Background: More than 60% of paroxysmal kinesigenic dyskinesia (PKD) cases are of uncertain variants.
Objective: The aim was to elucidate novel genetic contribution to PKD.
Methods: A total of 476 probands with uncertain genetic causes were enrolled for whole-exome sequencing. A method of case-control analysis was applied to identify the candidate genes. Whole-cell patch-clamp recording was applied to verify the electrophysiological impact of the identified variants. A mouse model with cerebellar heterozygous knockout of the candidate gene was developed via adeno-associated virus injection, and dystonia-like phenotype inducement and rotarod tests were performed. In vivo multiunit electrical recording was applied to investigate the change in neural excitability in knockout mice.
Results: Heterozygous variants of potassium inwardly rectifying channel subfamily J member 10 (KCNJ10) clustered in PKD patients were compared with those in the control groups. Fifteen variants were detected in 16 of 522 probands (frequency = 3.07%). Patients with KCNJ10 variants tended to have a milder manifestation compared to those with PRRT2 (proline-rich transmembrane protein 2) variants. KCNJ10 variants partially altered the transmembrane location of inwardly rectifying potassium channel 4.1 (Kir4.1). The Kcnj10 expression is consistent with the natural course of PKD. Variants resulted in different degrees of reduction in cell Kir4.1 currents, and mice with heterozygous conditional knockout of Kcnj10 in the cerebellum presented dystonic posture, together with poor motor coordination and motor learning ability in rotarod tests. The firing rate of deep cerebellar nuclei was significantly elevated in Kcnj10-cKO mice.
Conclusion: We identified heterozygous variants of KCNJ10 in PKD. Impaired function of Kir4.1 might lead to abnormal neuronal excitability, which attributed to PKD. © 2024 International Parkinson and Movement Disorder Society.
Cognitive impairment is a well-recognized and debilitating symptom of Parkinson's disease (PD). Degradation in the cortical cholinergic system is thought to be a key contributor. Both postmortem and in vivo cholinergic positron emission tomography (PET) studies have provided valuable evidence of cholinergic system changes in PD, which are pronounced in PD dementia (PDD). A growing body of literature has employed magnetic resonance imaging (MRI), a noninvasive, more cost-effective alternative to PET, to examine cholinergic system structural changes in PD. This review provides a comprehensive discussion of the methodologies and findings of studies that have focused on the relationship between cholinergic basal forebrain (cBF) integrity, based on T1- and diffusion-weighted MRI, and cognitive function in PD. Nucleus basalis of Meynert (Ch4) volume has been consistently reduced in cognitively impaired PD samples and has shown potential utility as a prognostic indicator for future cognitive decline. However, the extent of structural changes in Ch4, especially in early stages of cognitive decline in PD, remains unclear. In addition, evidence for structural change in anterior cBF regions in PD has not been well established. This review underscores the importance of continued cross-sectional and longitudinal research to elucidate the role of cholinergic dysfunction in the cognitive manifestations of PD. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.