Introduction: Ureteral stents are effective in alleviating flow disruptions in the urinary tract, whether due to ureteral stones, strictures or extrinsic ureteral obstruction. However, significant stent encrustation on the external and/or internal stent lumen walls can occur, which may interfere with stent functioning and/or removal. Currently, there is only limited, generally qualitative, information on the distribution, mineral structure, and chemical content of these deposits, particularly in terms of stent lumen encrustation.
Objective: To quantify, in an initial investigation, external and internal encrustation in representative, intact ureteral stents. The study investigates possible correlations between patterns of external and internal encrustation, determines mineral structure and chemical composition, and examines the potential for stent lumen obstruction even in the absence of external stent wall encrustation.
Study design: High-resolution, laboratory micro-computed tomography (micro-CT) was used to non-destructively image external and internal stent encrustation in four representative stents. X-ray diffractometry (XRD) and scanning electron microscopy-energy dispersive x-ray spectroscopy (SEM-EDS) enabled parallel analysis of mineral structure and chemical content of samples collected from external and internal encrusted material along the distal, proximal and mid-ureteral stent regions.
Results: Extensive stent lumen encrustation can occur within any region of a stent, with only incidental or minor external encrustation, along the entire length of the stent. External and internal encrusted materials in a given stent are generally similar, consisting of a combination of amorphous (mostly organic) and crystalline mineral deposits.
Conclusion: Micro-CT demonstrates that significant stent lumen encrustation can occur, which can lead to partial or full stent lumen occlusion, even when the exterior stent wall is essentially free of encrusted material.
Urolithiasis is a common clinical condition with frequent recurrences. Advances in knowledge of pathophysiological mechanisms permit the categorization of patients to low and high risk for recurrence, with specific metabolic abnormalities diagnosed in the second category. Follow-up is essential for patients with urolithiasis and consists of both imaging and metabolic follow-up with urine studies. No formal guidelines or solid evidence currently exists regarding frequency and type of follow-up studies to be performed in each category. This review aims to summarize existing evidence regarding follow-up, in order to guide clinicians on how and when to follow-up urolithiasis patients according to existing clinical scenario.
Catheter-associated urinary tract infection (CAUTI) is the most common healthcare-associated infection and cause of secondary bloodstream infections. Despite many advances in diagnosis, prevention and treatment, CAUTI remains a severe healthcare burden, and antibiotic resistance rates are alarmingly high. In this review, current CAUTI management paradigms and challenges are discussed, followed by future prospects as they relate to the diagnosis, prevention, and treatment. Clinical and translational evidence will be evaluated, as will key basic science studies that underlie preventive and therapeutic approaches. Novel diagnostic strategies and treatment decision aids under development will decrease the time to diagnosis and improve antibiotic accuracy and stewardship. These include several classes of biomarkers often coupled with artificial intelligence algorithms, cell-free DNA, and others. New preventive strategies including catheter coatings and materials, vaccination, and bacterial interference are being developed and investigated. The antibiotic pipeline remains insufficient, and new strategies for the identification of new classes of antibiotics, and rational design of small molecule inhibitor alternatives, are under development for CAUTI treatment.