-2022-010","url":null,"abstract":"","PeriodicalId":20974,"journal":{"name":"R J.","volume":"320 1","pages":"146-166"},"PeriodicalIF":0.0,"publicationDate":"2022-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83835892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
tvReg: Time-varying Coefficients in Multi-Equation Regression in R 多方程回归中的时变系数
Pub Date : 2022-06-21 DOI: 10.32614/rj-2022-002
Isabel Casas, R. Fernández-Casal
{"title":"tvReg: Time-varying Coefficients in Multi-Equation Regression in R","authors":"Isabel Casas, R. Fernández-Casal","doi":"10.32614/rj-2022-002","DOIUrl":"https://doi.org/10.32614/rj-2022-002","url":null,"abstract":"","PeriodicalId":20974,"journal":{"name":"R J.","volume":"92 1","pages":"79-100"},"PeriodicalIF":0.0,"publicationDate":"2022-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90508946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
blindrecalc - An R Package for Blinded Sample Size Recalculation 盲法样本量重新计算的R包
Pub Date : 2022-06-21 DOI: 10.32614/rj-2022-001
Lukas Baumann, Maximilian Pilz, M. Kieser
{"title":"blindrecalc - An R Package for Blinded Sample Size Recalculation","authors":"Lukas Baumann, Maximilian Pilz, M. Kieser","doi":"10.32614/rj-2022-001","DOIUrl":"https://doi.org/10.32614/rj-2022-001","url":null,"abstract":"","PeriodicalId":20974,"journal":{"name":"R J.","volume":"45 1","pages":"137-145"},"PeriodicalIF":0.0,"publicationDate":"2022-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86930740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advancing Reproducible Research by Publishing R Markdown Notebooks as Interactive Sandboxes Using the learnr Package 通过使用learnr包发布R Markdown笔记本作为交互式沙盒推进可重复研究
Pub Date : 2022-06-21 DOI: 10.32614/rj-2022-021
C. M. Tso, M. Hollaway, Rebecca Killick, P. Henrys, Don Monteith, J. Watkins, Gordon S. Blair
,
{"title":"Advancing Reproducible Research by Publishing R Markdown Notebooks as Interactive Sandboxes Using the learnr Package","authors":"C. M. Tso, M. Hollaway, Rebecca Killick, P. Henrys, Don Monteith, J. Watkins, Gordon S. Blair","doi":"10.32614/rj-2022-021","DOIUrl":"https://doi.org/10.32614/rj-2022-021","url":null,"abstract":",","PeriodicalId":20974,"journal":{"name":"R J.","volume":"5 1","pages":"255-263"},"PeriodicalIF":0.0,"publicationDate":"2022-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72636373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
A Software Tool For Sparse Estimation Of A General Class Of High-dimensional GLMs 一类一般高维glm稀疏估计的软件工具
Pub Date : 2022-06-21 DOI: 10.32614/rj-2022-008
H. Pazira, L. Augugliaro, E. Wit
{"title":"A Software Tool For Sparse Estimation Of A General Class Of High-dimensional GLMs","authors":"H. Pazira, L. Augugliaro, E. Wit","doi":"10.32614/rj-2022-008","DOIUrl":"https://doi.org/10.32614/rj-2022-008","url":null,"abstract":"","PeriodicalId":20974,"journal":{"name":"R J.","volume":"2014 1","pages":"34-53"},"PeriodicalIF":0.0,"publicationDate":"2022-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86506931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
R J.
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1