首页 > 最新文献

R J.最新文献

英文 中文
Measuring the Extent and Patterns of Urban Shrinkage for Small Towns Using R 基于R的小城镇收缩程度与模式测度
Pub Date : 2022-06-21 DOI: 10.32614/rj-2022-004
C. Vîlcea, L. Popescu, Alin Clincea
{"title":"Measuring the Extent and Patterns of Urban Shrinkage for Small Towns Using R","authors":"C. Vîlcea, L. Popescu, Alin Clincea","doi":"10.32614/rj-2022-004","DOIUrl":"https://doi.org/10.32614/rj-2022-004","url":null,"abstract":"","PeriodicalId":20974,"journal":{"name":"R J.","volume":"81 1","pages":"123-136"},"PeriodicalIF":0.0,"publicationDate":"2022-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80834902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rmonad: Pipelines You Can Compute On 雷蒙德:你可以计算的管道
Pub Date : 2022-06-21 DOI: 10.32614/rj-2022-007
Zebulun W. Arendsee, Jennifer Chang, E. Wurtele
{"title":"Rmonad: Pipelines You Can Compute On","authors":"Zebulun W. Arendsee, Jennifer Chang, E. Wurtele","doi":"10.32614/rj-2022-007","DOIUrl":"https://doi.org/10.32614/rj-2022-007","url":null,"abstract":"","PeriodicalId":20974,"journal":{"name":"R J.","volume":"48 1","pages":"22-33"},"PeriodicalIF":0.0,"publicationDate":"2022-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91160021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
bayesanova: An R package for Bayesian Inference in the Analysis of Variance via Markov Chain Monte Carlo in Gaussian Mixture Models bayesanova:一个在高斯混合模型中使用马尔可夫链蒙特卡罗进行方差分析的贝叶斯推理的R包
Pub Date : 2022-06-21 DOI: 10.32614/rj-2022-009
Riko Kelter
{"title":"bayesanova: An R package for Bayesian Inference in the Analysis of Variance via Markov Chain Monte Carlo in Gaussian Mixture Models","authors":"Riko Kelter","doi":"10.32614/rj-2022-009","DOIUrl":"https://doi.org/10.32614/rj-2022-009","url":null,"abstract":"","PeriodicalId":20974,"journal":{"name":"R J.","volume":"74 1","pages":"54-78"},"PeriodicalIF":0.0,"publicationDate":"2022-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88514293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The smoots Package in R for Semiparametric Modeling of Trend Stationary Time Series 趋势平稳时间序列半参数建模的smots包
Pub Date : 2022-06-21 DOI: 10.32614/rj-2022-017
Yuanhua Feng, Tom Gries, Sebastian Letmathe, D. Schulz
{"title":"The smoots Package in R for Semiparametric Modeling of Trend Stationary Time Series","authors":"Yuanhua Feng, Tom Gries, Sebastian Letmathe, D. Schulz","doi":"10.32614/rj-2022-017","DOIUrl":"https://doi.org/10.32614/rj-2022-017","url":null,"abstract":"","PeriodicalId":20974,"journal":{"name":"R J.","volume":"80 1","pages":"182-195"},"PeriodicalIF":0.0,"publicationDate":"2022-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83943230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Computational Analysis of the Dynamics of R Style Based on 108 Million Lines of Code from All CRAN Packages in the Past 21 Years 基于过去21年所有CRAN包中1.08亿行代码的R风格动态计算分析
Pub Date : 2022-06-21 DOI: 10.32614/rj-2022-006
Chia-Yi Yen, Mia Huai-Wen Chang, Chung-hong Chan
{"title":"A Computational Analysis of the Dynamics of R Style Based on 108 Million Lines of Code from All CRAN Packages in the Past 21 Years","authors":"Chia-Yi Yen, Mia Huai-Wen Chang, Chung-hong Chan","doi":"10.32614/rj-2022-006","DOIUrl":"https://doi.org/10.32614/rj-2022-006","url":null,"abstract":"","PeriodicalId":20974,"journal":{"name":"R J.","volume":"97 1","pages":"6-21"},"PeriodicalIF":0.0,"publicationDate":"2022-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81765377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
spherepc: An R Package for Dimension Reduction on a Sphere spherepc:一个用于球体降维的R包
Pub Date : 2022-06-21 DOI: 10.32614/rj-2022-016
Jongmin Lee, Jang-Hyun Kim, Hee-Seok Oh
{"title":"spherepc: An R Package for Dimension Reduction on a Sphere","authors":"Jongmin Lee, Jang-Hyun Kim, Hee-Seok Oh","doi":"10.32614/rj-2022-016","DOIUrl":"https://doi.org/10.32614/rj-2022-016","url":null,"abstract":"","PeriodicalId":20974,"journal":{"name":"R J.","volume":"8 1","pages":"167-181"},"PeriodicalIF":0.0,"publicationDate":"2022-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90967494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
fcaR, Formal Concept Analysis with R 用R进行形式概念分析
Pub Date : 2022-06-21 DOI: 10.32614/rj-2022-014
P. Cordero, M. Enciso, D. López-Rodríguez, Á. Mora
Formal concept analysis (FCA) is a solid mathematical framework to manage information based on logic and lattice theory. It defines two explicit representations of the knowledge present in a dataset as concepts and implications. This paper describes an R package called fcaR that implements FCA’s core notions and techniques. Additionally, it implements the extension of FCA to fuzzy datasets and a simplification logic to develop automated reasoning tools. This package is the first to implement FCA techniques in R. Therefore, emphasis has been put on defining classes and methods that could be reusable and extensible by the community. Furthermore, the package incorporates an interface with the arules package, probably the most used package regarding association rules, closely related to FCA. Finally, we show an application of the use of the package to design a recommender system based on logic for diagnosis in neurological pathologies.
形式概念分析(FCA)是一种基于逻辑和格理论的信息管理数学框架。它定义了数据集中存在的知识的两种显式表示,即概念和含义。本文描述了一个名为fcaR的R包,它实现了FCA的核心概念和技术。此外,它实现了FCA对模糊数据集的扩展和简化逻辑来开发自动推理工具。这个包是第一个在r中实现FCA技术的包。因此,重点放在定义可以被社区重用和扩展的类和方法上。此外,该包与规则包合并了一个接口,规则包可能是与FCA密切相关的关联规则方面最常用的包。最后,我们展示了一个应用程序,使用包来设计一个基于逻辑的推荐系统,用于神经病理学诊断。
{"title":"fcaR, Formal Concept Analysis with R","authors":"P. Cordero, M. Enciso, D. López-Rodríguez, Á. Mora","doi":"10.32614/rj-2022-014","DOIUrl":"https://doi.org/10.32614/rj-2022-014","url":null,"abstract":"Formal concept analysis (FCA) is a solid mathematical framework to manage information based on logic and lattice theory. It defines two explicit representations of the knowledge present in a dataset as concepts and implications. This paper describes an R package called fcaR that implements FCA’s core notions and techniques. Additionally, it implements the extension of FCA to fuzzy datasets and a simplification logic to develop automated reasoning tools. This package is the first to implement FCA techniques in R. Therefore, emphasis has been put on defining classes and methods that could be reusable and extensible by the community. Furthermore, the package incorporates an interface with the arules package, probably the most used package regarding association rules, closely related to FCA. Finally, we show an application of the use of the package to design a recommender system based on logic for diagnosis in neurological pathologies.","PeriodicalId":20974,"journal":{"name":"R J.","volume":"19 1","pages":"341-361"},"PeriodicalIF":0.0,"publicationDate":"2022-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82605111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
cpsurvsim: An R Package for Simulating Data from Change-Point Hazard Distributions cpsurvsim:一个R包,用于模拟从变化点危险分布的数据
Pub Date : 2022-06-21 DOI: 10.32614/rj-2022-005
C. Hochheimer, Roy T. Sabo
{"title":"cpsurvsim: An R Package for Simulating Data from Change-Point Hazard Distributions","authors":"C. Hochheimer, Roy T. Sabo","doi":"10.32614/rj-2022-005","DOIUrl":"https://doi.org/10.32614/rj-2022-005","url":null,"abstract":"","PeriodicalId":20974,"journal":{"name":"R J.","volume":"14 1","pages":"196-207"},"PeriodicalIF":0.0,"publicationDate":"2022-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90716969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantifying Population Movement Using a Novel Implementation of Digital Image Correlation in the ICvectorfields Package 在ICvectorfields包中使用一种新的数字图像相关实现来量化人口运动
Pub Date : 2022-05-18 DOI: 10.32614/rj-2022-028
D. Goodsman
Movements in imagery captivate the human eye and imagination. They are also of interest in variety of scientific disciplines that study spatiotemporal dynamics. Popular methods for quantifying movement in imagery include particle image velocimetry and digital image correlation. Both methods are widely applied in engineering and materials science, but less applied in other disciplines. This paper describes an implementation of a basic digital image correlation algorithm in R open source software as well as an extension designed to quantify persistent movement velocities in sequences of three or more images. Algorithms are applied in the novel arena of landscape ecology to quantify population movement and to produce vector fields for easy visualization of complex movement patterns across space. Functions to facilitate analyses are available in the ICvectorfields software package. These methods and functions are likely to produce novel insights in theoretical and landscape ecology because they facilitate visualization and comparison of theoretical and observed data in complex and heterogeneous environments.
图像的运动吸引着人的眼睛和想象力。他们也对研究时空动力学的各种科学学科感兴趣。常用的图像运动量化方法包括粒子图像测速和数字图像相关。这两种方法在工程和材料科学中应用广泛,但在其他学科中应用较少。本文描述了一个基本的数字图像相关算法在R开源软件中的实现,以及一个用于量化三个或更多图像序列中持续运动速度的扩展。算法被应用于景观生态学的新领域,以量化人口的移动,并产生向量场,以便轻松地可视化跨空间的复杂移动模式。ICvectorfields软件包中提供了方便分析的功能。这些方法和功能可能在理论和景观生态学中产生新的见解,因为它们促进了复杂和异质环境中理论和观测数据的可视化和比较。
{"title":"Quantifying Population Movement Using a Novel Implementation of Digital Image Correlation in the ICvectorfields Package","authors":"D. Goodsman","doi":"10.32614/rj-2022-028","DOIUrl":"https://doi.org/10.32614/rj-2022-028","url":null,"abstract":"Movements in imagery captivate the human eye and imagination. They are also of interest in variety of scientific disciplines that study spatiotemporal dynamics. Popular methods for quantifying movement in imagery include particle image velocimetry and digital image correlation. Both methods are widely applied in engineering and materials science, but less applied in other disciplines. This paper describes an implementation of a basic digital image correlation algorithm in R open source software as well as an extension designed to quantify persistent movement velocities in sequences of three or more images. Algorithms are applied in the novel arena of landscape ecology to quantify population movement and to produce vector fields for easy visualization of complex movement patterns across space. Functions to facilitate analyses are available in the ICvectorfields software package. These methods and functions are likely to produce novel insights in theoretical and landscape ecology because they facilitate visualization and comparison of theoretical and observed data in complex and heterogeneous environments.","PeriodicalId":20974,"journal":{"name":"R J.","volume":"1 1","pages":"121-135"},"PeriodicalIF":0.0,"publicationDate":"2022-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90288874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
BayesPPD: An R Package for Bayesian Sample Size Determination Using the Power and Normalized Power Prior for Generalized Linear Models BayesPPD:一个基于广义线性模型幂和归一化幂先验的贝叶斯样本量确定的R包
Pub Date : 2021-12-29 DOI: 10.32614/rj-2023-016
Yu-Siang Shen, Matthew A Psioda, J. Ibrahim
The R package BayesPPD (Bayesian Power Prior Design) supports Bayesian power and type I error calculation and model fitting after incorporating historical data with the power prior and the normalized power prior for generalized linear models (GLM). The package accommodates summary level data or subject level data with covariate information. It supports use of multiple historical datasets as well as design without historical data. Supported distributions for responses include normal, binary (Bernoulli/binomial), Poisson and exponential. The power parameter $a_0$ can be fixed or modeled as random using a normalized power prior for each of these distributions. In addition, the package supports the use of arbitrary sampling priors for computing Bayesian power and type I error rates, and has specific features for GLMs that semi-automatically generate sampling priors from historical data. Since sample size determination (SSD) for GLMs is computationally intensive, an approximation method based on asymptotic theory has been implemented to support applications using the power prior. In addition to describing the statistical methodology and functions implemented in the package to enable SSD, we also demonstrate the use of BayesPPD in two comprehensive case studies.
R包BayesPPD(贝叶斯功率先验设计)支持贝叶斯功率和I型误差计算和模型拟合,将历史数据与广义线性模型(GLM)的功率先验和归一化功率先验结合起来。该包包含具有协变量信息的摘要级数据或主题级数据。它支持使用多个历史数据集,也支持没有历史数据的设计。支持的响应分布包括正态分布、二进制分布(伯努利/二项式)、泊松分布和指数分布。功率参数$a_0$可以固定,也可以使用每个分布的标准化功率先验随机建模。此外,该包支持使用任意采样先验来计算贝叶斯功率和I型错误率,并具有针对glm的特定功能,可以从历史数据中半自动生成采样先验。由于glm的样本大小确定(SSD)是计算密集型的,因此实现了基于渐近理论的近似方法来支持使用功率先验的应用。除了描述统计方法和在软件包中实现的功能以启用SSD之外,我们还在两个综合案例研究中演示了BayesPPD的使用。
{"title":"BayesPPD: An R Package for Bayesian Sample Size Determination Using the Power and Normalized Power Prior for Generalized Linear Models","authors":"Yu-Siang Shen, Matthew A Psioda, J. Ibrahim","doi":"10.32614/rj-2023-016","DOIUrl":"https://doi.org/10.32614/rj-2023-016","url":null,"abstract":"The R package BayesPPD (Bayesian Power Prior Design) supports Bayesian power and type I error calculation and model fitting after incorporating historical data with the power prior and the normalized power prior for generalized linear models (GLM). The package accommodates summary level data or subject level data with covariate information. It supports use of multiple historical datasets as well as design without historical data. Supported distributions for responses include normal, binary (Bernoulli/binomial), Poisson and exponential. The power parameter $a_0$ can be fixed or modeled as random using a normalized power prior for each of these distributions. In addition, the package supports the use of arbitrary sampling priors for computing Bayesian power and type I error rates, and has specific features for GLMs that semi-automatically generate sampling priors from historical data. Since sample size determination (SSD) for GLMs is computationally intensive, an approximation method based on asymptotic theory has been implemented to support applications using the power prior. In addition to describing the statistical methodology and functions implemented in the package to enable SSD, we also demonstrate the use of BayesPPD in two comprehensive case studies.","PeriodicalId":20974,"journal":{"name":"R J.","volume":"1 1","pages":"335-351"},"PeriodicalIF":0.0,"publicationDate":"2021-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79835794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
期刊
R J.
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1