Pub Date : 2024-01-01Epub Date: 2024-04-12DOI: 10.1016/bs.pmbts.2024.03.036
Eric Jou
Immunotherapy has revolutionised cancer treatment over the past decade, demonstrating remarkable efficacy across a broad range of cancer types. However, not all patients or cancer types respond to contemporary clinically-utilised immunotherapeutic strategies, which largely focus on harnessing adaptive immune T cells for cancer treatment. Accordingly, it is increasingly recognised that upstream innate immune pathways, which govern and orchestrate the downstream adaptive immune response, may prove critical in overcoming cancer immunotherapeutic resistance. Innate lymphoid cells (ILCs) are the most recently discovered major innate immune cell population. They have overarching roles in homeostasis and orchestrating protective immunity against pathogens. As innate immune counterparts of adaptive immune T cells, ILCs exert effector functions through the secretion of cytokines and direct cell-to-cell contact, with broad influence on the overall immune response. Importantly, dysregulation of ILC subsets have been associated with a range of diseases, including immunodeficiency disorders, allergy, autoimmunity, and more recently, cancer. ILCs may either promote or inhibit cancer initiation and progression depending on the cancer type and the specific ILC subsets involved. Critically, therapeutic targeting of ILCs and their associated cytokines shows promise against a wide range of cancer types in both preclinical models and early phase oncology clinical trials. This chapter provides a comprehensive overview of the current understanding of ILC subsets and the associated cytokines they produce in cancer pathogenesis, with specific focus on how these innate pathways are, or can be targeted, therapeutically to overcome therapeutic resistance and ultimately improve patient care.
过去十年来,免疫疗法彻底改变了癌症治疗,在多种癌症类型中显示出显著疗效。然而,并非所有患者或癌症类型都对目前临床上使用的免疫治疗策略有反应,这些策略主要侧重于利用适应性免疫 T 细胞来治疗癌症。因此,越来越多的人认识到,上游先天性免疫通路管理和协调下游适应性免疫反应,可能被证明是克服癌症免疫治疗耐药性的关键。先天性淋巴细胞(ILCs)是最近发现的主要先天性免疫细胞群。它们在体内平衡和协调针对病原体的保护性免疫中发挥着重要作用。作为适应性免疫 T 细胞的先天性免疫对应细胞,ILCs 通过分泌细胞因子和细胞间直接接触发挥效应功能,对整体免疫反应产生广泛影响。重要的是,ILC 亚群的失调与一系列疾病有关,包括免疫缺陷疾病、过敏、自身免疫以及最近的癌症。根据癌症类型和所涉及的特定 ILC 亚群,ILC 可促进或抑制癌症的发生和发展。重要的是,在临床前模型和早期肿瘤学临床试验中,以 ILCs 及其相关细胞因子为靶点的疗法有望治疗多种类型的癌症。本章全面概述了目前对 ILC 亚群及其在癌症发病过程中产生的相关细胞因子的认识,重点介绍了如何针对这些先天性通路进行治疗,以克服耐药性并最终改善患者护理。
{"title":"Clinical and basic science aspects of innate lymphoid cells as novel immunotherapeutic targets in cancer treatment.","authors":"Eric Jou","doi":"10.1016/bs.pmbts.2024.03.036","DOIUrl":"https://doi.org/10.1016/bs.pmbts.2024.03.036","url":null,"abstract":"<p><p>Immunotherapy has revolutionised cancer treatment over the past decade, demonstrating remarkable efficacy across a broad range of cancer types. However, not all patients or cancer types respond to contemporary clinically-utilised immunotherapeutic strategies, which largely focus on harnessing adaptive immune T cells for cancer treatment. Accordingly, it is increasingly recognised that upstream innate immune pathways, which govern and orchestrate the downstream adaptive immune response, may prove critical in overcoming cancer immunotherapeutic resistance. Innate lymphoid cells (ILCs) are the most recently discovered major innate immune cell population. They have overarching roles in homeostasis and orchestrating protective immunity against pathogens. As innate immune counterparts of adaptive immune T cells, ILCs exert effector functions through the secretion of cytokines and direct cell-to-cell contact, with broad influence on the overall immune response. Importantly, dysregulation of ILC subsets have been associated with a range of diseases, including immunodeficiency disorders, allergy, autoimmunity, and more recently, cancer. ILCs may either promote or inhibit cancer initiation and progression depending on the cancer type and the specific ILC subsets involved. Critically, therapeutic targeting of ILCs and their associated cytokines shows promise against a wide range of cancer types in both preclinical models and early phase oncology clinical trials. This chapter provides a comprehensive overview of the current understanding of ILC subsets and the associated cytokines they produce in cancer pathogenesis, with specific focus on how these innate pathways are, or can be targeted, therapeutically to overcome therapeutic resistance and ultimately improve patient care.</p>","PeriodicalId":21157,"journal":{"name":"Progress in molecular biology and translational science","volume":"209 ","pages":"1-60"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142506943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
RNA therapeutics have emerged as potential treatments for genetic disorders, infectious diseases, and cancer. RNA delivery to target cells for efficient therapeutic applications remains challenging due to instability and poor uptake. Polymeric nanoparticulate delivery systems offer stability, protection, and controlled release. These systems shield RNA from degradation, enabling efficient uptake and extended circulation. Various polymeric nanoparticle platforms have been explored, including lipid-based nanoparticles, polymeric micelles, dendrimers, and polymer-drug conjugates. This review outlines recent breakthroughs of recent advances, design principles, characterization techniques, and performance evaluation of these delivery systems. It highlights their potential in translating preclinical studies into clinical applications. Additionally, the review discusses the application of polymeric nanoparticles in ophthalmic drug delivery, particularly for medications that dissolve poorly in water, and the progress made in siRNA-based therapies for viral infections, autoimmune diseases, and cancers. SiRNA holds great promise for precision medicine and therapeutic intervention, with the ability to target specific genes and modulate disease-associated pathways. The versatility and potency of siRNA-based drugs offer a broader scope for therapeutic intervention compared to traditional biological drugs. As research in RNA therapeutics continues to advance, these technologies hold tremendous potential to revolutionize the treatment of various diseases and improve patient outcomes.
{"title":"Advances in the polymeric nanoparticulate delivery systems for RNA therapeutics.","authors":"Sristi, Waleed H Almalki, Ritu Karwasra, Garima Gupta, Surender Singh, Ajay Sharma, Amirhossein Sahebkar, Prashant Kesharwani","doi":"10.1016/bs.pmbts.2024.01.001","DOIUrl":"10.1016/bs.pmbts.2024.01.001","url":null,"abstract":"<p><p>RNA therapeutics have emerged as potential treatments for genetic disorders, infectious diseases, and cancer. RNA delivery to target cells for efficient therapeutic applications remains challenging due to instability and poor uptake. Polymeric nanoparticulate delivery systems offer stability, protection, and controlled release. These systems shield RNA from degradation, enabling efficient uptake and extended circulation. Various polymeric nanoparticle platforms have been explored, including lipid-based nanoparticles, polymeric micelles, dendrimers, and polymer-drug conjugates. This review outlines recent breakthroughs of recent advances, design principles, characterization techniques, and performance evaluation of these delivery systems. It highlights their potential in translating preclinical studies into clinical applications. Additionally, the review discusses the application of polymeric nanoparticles in ophthalmic drug delivery, particularly for medications that dissolve poorly in water, and the progress made in siRNA-based therapies for viral infections, autoimmune diseases, and cancers. SiRNA holds great promise for precision medicine and therapeutic intervention, with the ability to target specific genes and modulate disease-associated pathways. The versatility and potency of siRNA-based drugs offer a broader scope for therapeutic intervention compared to traditional biological drugs. As research in RNA therapeutics continues to advance, these technologies hold tremendous potential to revolutionize the treatment of various diseases and improve patient outcomes.</p>","PeriodicalId":21157,"journal":{"name":"Progress in molecular biology and translational science","volume":"204 ","pages":"219-248"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140065804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The main cause of many neurodegenerative diseases and systemic amyloidoses is protein and peptide aggregation and the formation of amyloid fibrils. The study of aggregation mechanisms, the discovery and description of aggregate structures, and a comprehensive understanding of the molecular mechanisms of amyloid formation are of great importance for the diagnostic processes at the molecular level and for the development of therapeutic strategies to counter aggregation-associated disorders. Given that understanding protein misfolding phenomena is directly related to the protein folding process, we will briefly explain the protein folding mechanism and then discuss the important factors involved in protein aggregation. In the following, we review different mechanisms of amyloid formation and finally represent the current knowledge on how amyloid fibrils are formed based on kinetic and thermodynamic factors.
{"title":"Pathways of amyloid fibril formation and protein aggregation.","authors":"Elaheh Tavili, Fatemeh Aziziyan, Bahareh Dabirmanesh","doi":"10.1016/bs.pmbts.2024.03.010","DOIUrl":"10.1016/bs.pmbts.2024.03.010","url":null,"abstract":"<p><p>The main cause of many neurodegenerative diseases and systemic amyloidoses is protein and peptide aggregation and the formation of amyloid fibrils. The study of aggregation mechanisms, the discovery and description of aggregate structures, and a comprehensive understanding of the molecular mechanisms of amyloid formation are of great importance for the diagnostic processes at the molecular level and for the development of therapeutic strategies to counter aggregation-associated disorders. Given that understanding protein misfolding phenomena is directly related to the protein folding process, we will briefly explain the protein folding mechanism and then discuss the important factors involved in protein aggregation. In the following, we review different mechanisms of amyloid formation and finally represent the current knowledge on how amyloid fibrils are formed based on kinetic and thermodynamic factors.</p>","PeriodicalId":21157,"journal":{"name":"Progress in molecular biology and translational science","volume":"206 ","pages":"11-54"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141176244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-03-31DOI: 10.1016/bs.pmbts.2024.03.007
Bahareh Dabirmanesh, Khosro Khajeh, Vladimir N Uversky
In order for an ordered protein to perform its specific function, it must have a specific molecular structure. Information about this structure is encoded in the protein's amino acid sequence. The unique functional state is achieved as a result of a specific process, known as protein folding. However, as a result of partial or complete unfolding of the polypeptide chain, proteins may misfold and aggregate, leading to the formation of various aggregated structures, such as like amyloid aggregates with the cross-β structure. A variety of cellular biological processes can be affected by protein aggregates that consume essential factors necessary for maintaining proteostasis, which leads to the proteostasis imbalance and further accumulation of protein aggregates, often resulting in age-related neurodegenerative disease progression and aging. However, in addition to their well-established pathological effects, amyloids also play various physiological roles, and many important biological processes involve such 'functional amyloids'. This chapter represents a brief overview of the protein aggregation phenomenon outlines a timeline provides of some key discoveries in this exciting field.
{"title":"Protein aggregation: An overview.","authors":"Bahareh Dabirmanesh, Khosro Khajeh, Vladimir N Uversky","doi":"10.1016/bs.pmbts.2024.03.007","DOIUrl":"10.1016/bs.pmbts.2024.03.007","url":null,"abstract":"<p><p>In order for an ordered protein to perform its specific function, it must have a specific molecular structure. Information about this structure is encoded in the protein's amino acid sequence. The unique functional state is achieved as a result of a specific process, known as protein folding. However, as a result of partial or complete unfolding of the polypeptide chain, proteins may misfold and aggregate, leading to the formation of various aggregated structures, such as like amyloid aggregates with the cross-β structure. A variety of cellular biological processes can be affected by protein aggregates that consume essential factors necessary for maintaining proteostasis, which leads to the proteostasis imbalance and further accumulation of protein aggregates, often resulting in age-related neurodegenerative disease progression and aging. However, in addition to their well-established pathological effects, amyloids also play various physiological roles, and many important biological processes involve such 'functional amyloids'. This chapter represents a brief overview of the protein aggregation phenomenon outlines a timeline provides of some key discoveries in this exciting field.</p>","PeriodicalId":21157,"journal":{"name":"Progress in molecular biology and translational science","volume":"206 ","pages":"1-10"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141176246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-05-17DOI: 10.1016/bs.pmbts.2024.03.034
Juveriya Israr, Shabroz Alam, Ajay Kumar
Repurposing drugs for rare diseases is a creative and cost-efficient method for creating new treatment options for certain conditions. This technique entails repurposing existing pharmaceuticals for new uses by utilizing established information regarding pharmacological characteristics, modes of operation, safety profiles, and interactions with biological systems. Creating new treatments for uncommon diseases is frequently difficult because of factors including small patient groups, disease intricacy, and insufficient knowledge of disease pathobiology. Drug repurposing is a more efficient and cost-effective approach compared to developing new drugs from scratch. It typically requires collaboration among academia, pharmaceutical firms, and patient advocacy groups.
{"title":"Drug repurposing for rare diseases.","authors":"Juveriya Israr, Shabroz Alam, Ajay Kumar","doi":"10.1016/bs.pmbts.2024.03.034","DOIUrl":"https://doi.org/10.1016/bs.pmbts.2024.03.034","url":null,"abstract":"<p><p>Repurposing drugs for rare diseases is a creative and cost-efficient method for creating new treatment options for certain conditions. This technique entails repurposing existing pharmaceuticals for new uses by utilizing established information regarding pharmacological characteristics, modes of operation, safety profiles, and interactions with biological systems. Creating new treatments for uncommon diseases is frequently difficult because of factors including small patient groups, disease intricacy, and insufficient knowledge of disease pathobiology. Drug repurposing is a more efficient and cost-effective approach compared to developing new drugs from scratch. It typically requires collaboration among academia, pharmaceutical firms, and patient advocacy groups.</p>","PeriodicalId":21157,"journal":{"name":"Progress in molecular biology and translational science","volume":"207 ","pages":"231-247"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141470522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1016/S1877-1173(24)00207-2
{"title":"Preface.","authors":"","doi":"10.1016/S1877-1173(24)00207-2","DOIUrl":"https://doi.org/10.1016/S1877-1173(24)00207-2","url":null,"abstract":"","PeriodicalId":21157,"journal":{"name":"Progress in molecular biology and translational science","volume":"209 ","pages":"xiii-xv"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142506948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-05-31DOI: 10.1016/bs.pmbts.2024.02.004
Matthew J Giacalone
In situ immunization (ISI) agents are an emerging and diverse class of locally acting cancer immunotherapeutic agents designed to promote innate immune activation in the early steps of the cancer immunity cycle to ultimately support development of a systemic tumor-specific immune response and protective immunologic memory. The aims of this review are to: (i) provide an introduction to ISI; (ii) summarize the history of ISI agents; (iii) expound upon the mechanism(s) and therapeutic objective(s) of ISI; (iv) compare the various approaches and therapeutic modalities developed and investigated to date; and (v) summarize clinical experiences in an effort to highlight the utility as well as the lessons and challenges of this promising approach. A prospective roadmap for future clinical development is provided that focuses on early and late-stage trial design considerations, the rationale and importance of investigating combination treatment, and the prospective use of ISI agents in the neoadjuvant setting.
{"title":"The promise, progress, and challenges of in situ immunization agents in cancer immunotherapy.","authors":"Matthew J Giacalone","doi":"10.1016/bs.pmbts.2024.02.004","DOIUrl":"https://doi.org/10.1016/bs.pmbts.2024.02.004","url":null,"abstract":"<p><p>In situ immunization (ISI) agents are an emerging and diverse class of locally acting cancer immunotherapeutic agents designed to promote innate immune activation in the early steps of the cancer immunity cycle to ultimately support development of a systemic tumor-specific immune response and protective immunologic memory. The aims of this review are to: (i) provide an introduction to ISI; (ii) summarize the history of ISI agents; (iii) expound upon the mechanism(s) and therapeutic objective(s) of ISI; (iv) compare the various approaches and therapeutic modalities developed and investigated to date; and (v) summarize clinical experiences in an effort to highlight the utility as well as the lessons and challenges of this promising approach. A prospective roadmap for future clinical development is provided that focuses on early and late-stage trial design considerations, the rationale and importance of investigating combination treatment, and the prospective use of ISI agents in the neoadjuvant setting.</p>","PeriodicalId":21157,"journal":{"name":"Progress in molecular biology and translational science","volume":"209 ","pages":"127-164"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142506950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-05-22DOI: 10.1016/bs.pmbts.2024.03.035
Halak Shukla, Diana John, Shuvomoy Banerjee, Anand Krishna Tiwari
Neurodegenerative diseases (NDDs) are neuronal problems that include the brain and spinal cord and result in loss of sensory and motor dysfunction. Common NDDs include Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), Multiple Sclerosis (MS), and Amyotrophic Lateral Sclerosis (ALS) etc. The occurrence of these diseases increases with age and is one of the challenging problems among elderly people. Though, several scientific research has demonstrated the key pathologies associated with NDDs still the underlying mechanisms and molecular details are not well understood and need to be explored and this poses a lack of effective treatments for NDDs. Several lines of evidence have shown that NDDs have a high prevalence and affect more than a billion individuals globally but still, researchers need to work forward in identifying the best therapeutic target for NDDs. Thus, several researchers are working in the directions to find potential therapeutic targets to alter the disease pathology and treat the diseases. Several steps have been taken to identify the early detection of the disease and drug repurposing for effective treatment of NDDs. Moreover, it is logical that current medications are being evaluated for their efficacy in treating such disorders; therefore, drug repurposing would be an efficient, safe, and cost-effective way in finding out better medication. In the current manuscript we discussed the utilization of drugs that have been repurposed for the treatment of AD, PD, HD, MS, and ALS.
{"title":"Drug repurposing for neurodegenerative diseases.","authors":"Halak Shukla, Diana John, Shuvomoy Banerjee, Anand Krishna Tiwari","doi":"10.1016/bs.pmbts.2024.03.035","DOIUrl":"https://doi.org/10.1016/bs.pmbts.2024.03.035","url":null,"abstract":"<p><p>Neurodegenerative diseases (NDDs) are neuronal problems that include the brain and spinal cord and result in loss of sensory and motor dysfunction. Common NDDs include Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), Multiple Sclerosis (MS), and Amyotrophic Lateral Sclerosis (ALS) etc. The occurrence of these diseases increases with age and is one of the challenging problems among elderly people. Though, several scientific research has demonstrated the key pathologies associated with NDDs still the underlying mechanisms and molecular details are not well understood and need to be explored and this poses a lack of effective treatments for NDDs. Several lines of evidence have shown that NDDs have a high prevalence and affect more than a billion individuals globally but still, researchers need to work forward in identifying the best therapeutic target for NDDs. Thus, several researchers are working in the directions to find potential therapeutic targets to alter the disease pathology and treat the diseases. Several steps have been taken to identify the early detection of the disease and drug repurposing for effective treatment of NDDs. Moreover, it is logical that current medications are being evaluated for their efficacy in treating such disorders; therefore, drug repurposing would be an efficient, safe, and cost-effective way in finding out better medication. In the current manuscript we discussed the utilization of drugs that have been repurposed for the treatment of AD, PD, HD, MS, and ALS.</p>","PeriodicalId":21157,"journal":{"name":"Progress in molecular biology and translational science","volume":"207 ","pages":"249-319"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141470519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-05-11DOI: 10.1016/bs.pmbts.2024.03.032
Juni Banerjee, Anand Krishna Tiwari, Shuvomoy Banerjee
In the dynamic landscape of cancer therapeutics, the innovative strategy of drug repurposing emerges as a transformative paradigm, heralding a new era in the fight against malignancies. This book chapter aims to embark on the comprehension of the strategic deployment of approved drugs for repurposing and the meticulous journey of drug repurposing from earlier times to the current era. Moreover, the chapter underscores the multifaceted and complex nature of cancer biology, and the evolving field of cancer drug therapeutics while emphasizing the mandate of drug repurposing to advance cancer therapeutics. Importantly, the narrative explores the latest tools, technologies, and cutting-edge methodologies including high-throughput screening, omics technologies, and artificial intelligence-driven approaches, for shaping and accelerating the pace of drug repurposing to uncover novel cancer therapeutic avenues. The chapter critically assesses the breakthroughs, expanding the repertoire of repurposing drug candidates in cancer, and their major categories. Another focal point of this book chapter is that it addresses the emergence of combination therapies involving repurposed drugs, reflecting a shift towards personalized and synergistic treatment approaches. The expert analysis delves into the intricacies of combinatorial regimens, elucidating their potential to target heterogeneous cancer populations and overcome resistance mechanisms, thereby enhancing treatment efficacy. Therefore, this chapter provides in-depth insights into the potential of repurposing towards bringing the much-needed big leap in the field of cancer therapeutics.
{"title":"Drug repurposing for cancer.","authors":"Juni Banerjee, Anand Krishna Tiwari, Shuvomoy Banerjee","doi":"10.1016/bs.pmbts.2024.03.032","DOIUrl":"https://doi.org/10.1016/bs.pmbts.2024.03.032","url":null,"abstract":"<p><p>In the dynamic landscape of cancer therapeutics, the innovative strategy of drug repurposing emerges as a transformative paradigm, heralding a new era in the fight against malignancies. This book chapter aims to embark on the comprehension of the strategic deployment of approved drugs for repurposing and the meticulous journey of drug repurposing from earlier times to the current era. Moreover, the chapter underscores the multifaceted and complex nature of cancer biology, and the evolving field of cancer drug therapeutics while emphasizing the mandate of drug repurposing to advance cancer therapeutics. Importantly, the narrative explores the latest tools, technologies, and cutting-edge methodologies including high-throughput screening, omics technologies, and artificial intelligence-driven approaches, for shaping and accelerating the pace of drug repurposing to uncover novel cancer therapeutic avenues. The chapter critically assesses the breakthroughs, expanding the repertoire of repurposing drug candidates in cancer, and their major categories. Another focal point of this book chapter is that it addresses the emergence of combination therapies involving repurposed drugs, reflecting a shift towards personalized and synergistic treatment approaches. The expert analysis delves into the intricacies of combinatorial regimens, elucidating their potential to target heterogeneous cancer populations and overcome resistance mechanisms, thereby enhancing treatment efficacy. Therefore, this chapter provides in-depth insights into the potential of repurposing towards bringing the much-needed big leap in the field of cancer therapeutics.</p>","PeriodicalId":21157,"journal":{"name":"Progress in molecular biology and translational science","volume":"207 ","pages":"123-150"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141470516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Protozoan parasites are major hazards to human health, society, and the economy, especially in equatorial regions of the globe. Parasitic diseases, including leishmaniasis, malaria, and others, contribute towards majority of morbidity and mortality. Around 1.1 million people die from these diseases annually. The lack of licensed vaccinations worsens the worldwide impact of these diseases, highlighting the importance of safe and effective medications for their prevention and treatment. However, the appearance of drug resistance in parasites continuously affects the availability of medications. The demand for novel drugs motivates global antiparasitic drug discovery research, necessitating the implementation of many innovative ways to maintain a continuous supply of promising molecules. Drug repurposing has come out as a compelling tool for drug development, offering a cost-effective and efficient alternative to standard de novo approaches. A thorough examination of drug repositioning candidates revealed that certain drugs may not benefit significantly from their original indications. Still, they may exhibit more pronounced effects in other disorders. Furthermore, certain medications can produce a synergistic effect, resulting in enhanced therapeutic effectiveness when given together. In this chapter, we outline the approaches employed in drug repurposing (sometimes referred to as drug repositioning), propose novel strategies to overcome these hurdles and fully exploit the promise of drug repurposing. We highlight a few major human protozoan diseases and a range of exemplary drugs repurposed for various protozoan infections, providing excellent outcomes for each disease.
{"title":"Drug repurposing for parasitic protozoan diseases.","authors":"Vijayasurya, Swadha Gupta, Smit Shah, Anju Pappachan","doi":"10.1016/bs.pmbts.2024.05.001","DOIUrl":"https://doi.org/10.1016/bs.pmbts.2024.05.001","url":null,"abstract":"<p><p>Protozoan parasites are major hazards to human health, society, and the economy, especially in equatorial regions of the globe. Parasitic diseases, including leishmaniasis, malaria, and others, contribute towards majority of morbidity and mortality. Around 1.1 million people die from these diseases annually. The lack of licensed vaccinations worsens the worldwide impact of these diseases, highlighting the importance of safe and effective medications for their prevention and treatment. However, the appearance of drug resistance in parasites continuously affects the availability of medications. The demand for novel drugs motivates global antiparasitic drug discovery research, necessitating the implementation of many innovative ways to maintain a continuous supply of promising molecules. Drug repurposing has come out as a compelling tool for drug development, offering a cost-effective and efficient alternative to standard de novo approaches. A thorough examination of drug repositioning candidates revealed that certain drugs may not benefit significantly from their original indications. Still, they may exhibit more pronounced effects in other disorders. Furthermore, certain medications can produce a synergistic effect, resulting in enhanced therapeutic effectiveness when given together. In this chapter, we outline the approaches employed in drug repurposing (sometimes referred to as drug repositioning), propose novel strategies to overcome these hurdles and fully exploit the promise of drug repurposing. We highlight a few major human protozoan diseases and a range of exemplary drugs repurposed for various protozoan infections, providing excellent outcomes for each disease.</p>","PeriodicalId":21157,"journal":{"name":"Progress in molecular biology and translational science","volume":"207 ","pages":"23-58"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141470520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}