Pub Date : 2024-09-01DOI: 10.1016/j.resmic.2024.104218
The growth-promoting and immune modulatory properties of different strains of plant growth promoting rhizobacteria (PGPR) fluorescent Pseudomonads complex (PFPC) can be explored to combat food security challenges. These PFPC prime plants through induced systemic resistance, fortify plants to overcome future pathogen-mediated vulnerability by eliciting robust systemic acquired resistance through regulation by nonexpressor of pathogenesis-related genes 1. Moreover, outer membrane vesicles released from Pseudomonas fluorescens also elicit a broad spectrum of immune responses, presenting a rapid viable alternative to whole cells. Thus, PFPC can help the host to maintain an equilibrium between growth and immunity, ultimately leads to increased crop yield.
{"title":"Molecular insights into PGPR fluorescent Pseudomonads complex mediated intercellular and interkingdom signal transduction mechanisms in promoting plant's immunity","authors":"","doi":"10.1016/j.resmic.2024.104218","DOIUrl":"10.1016/j.resmic.2024.104218","url":null,"abstract":"<div><p><span><span>The growth-promoting and immune modulatory properties of different strains of plant growth promoting rhizobacteria<span> (PGPR) fluorescent Pseudomonads complex (PFPC) can be explored to combat food security challenges. These PFPC prime plants through induced systemic resistance, fortify plants to overcome future pathogen-mediated vulnerability by eliciting robust systemic acquired resistance through regulation by nonexpressor of pathogenesis-related genes 1. Moreover, outer </span></span>membrane vesicles released from </span><span><span>Pseudomonas fluorescens</span></span><span> also elicit a broad spectrum of immune responses, presenting a rapid viable alternative to whole cells. Thus, PFPC can help the host to maintain an equilibrium between growth and immunity, ultimately leads to increased crop yield.</span></p></div>","PeriodicalId":21098,"journal":{"name":"Research in microbiology","volume":"175 7","pages":"Article 104218"},"PeriodicalIF":2.5,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141327739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01DOI: 10.1016/j.resmic.2024.104217
Phytophthora species are destructive pathogens causing yield losses in different ecological systems, such as potato, black pepper, pepper, avocado, citrus, and tobacco. The diversity of plant growth-promoting microorganisms (PGPM) plays a crucial role in disease suppression. Knowledge of metagenomics approaches is essential for assessing the dynamics of PGPM and Phytophthora species across various ecosystems, facilitating effective management strategies for better crop protection. This review discusses the dynamic interplay between PGPM and Phytophthora sp. using metagenomics approaches that sheds light on the potential of PGPM strains tailored to specific crop ecosystems to bolster pathogen suppressiveness.
{"title":"Metagenomics approaches in unveiling the dynamics of Plant Growth-Promoting Microorganisms (PGPM) vis-à-vis Phytophthora sp. suppression in various crop ecological systems","authors":"","doi":"10.1016/j.resmic.2024.104217","DOIUrl":"10.1016/j.resmic.2024.104217","url":null,"abstract":"<div><p><span><span>Phytophthora</span></span><span> species are destructive pathogens causing yield losses in different ecological systems, such as potato, black pepper, pepper, avocado, citrus, and tobacco. The diversity of plant growth-promoting microorganisms (PGPM) plays a crucial role in disease suppression. Knowledge of metagenomics<span> approaches is essential for assessing the dynamics of PGPM and </span></span><em>Phytophthora</em><span> species across various ecosystems, facilitating effective management strategies for better crop protection. This review discusses the dynamic interplay between PGPM and </span><em>Phytophthora</em><span> sp. using metagenomics approaches that sheds light on the potential of PGPM strains tailored to specific crop ecosystems to bolster pathogen suppressiveness.</span></p></div>","PeriodicalId":21098,"journal":{"name":"Research in microbiology","volume":"175 7","pages":"Article 104217"},"PeriodicalIF":2.5,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141301512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01DOI: 10.1016/j.resmic.2024.104215
Listeria monocytogenes in beef receives less attention compared to other pathogens such as Salmonella and Escherichia coli. To address this gap, we conducted a literature review focusing on the presence of L. monocytogenes in beef. This review encompasses the pathogenic mechanisms, routes of contamination, prevalence rates, and the laws and regulations employed in various countries. Our findings reveal a prevalence of L. monocytogenes in beef and beef products ranging from 2.5% to 59.4%. Notably, serotype 4b was most frequently isolated in cases of beef contamination during food processing, with the skinning and evisceration stages identified as critical points of contamination.
{"title":"Listeria monocytogenes in beef: a hidden risk","authors":"","doi":"10.1016/j.resmic.2024.104215","DOIUrl":"10.1016/j.resmic.2024.104215","url":null,"abstract":"<div><p><span><span>Listeria monocytogenes</span></span> in beef receives less attention compared to other pathogens such as <em>Salmonella</em> and <span><em>Escherichia coli</em></span>. To address this gap, we conducted a literature review focusing on the presence of <em>L. monocytogenes</em><span> in beef. This review encompasses the pathogenic mechanisms, routes of contamination, prevalence rates, and the laws and regulations employed in various countries. Our findings reveal a prevalence of </span><em>L. monocytogenes</em><span><span> in beef and beef products ranging from 2.5% to 59.4%. Notably, serotype 4b was most frequently isolated in cases of beef contamination during food processing, with the skinning and </span>evisceration stages identified as critical points of contamination.</span></p></div>","PeriodicalId":21098,"journal":{"name":"Research in microbiology","volume":"175 7","pages":"Article 104215"},"PeriodicalIF":2.5,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141238113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01DOI: 10.1016/j.resmic.2024.104216
By-products like CO₂ and organic acids, produced during Clostridium botulinum growth, appear to inhibit its development and reduce ATP production. A decrease in ATP production creates an imbalance in the ATP/GTP ratio. GTP activates CodY, which regulates BoNT expression. This toxin is released into the extracellular medium. Its light chains act as a specific endopeptidase, targeting SNARE proteins. The specific amino acids released enter the cells and are metabolized by the Stickland reaction, resulting in the synthesis of ATP. This ATP might then be used by histidine kinases to activate Spo0A, the main regulator initiating sporulation, through phosphorylation.
肉毒梭状芽孢杆菌生长过程中产生的副产品,如 CO₂和有机酸,似乎会抑制肉毒梭状芽孢杆菌的生长并减少 ATP 的产生。ATP 产量的减少会导致 ATP/GTP 比率失衡。GTP 可激活 CodY,从而调节 BoNT 的表达。这种毒素被释放到细胞外介质中。其轻链可作为特异性内肽酶,靶向 SNARE 蛋白质。释放出的特定氨基酸进入细胞,通过斯蒂克兰反应进行代谢,从而合成 ATP。组氨酸激酶可能会利用这种 ATP 通过磷酸化激活 Spo0A(孢子形成的主要调节因子)。
{"title":"Endopeptidase activities of Clostridium botulinum toxins in the development of this bacterium","authors":"","doi":"10.1016/j.resmic.2024.104216","DOIUrl":"10.1016/j.resmic.2024.104216","url":null,"abstract":"<div><p><span>By-products like CO₂ and organic acids, produced during </span><span><span>Clostridium botulinum</span></span> growth, appear to inhibit its development and reduce ATP production. A decrease in ATP production creates an imbalance in the ATP/GTP ratio. GTP activates CodY, which regulates <span><em>BoNT</em></span><span><span><span><span> expression. This toxin is released into the extracellular medium. Its light chains act as a specific endopeptidase, targeting </span>SNARE proteins. The specific </span>amino acids released enter the cells and are metabolized by the Stickland reaction, resulting in the synthesis of ATP. This ATP might then be used by </span>histidine<span> kinases to activate Spo0A, the main regulator initiating sporulation, through phosphorylation.</span></span></p></div>","PeriodicalId":21098,"journal":{"name":"Research in microbiology","volume":"175 7","pages":"Article 104216"},"PeriodicalIF":2.5,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141427445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01DOI: 10.1016/j.resmic.2024.104219
Despite being classified as microaerophilic microorganisms, most Campylobacter species can grow anaerobically, using formate or molecular hydrogen (H2) as electron donors, and various nitrogenous and sulfurous compounds as electron acceptors. Herein, we showed that both l-asparagine (l-Asn) and l-aspartic acid (l-Asp) bolster H2-driven anaerobic growth in several Campylobacter species, whereas the d-enantiomer form of both asparagine (d-Asn) and aspartic acid (d-Asp) only increased anaerobic growth in Campylobacter concisus strain 13826 and Campylobacter ureolyticus strain NCTC10941. A gene annotated as racD encoding for a putative d/l-Asp racemase was identified in the genome of both strains. Disruption of racD in Cc13826 resulted in the inability of the mutant strain to use either d-enantiomer during anaerobic growth. Hence, our results suggest that the racD gene is required for campylobacters to use either d-Asp or d-Asn. The use of d-Asp by various human opportunistic bacterial pathogens, including C. concisus, C. ureolyticus, and also possibly select strains of Campylobacter gracilis, Campylobacter rectus and Campylobacter showae, is significant, because d-Asp is an important signal molecule for both human nervous and neuroendocrine systems. To our knowledge, this is the first report of pathogens scavenging a d-amino acid essential for human health.
尽管弯曲杆菌被归类为嗜微气微生物,但大多数弯曲杆菌都能以甲酸或分子氢(H2)为电子供体,以各种含氮和含硫化合物为电子受体,进行厌氧生长。在本文中,我们发现 L-天冬酰胺(L-Asn)和 L-天冬氨酸(L-Asp)都能促进多种弯曲杆菌在 H2 驱动下的厌氧生长,而天冬酰胺(D-Asn)和天冬氨酸(D-Asp)的 D-对映体形式仅能增加 C. concisus 菌株 13826 和 C. ureolyticus 菌株 NCTC10941 的厌氧生长。在这两个菌株的基因组中都发现了一个被注释为 racD 的基因,该基因编码一种假定的 D/L-Asp 消旋酶。Cc13826 中 racD 的破坏导致突变菌株在厌氧生长过程中无法使用任何一种 D-对映体。因此,我们的研究结果表明,弯曲杆菌使用 D-Asp 或 D-Asn 都需要 racD 基因。由于 D-Asp 是人类神经系统和神经内分泌系统的重要信号分子,因此各种人类机会性细菌病原体(包括 C. concisus、C. ureolyticus 以及可能的 C. gracilis、C. rectus 和 C. showae 的特定菌株)使用 D-Asp 具有重要意义。据我们所知,这是首次报道病原体清除对人类健康至关重要的 D-氨基酸。
{"title":"d-aspartate, an amino-acid important for human health, supports anaerobic respiration in several Campylobacter species","authors":"","doi":"10.1016/j.resmic.2024.104219","DOIUrl":"10.1016/j.resmic.2024.104219","url":null,"abstract":"<div><p>Despite being classified as microaerophilic microorganisms, most <span><span>Campylobacter</span></span> species can grow anaerobically, using formate or molecular hydrogen (H<sub>2</sub>) as electron donors, and various nitrogenous and sulfurous compounds as electron acceptors. Herein, we showed that both <span>l</span>-asparagine (<span>l</span>-Asn) and <span>l</span>-aspartic acid (<span>l</span>-Asp) bolster H<sub>2</sub><span>-driven anaerobic growth in several </span><span><em>Campylobacter</em></span> species, whereas the <span>d-</span><span><span>enantiomer form of both </span>asparagine (</span><span>d</span><span>-Asn) and aspartic acid (</span><span>d</span>-Asp) only increased anaerobic growth in <span><span>Campylobacter concisus</span></span> strain 13826 and <span><em>Campylobacter ureolyticus</em></span> strain NCTC10941. A gene annotated as <em>racD</em> encoding for a putative <span>d</span>/<span>l</span><span>-Asp racemase was identified in the genome of both strains. Disruption of </span><em>racD</em> in <em>Cc</em>13826 resulted in the inability of the mutant strain to use either <span>d-</span>enantiomer during anaerobic growth. Hence, our results suggest that the <em>racD</em> gene is required for campylobacters to use either <span>d</span>-Asp or <span>d</span>-Asn. The use of <span>d</span>-Asp by various human opportunistic bacterial pathogens, including <em>C. concisus</em>, <em>C. ureolyticus</em>, and also possibly select strains of <em>Campylobacter gracilis</em>, <span><span>Campylobacter rectus</span></span> and <em>Campylobacter showae</em>, is significant, because <span>d</span><span>-Asp is an important signal molecule for both human nervous and neuroendocrine systems. To our knowledge, this is the first report of pathogens scavenging a </span><span>d-</span><span>amino acid essential for human health.</span></p></div>","PeriodicalId":21098,"journal":{"name":"Research in microbiology","volume":"175 7","pages":"Article 104219"},"PeriodicalIF":2.5,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141470480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01DOI: 10.1016/j.resmic.2024.104204
{"title":"Biofilms in soils: The evidence about sessile versus planktonic microorganisms needs revisiting","authors":"","doi":"10.1016/j.resmic.2024.104204","DOIUrl":"10.1016/j.resmic.2024.104204","url":null,"abstract":"","PeriodicalId":21098,"journal":{"name":"Research in microbiology","volume":"175 7","pages":"Article 104204"},"PeriodicalIF":2.5,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140896930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01DOI: 10.1016/j.resmic.2024.104180
Nasreen Amin , Rajeshwar P. Sinha , Vinod K. Kannaujiya
The continuous increase in global temperature and ultraviolet radiation (UVR) causes profound impacts on the growth and physiology of photosynthetic microorganisms. The hot-spring cyanobacteria have a wide range of mitigation mechanisms to cope up against current unsustainable environmental conditions. In the present investigation, we have explored the indispensable mitigation strategies of an isolated hot-spring cyanobacterium Nostoc sp. strain VKB02 under simulated ultraviolet (UV-A, UV-B) and photosynthetically active radiation (PAR). The adaptive morphological changes were more significantly observed under PAB (PAR, UV-A, and UV-B) exposure as compared to P and PA (PAR and UV-A) irradiations. PAB exposure also exhibited a marked decline in pigment composition and photosynthetic efficiency by multi-fold increment of free radicals. To counteract the oxidative stress, enzymatic and non-enzymatic antioxidants defense were significantly enhanced many folds under PAB exposure as compared to the control. In addition, the cyanobacterium has also produced shinorine as a strong free radicals scavenger and excellent UV absorber for effective photoprotection against UV radiation. Therefore, the hot-spring cyanobacterium Nostoc sp. strain VKB02 has unique defense strategies for survival under prolonged lethal UVR conditions. This study will help in the understanding of environment-induced defense strategies and production of highly value-added green photo-protectants for commercial applications.
{"title":"Effects of ultraviolet and photosynthetically active radiation on morphogenesis, antioxidants and photoprotective defense mechanism in a hot-spring cyanobacterium Nostoc sp. strain VKB02","authors":"Nasreen Amin , Rajeshwar P. Sinha , Vinod K. Kannaujiya","doi":"10.1016/j.resmic.2024.104180","DOIUrl":"10.1016/j.resmic.2024.104180","url":null,"abstract":"<div><p><span><span>The continuous increase in global temperature and ultraviolet radiation (UVR) causes profound impacts on the growth and physiology of photosynthetic microorganisms. The hot-spring </span>cyanobacteria have a wide range of mitigation mechanisms to cope up against current unsustainable environmental conditions. In the present investigation, we have explored the indispensable mitigation strategies of an isolated hot-spring cyanobacterium </span><span><em>Nostoc</em></span><span> sp. strain VKB02 under simulated ultraviolet (UV-A, UV-B) and photosynthetically active radiation (PAR). The adaptive morphological changes were more significantly observed under PAB (PAR, UV-A, and UV-B) exposure as compared to P and PA (PAR and UV-A) irradiations. PAB exposure also exhibited a marked decline in pigment composition and photosynthetic efficiency by multi-fold increment of free radicals. To counteract the oxidative stress, enzymatic and non-enzymatic antioxidants defense were significantly enhanced many folds under PAB exposure as compared to the control. In addition, the cyanobacterium has also produced shinorine as a strong free radicals scavenger and excellent UV absorber for effective photoprotection against UV radiation. Therefore, the hot-spring cyanobacterium </span><em>Nostoc</em> sp. strain VKB02 has unique defense strategies for survival under prolonged lethal UVR conditions. This study will help in the understanding of environment-induced defense strategies and production of highly value-added green photo-protectants for commercial applications.</p></div>","PeriodicalId":21098,"journal":{"name":"Research in microbiology","volume":"175 5","pages":"Article 104180"},"PeriodicalIF":2.5,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139417962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01DOI: 10.1016/j.resmic.2024.104188
Feng Peng , Yu Zou , Xiuxia Liu , Yankun Yang , Jing Chen , Jianqi Nie , Danni Huang , Zhonghu Bai
The complete genome of Corynebacterium glutamicum contain a gene encoding murein endopeptidase MepA which maintain cell wall homeostasis by regulating peptidoglycan biosynthesis. In this study, we investigate the physiological function, localization and regulator of MepA. The result shows that mepA overexpression lead to peptidoglycan degradation and the defects in cell division. MepA-EGFP was shown to localizes exclusively at the cell cell septum. In addition, mepA overexpression increased cell permeability and reduced the resistance of cells to isoniazid, an antibiotic used to treat Mycobacterium tuberculosis infection. Furthermore, transcription analysis showed that mepA affected cell division and membrane transport pathways, and was coordinately regulated by the two-component systems MtrAB and MprAB(CgtS/R2).
{"title":"The murein endopeptidase MepA regulated by MtrAB and MprAB participate in cell wall homeostasis","authors":"Feng Peng , Yu Zou , Xiuxia Liu , Yankun Yang , Jing Chen , Jianqi Nie , Danni Huang , Zhonghu Bai","doi":"10.1016/j.resmic.2024.104188","DOIUrl":"10.1016/j.resmic.2024.104188","url":null,"abstract":"<div><p>The complete genome of <span><em>Corynebacterium glutamicum</em></span><span> contain a gene encoding murein endopeptidase MepA which maintain cell wall homeostasis<span> by regulating peptidoglycan biosynthesis. In this study, we investigate the physiological function, localization and regulator of MepA. The result shows that </span></span><em>mepA</em> overexpression lead to peptidoglycan degradation and the defects in cell division. MepA-EGFP was shown to localizes exclusively at the cell cell septum. In addition, <em>mepA</em><span> overexpression increased cell permeability and reduced the resistance of cells to isoniazid, an antibiotic used to treat </span><span><em>Mycobacterium tuberculosis</em></span> infection. Furthermore, transcription analysis showed that <em>mepA</em><span> affected cell division and membrane transport pathways, and was coordinately regulated by the two-component systems MtrAB and MprAB(CgtS/R2).</span></p></div>","PeriodicalId":21098,"journal":{"name":"Research in microbiology","volume":"175 5","pages":"Article 104188"},"PeriodicalIF":2.5,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139576630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01DOI: 10.1016/j.resmic.2024.104201
Rachel Javorova , Beatrica Sevcikova , Bronislava Rezuchova, Renata Novakova, Filip Opaterny, Dominika Csolleiova, Lubomira Feckova, Jan Kormanec
Unlike Bacillus subtilis, Streptomyces coelicolor contains nine SigB homologues of the stress-response sigma factor SigB. By using a two-plasmid system, we previously identified promoters recognized by these sigma factors. Almost all promoters were recognized by several SigB homologues. However, no specific sequences of these promoters were found. One of these promoters, ssgBp, was selected to examine this cross-recognition in the native host. It controls the expression of the sporulation-specific gene ssgB. Using a luciferase reporter, the activity of this promoter in S. coelicolor and nine mutant strains lacking individual sigB homologous genes showed that sgBp is dependent on three sigma factors, SigH, SigN, and SigI. To determine which nucleotides in the-10 region are responsible for the selection of a specific SigB homologue, promoters mutated at the last three nucleotide positions were tested in the two-plasmid system. Some mutant promoters were specifically recognized by a distinct set of SigB homologues. Analysis of these mutant promoters in the native host showed the role of these nucleotides. A conserved nucleotide A at position 5 was essential for promoter activity, and two variable nucleotides at positions 4 and 6 were responsible for the partial selectivity of promoter recognition by SigB homologues.
{"title":"Multiple SigB homologues govern the transcription of the ssgBp promoter in the sporulation–specific ssgB gene in Streptomyces coelicolor A3(2)","authors":"Rachel Javorova , Beatrica Sevcikova , Bronislava Rezuchova, Renata Novakova, Filip Opaterny, Dominika Csolleiova, Lubomira Feckova, Jan Kormanec","doi":"10.1016/j.resmic.2024.104201","DOIUrl":"10.1016/j.resmic.2024.104201","url":null,"abstract":"<div><p>Unlike <em>Bacillus subtilis</em>, <em>Streptomyces coelicolor</em> contains nine SigB homologues of the stress-response sigma factor SigB. By using a two-plasmid system, we previously identified promoters recognized by these sigma factors. Almost all promoters were recognized by several SigB homologues. However, no specific sequences of these promoters were found. One of these promoters, <em>ssgBp</em>, was selected to examine this cross-recognition in the native host. It controls the expression of the sporulation-specific gene <em>ssgB</em>. Using a luciferase reporter, the activity of this promoter in <em>S. coelicolor</em> and nine mutant strains lacking individual <em>sigB</em> homologous genes showed that <em>sgBp</em> is dependent on three sigma factors, SigH, SigN, and SigI. To determine which nucleotides in the-10 region are responsible for the selection of a specific SigB homologue, promoters mutated at the last three nucleotide positions were tested in the two-plasmid system. Some mutant promoters were specifically recognized by a distinct set of SigB homologues. Analysis of these mutant promoters in the native host showed the role of these nucleotides. A conserved nucleotide A at position 5 was essential for promoter activity, and two variable nucleotides at positions 4 and 6 were responsible for the partial selectivity of promoter recognition by SigB homologues.</p></div>","PeriodicalId":21098,"journal":{"name":"Research in microbiology","volume":"175 5","pages":"Article 104201"},"PeriodicalIF":2.5,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140207491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01DOI: 10.1016/j.resmic.2024.104196
Ofélia Godinho , Damien P. Devos , Sandra Quinteira , Olga M. Lage
Antimicrobial resistance is one of the leading causes of death worldwide and research on this topic has been on the spotlight for a long time. More recently and in agreement with the One Health Approach, the focus has moved towards the environmental resistome. Members of the phylum Planctomycetota are ubiquitously present in the environment including in hotspots for antimicrobial resistance selection and dissemination. Furthermore, phenotypic broad-range resistance has been observed in diverse members of this phylum. Here we review the evidence available on antimicrobial resistance in the underexploited Planctomycetota and highlight key aspects for future studies.
{"title":"The influence of the phylum Planctomycetota in the environmental resistome","authors":"Ofélia Godinho , Damien P. Devos , Sandra Quinteira , Olga M. Lage","doi":"10.1016/j.resmic.2024.104196","DOIUrl":"10.1016/j.resmic.2024.104196","url":null,"abstract":"<div><p>Antimicrobial resistance is one of the leading causes of death worldwide and research on this topic has been on the spotlight for a long time. More recently and in agreement with the One Health Approach, the focus has moved towards the environmental resistome. Members of the phylum <em>Planctomycetota</em> are ubiquitously present in the environment including in hotspots for antimicrobial resistance selection and dissemination. Furthermore, phenotypic broad-range resistance has been observed in diverse members of this phylum. Here we review the evidence available on antimicrobial resistance in the underexploited <em>Planctomycetota</em> and highlight key aspects for future studies.</p></div>","PeriodicalId":21098,"journal":{"name":"Research in microbiology","volume":"175 5","pages":"Article 104196"},"PeriodicalIF":2.5,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0923250824000226/pdfft?md5=44d481a10d48dfcd6c3b140cfe329afb&pid=1-s2.0-S0923250824000226-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140102356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}