The main purpose of the present study was to study the degeneration of the high-quality japonica rice varieties during long-term cultivation, with a focus on changes in yield, rice quality and indices related to 2-acetyl-1-pyrroline (2-AP) biosynthesis, to provide a scientific basis for the comprehensive purification and improvement of high-quality rice varieties. By selecting the lines from the populations of Nanjing 9108 and Nanjing 46 at Liyang, it was found that the mutant lines showed significant differences in the yield and yield components, processing and appearance quality, cooking and flavor quality, rapid viscosity analyser profile characteristics and 2-AP content. Molecular marker detection can be used as a primary method for seed purity identification. The results revealed that the 2-AP content was positively correlated with proline activity, ProDH activity and δ-OAT activity but negatively correlated with BADH2 activity. Through stepwise discriminant analysis, it was determined that 1000-grain weight and trough viscosity could be used as core indicators for discriminating line variations.
{"title":"Effects of variety degeneration on yield formation, quality traits and 2-acetyl-1-pyrroline biosynthesis in high-quality Japonica rice.","authors":"Qiang Shi, Zexu Zhou, Wenjie Lu, Jinlong Hu, Nianbin Zhou, Qiangqiang Xiong, Hongcheng Zhang, Jinyan Zhu","doi":"10.1186/s12284-025-00837-w","DOIUrl":"10.1186/s12284-025-00837-w","url":null,"abstract":"<p><p>The main purpose of the present study was to study the degeneration of the high-quality japonica rice varieties during long-term cultivation, with a focus on changes in yield, rice quality and indices related to 2-acetyl-1-pyrroline (2-AP) biosynthesis, to provide a scientific basis for the comprehensive purification and improvement of high-quality rice varieties. By selecting the lines from the populations of Nanjing 9108 and Nanjing 46 at Liyang, it was found that the mutant lines showed significant differences in the yield and yield components, processing and appearance quality, cooking and flavor quality, rapid viscosity analyser profile characteristics and 2-AP content. Molecular marker detection can be used as a primary method for seed purity identification. The results revealed that the 2-AP content was positively correlated with proline activity, ProDH activity and δ-OAT activity but negatively correlated with BADH2 activity. Through stepwise discriminant analysis, it was determined that 1000-grain weight and trough viscosity could be used as core indicators for discriminating line variations.</p>","PeriodicalId":21408,"journal":{"name":"Rice","volume":"18 1","pages":"79"},"PeriodicalIF":5.0,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12364791/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144874934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sheath rot disease, caused by Sarocladium oryzae, is a severe problem in rice cultivation and can result in significant yield loss worldwide. In this study, we analyzed the function of LOC_Os09G23084, encoding an endoglucanase-1 precursor, through gene overexpression. Two single T-DNA insertion homozygous overexpression lines, 1-16 S and 4-10 S, derived from Oryza sativa cv. TNG67, were used for functional characterization. In field conditions, overexpression of LOC_Os09g23084 resulted in a decrease in rice development and an increase in susceptibility to sheath rot disease at the harvest stage. The overexpression lines showed delayed maturation, reduced internode and panicle neck length, deformed and less protruded vascular bundles, lower lignin content, and decreased yield. To verify the susceptibility of the overexpression lines to sheath rot disease, we set up a leaf-cutting inoculation method on seedlings. Lesion length was used to assess disease severity and was confirmed by fungal colonization using a GFP-tagged S. oryzae transgenic strain. The data confirmed that the overexpression lines were more susceptible to S. oryzae than wild-type lines. The reduced internode length and panicle neck length, less protruded peripheral vascular bundles, and low lignin content might contribute to the susceptibility to sheath rot. In this study, we provide insights into the potential function and mechanism of the endoglucanase gene LOC_Os09g23084 in rice susceptibility to sheath rot disease. Additionally, we demonstrated that LOC_Os09G23084 plays a crucial role in rice growth and development.
{"title":"The endoglucanase gene LOC_Os09g23084 is involved in rice development and susceptibility to sheath rot disease.","authors":"Ping Wan, Chi-Kuan Tu, Kai-Jie Jang, Su-May Yu, Shuen-Fang Lo, Meng-Yi Lin, Zun-Jie Syu, Yu-Hsuan Chiu, Tuan-Hua David Ho, Miin-Huey Lee","doi":"10.1186/s12284-025-00836-x","DOIUrl":"10.1186/s12284-025-00836-x","url":null,"abstract":"<p><p>Sheath rot disease, caused by Sarocladium oryzae, is a severe problem in rice cultivation and can result in significant yield loss worldwide. In this study, we analyzed the function of LOC_Os09G23084, encoding an endoglucanase-1 precursor, through gene overexpression. Two single T-DNA insertion homozygous overexpression lines, 1-16 S and 4-10 S, derived from Oryza sativa cv. TNG67, were used for functional characterization. In field conditions, overexpression of LOC_Os09g23084 resulted in a decrease in rice development and an increase in susceptibility to sheath rot disease at the harvest stage. The overexpression lines showed delayed maturation, reduced internode and panicle neck length, deformed and less protruded vascular bundles, lower lignin content, and decreased yield. To verify the susceptibility of the overexpression lines to sheath rot disease, we set up a leaf-cutting inoculation method on seedlings. Lesion length was used to assess disease severity and was confirmed by fungal colonization using a GFP-tagged S. oryzae transgenic strain. The data confirmed that the overexpression lines were more susceptible to S. oryzae than wild-type lines. The reduced internode length and panicle neck length, less protruded peripheral vascular bundles, and low lignin content might contribute to the susceptibility to sheath rot. In this study, we provide insights into the potential function and mechanism of the endoglucanase gene LOC_Os09g23084 in rice susceptibility to sheath rot disease. Additionally, we demonstrated that LOC_Os09G23084 plays a crucial role in rice growth and development.</p>","PeriodicalId":21408,"journal":{"name":"Rice","volume":"18 1","pages":"78"},"PeriodicalIF":5.0,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12361039/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144874936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-08-18DOI: 10.1186/s12284-025-00835-y
Ruilian Deng, Hanli You, Qi Ge, Jinwen Wu, Zhukuan Cheng, Lianjun Zhu, Hang Yu, Lin Chen, Muhammad Qasim Shahid, Zijun Lu, Xiangdong Liu
Interspecific and intersubspecific hybrid rice have demonstrated substantial heterosis and increased yield potential, yet they are frequently restricted by complex hybrid sterility (HS). Gene regulation has primarily been used to explain the genetic mechanism of HS; however, it is still unclear how cryptic chromosomal structural hybridity results in heterozygote semi-sterility at the molecular level. This study identified a T-DNA-mediated heterozygous mutant mfss (male and female semi-sterility) in rice, of which the self-pollinated progeny would produce heterozygous semi-sterile mutant plants and homozygous fertile mutant plants, mm, with homozygous in inserted T-DNA. The hybrids derived from mm plants crossing with other rice varieties exhibited conservative semi-sterility. Genomic analyses and fluorescence in situ hybridization (FISH) observation revealed that the end of chromosome 6 (170 genes) translocated with the end of chromosome 2 (566 genes) in mm plants. Among these 736 translocated genes, 102 reproduction-concerned genes, including a new gene, MCM5, were detected, which may result in half of gametes lacking many reproduction-concerned genes to display sterility and caused semi-sterility of mfss-heterozygotes. Hybrids derived from an autotetraploid rice line created from mm plants by genome duplication crossed with a neo-tetraploid rice displayed high fertility, implying that the mfss-heterozygote semi-sterility might be overcome by producing polyploid hybrid rice. These findings elucidate the genetic process of reciprocal translocation causing the heterozygote semi-sterility in rice and offer valuable insights for the production of fertile polyploid hybrid rice.
{"title":"Identification of a Novel Rice Chromosomal Translocation Line that Could Cause the Heterozygote Semi-Sterility and be Overcome by Genomic Duplication.","authors":"Ruilian Deng, Hanli You, Qi Ge, Jinwen Wu, Zhukuan Cheng, Lianjun Zhu, Hang Yu, Lin Chen, Muhammad Qasim Shahid, Zijun Lu, Xiangdong Liu","doi":"10.1186/s12284-025-00835-y","DOIUrl":"10.1186/s12284-025-00835-y","url":null,"abstract":"<p><p>Interspecific and intersubspecific hybrid rice have demonstrated substantial heterosis and increased yield potential, yet they are frequently restricted by complex hybrid sterility (HS). Gene regulation has primarily been used to explain the genetic mechanism of HS; however, it is still unclear how cryptic chromosomal structural hybridity results in heterozygote semi-sterility at the molecular level. This study identified a T-DNA-mediated heterozygous mutant mfss (male and female semi-sterility) in rice, of which the self-pollinated progeny would produce heterozygous semi-sterile mutant plants and homozygous fertile mutant plants, mm, with homozygous in inserted T-DNA. The hybrids derived from mm plants crossing with other rice varieties exhibited conservative semi-sterility. Genomic analyses and fluorescence in situ hybridization (FISH) observation revealed that the end of chromosome 6 (170 genes) translocated with the end of chromosome 2 (566 genes) in mm plants. Among these 736 translocated genes, 102 reproduction-concerned genes, including a new gene, MCM5, were detected, which may result in half of gametes lacking many reproduction-concerned genes to display sterility and caused semi-sterility of mfss-heterozygotes. Hybrids derived from an autotetraploid rice line created from mm plants by genome duplication crossed with a neo-tetraploid rice displayed high fertility, implying that the mfss-heterozygote semi-sterility might be overcome by producing polyploid hybrid rice. These findings elucidate the genetic process of reciprocal translocation causing the heterozygote semi-sterility in rice and offer valuable insights for the production of fertile polyploid hybrid rice.</p>","PeriodicalId":21408,"journal":{"name":"Rice","volume":"18 1","pages":"77"},"PeriodicalIF":5.0,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12361019/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144874935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Precise regulation of floral primordia initiation is essential for normal flower development. However, the mechanisms regulating floral primordia initiation (PI) are complex and poorly understood. Herein, we identified a natural mutant in rice, stamen less (sl), which develops florets with reduced stamen number and no carpel due to defects in stamen and carpel PI. STAMENLESS (SL) encodes the CC-type glutaredoxin OsROXY2 and is involved in the regulation of stamen PI. OsROXY1, the closest homolog of OsROXY2, showed no function in stamen PI regulation. The osroxy1 single mutant showed normal reproductive development, while the floret phenotypes of osroxy1/2 double mutant were comparable to those of osroxy2 mutant. The TGA transcription factor OsbZIP47 showed a strong interaction with OsROXY2, and the two genes exhibited overlapping subcellular localizations and expression patterns during flower development. The number of stamens in the osbzip47 mutant was increased to seven (around 35%), indicating that OsbZIP47 is a negative regulator of stamen PI, in contrast to OsROXY2. Taken together, our results reveal that OsROXY2 regulates stamen number via interaction with OsbZIP47, indicating GRX-TGA-mediated floral organ number regulation mechanism is conserved in monocots and eudicots.
{"title":"OsROXY2 Regulates Stamen Number Through Interaction with OsbZIP47 in Rice.","authors":"Zhongni Wang, Doudou Chen, Xuelei Lin, Jing Wang, Muhammad Arif, Jiali Li, Yanlong Gong, Yue Lei, Xian Wu, Chaoxin Wu, Susong Zhu, Luhua Li","doi":"10.1186/s12284-025-00833-0","DOIUrl":"10.1186/s12284-025-00833-0","url":null,"abstract":"<p><p>Precise regulation of floral primordia initiation is essential for normal flower development. However, the mechanisms regulating floral primordia initiation (PI) are complex and poorly understood. Herein, we identified a natural mutant in rice, stamen less (sl), which develops florets with reduced stamen number and no carpel due to defects in stamen and carpel PI. STAMENLESS (SL) encodes the CC-type glutaredoxin OsROXY2 and is involved in the regulation of stamen PI. OsROXY1, the closest homolog of OsROXY2, showed no function in stamen PI regulation. The osroxy1 single mutant showed normal reproductive development, while the floret phenotypes of osroxy1/2 double mutant were comparable to those of osroxy2 mutant. The TGA transcription factor OsbZIP47 showed a strong interaction with OsROXY2, and the two genes exhibited overlapping subcellular localizations and expression patterns during flower development. The number of stamens in the osbzip47 mutant was increased to seven (around 35%), indicating that OsbZIP47 is a negative regulator of stamen PI, in contrast to OsROXY2. Taken together, our results reveal that OsROXY2 regulates stamen number via interaction with OsbZIP47, indicating GRX-TGA-mediated floral organ number regulation mechanism is conserved in monocots and eudicots.</p>","PeriodicalId":21408,"journal":{"name":"Rice","volume":"18 1","pages":"76"},"PeriodicalIF":5.0,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12350981/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144837555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-08-11DOI: 10.1186/s12284-025-00830-3
Peigang Li, Lanfeng Wu, Wenchao He, Shanshan Zhang, Chaoying He
Phase separation (PS) of BARENTSZ (BTZ), a core member of the exon-junction complex (EJC), is involved in various physiological and developmental processes in animals. However, less is known about plant equivalents. Here, we demonstrated that the loss of function of Oryza sativa BTZ genes (OsBTZs) reduced rice tolerance to salinity stress. Moreover, OsBTZ proteins underwent PS independent of other core members of EJC, forming condensates under salt stress. OsBTZs may recruit proteins that play roles in the salt tolerance response to form cytoplasmic condensates, which act as stress granules. The predicted prion-like domain (PrLD), that originated ancestrally and is functionally conserved, was demonstrated to be key to the PS of OsBTZs upon NaCl treatment. This work revealed a new role for plant BTZs through an evolutionarily conserved mechanism-PS-in the formation of condensates in response to salinity stress, thus providing new insights into the adaptive evolution of plant BTZs under abiotic stress.
{"title":"Salinity Stress Induces Phase Separation of Plant BARENTSZ to Form Condensates.","authors":"Peigang Li, Lanfeng Wu, Wenchao He, Shanshan Zhang, Chaoying He","doi":"10.1186/s12284-025-00830-3","DOIUrl":"10.1186/s12284-025-00830-3","url":null,"abstract":"<p><p>Phase separation (PS) of BARENTSZ (BTZ), a core member of the exon-junction complex (EJC), is involved in various physiological and developmental processes in animals. However, less is known about plant equivalents. Here, we demonstrated that the loss of function of Oryza sativa BTZ genes (OsBTZs) reduced rice tolerance to salinity stress. Moreover, OsBTZ proteins underwent PS independent of other core members of EJC, forming condensates under salt stress. OsBTZs may recruit proteins that play roles in the salt tolerance response to form cytoplasmic condensates, which act as stress granules. The predicted prion-like domain (PrLD), that originated ancestrally and is functionally conserved, was demonstrated to be key to the PS of OsBTZs upon NaCl treatment. This work revealed a new role for plant BTZs through an evolutionarily conserved mechanism-PS-in the formation of condensates in response to salinity stress, thus providing new insights into the adaptive evolution of plant BTZs under abiotic stress.</p>","PeriodicalId":21408,"journal":{"name":"Rice","volume":"18 1","pages":"75"},"PeriodicalIF":5.0,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12339837/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144817364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Brassinosteroids (BRs) and gibberellins (GAs) are two important phytohormones that regulate plant growth and development. Crosstalk between BR and GA has been unveiled in Arabidopsis but the molecular mechanism by which the concurrence of these two signaling pathways regulates plant growth and development in rice remains elusive. The14-3-3 proteins are a family of conserved molecules that interact with a number of protein clients to regulate fundamental cellular processes including different aspects of plant hormone physiology. Here, we report that the rice 14-3-3 protein OsGF14h (G-box factor 14-3-3 homolog h) negatively modulates BR response and positively regulates GA signaling in rice. Overexpressing OsGF14h in rice increased plant height and grain yield, whereas knocking out OsGF14h increased lamina joint angle and reduced plant height and grain yield. OsGF14h interacted with both OsOFP8, a positive regulator in BR signaling, and SLR1, a negative key regulator in GA signaling. Interaction with OsGF14h led to nuclear export and cytoplasmic retention of OsOFP8, whereas OsGF14h interaction resulted in SLR1 shuttling from the nucleus to the cytoplasm and consequently inducing degradation of SLR1. Our results indicate that OsGF14h functions in both BR and GA signaling pathways and acts as a crosstalk point for BR and GA signaling, which offers new insights into the role of 14-3-3 proteins in regulating plant growth and development by modulating BR and GA signaling crosstalk.
{"title":"The 14-3-3 Protein OsGF14h Coordinates Brassinosteroid and Gibberellin Signaling to Regulate Plant Growth and Grain Yield in Rice.","authors":"Yonghong Xie, Zhupeng Fan, Kaichong Teng, Zejian Huang, Kaizun Xu, Jianxiong Li","doi":"10.1186/s12284-025-00831-2","DOIUrl":"10.1186/s12284-025-00831-2","url":null,"abstract":"<p><p>Brassinosteroids (BRs) and gibberellins (GAs) are two important phytohormones that regulate plant growth and development. Crosstalk between BR and GA has been unveiled in Arabidopsis but the molecular mechanism by which the concurrence of these two signaling pathways regulates plant growth and development in rice remains elusive. The14-3-3 proteins are a family of conserved molecules that interact with a number of protein clients to regulate fundamental cellular processes including different aspects of plant hormone physiology. Here, we report that the rice 14-3-3 protein OsGF14h (G-box factor 14-3-3 homolog h) negatively modulates BR response and positively regulates GA signaling in rice. Overexpressing OsGF14h in rice increased plant height and grain yield, whereas knocking out OsGF14h increased lamina joint angle and reduced plant height and grain yield. OsGF14h interacted with both OsOFP8, a positive regulator in BR signaling, and SLR1, a negative key regulator in GA signaling. Interaction with OsGF14h led to nuclear export and cytoplasmic retention of OsOFP8, whereas OsGF14h interaction resulted in SLR1 shuttling from the nucleus to the cytoplasm and consequently inducing degradation of SLR1. Our results indicate that OsGF14h functions in both BR and GA signaling pathways and acts as a crosstalk point for BR and GA signaling, which offers new insights into the role of 14-3-3 proteins in regulating plant growth and development by modulating BR and GA signaling crosstalk.</p>","PeriodicalId":21408,"journal":{"name":"Rice","volume":"18 1","pages":"74"},"PeriodicalIF":5.0,"publicationDate":"2025-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12317962/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144769003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This review synthesizes how amino acid (AA) metabolism regulates rice stress tolerance, growth and quality through stress protection and growth-modulating pathways, bridging mechanisms to field applications. Under abiotic stresses, rice accumulates specific AAs-notably proline (Pro), γ-aminobutyric acid (GABA), and branched-chain AAs (BCAAs)-as osmoprotectants and antioxidants, correlating strongly with stress tolerance. Genetic evidence establishes causality: overexpression of biosynthetic genes (e.g., OsOAT for Pro, OsDIAT for BCAAs), while suppressing catabolism (e.g., OsProDH knockout) or engineering AA transporters (AATs) (e.g., ABA-induced OsANT1 for amino acids redistribution) enhances tolerance. Integrated AA biosynthetic, catabolic, and transport pathways collectively maintain cellular function under stress. These insights enable practical strategies: exogenous AA treatments (e.g., Pro, GABA) mitigate stress damage, while breeding/engineering (e.g., OsAAP3, OsAAP11, and OsProDH knockout) develops high-yield, high-quality, and stress-tolerant rice. Future work should translate molecular insights into field applications, addressing trade-offs between growth, nutrition, and tolerance to enhance climate-resilient rice production.
{"title":"Amino Acid Regulation in Rice: Integrated Mechanisms and Agricultural Applications.","authors":"Hangfei Luo, Bowen Wu, Bakht Amin, Jiaxu Li, Zhongbo Chen, Jian Shi, Weiting Huang, Zhongming Fang","doi":"10.1186/s12284-025-00829-w","DOIUrl":"10.1186/s12284-025-00829-w","url":null,"abstract":"<p><p>This review synthesizes how amino acid (AA) metabolism regulates rice stress tolerance, growth and quality through stress protection and growth-modulating pathways, bridging mechanisms to field applications. Under abiotic stresses, rice accumulates specific AAs-notably proline (Pro), γ-aminobutyric acid (GABA), and branched-chain AAs (BCAAs)-as osmoprotectants and antioxidants, correlating strongly with stress tolerance. Genetic evidence establishes causality: overexpression of biosynthetic genes (e.g., OsOAT for Pro, OsDIAT for BCAAs), while suppressing catabolism (e.g., OsProDH knockout) or engineering AA transporters (AATs) (e.g., ABA-induced OsANT1 for amino acids redistribution) enhances tolerance. Integrated AA biosynthetic, catabolic, and transport pathways collectively maintain cellular function under stress. These insights enable practical strategies: exogenous AA treatments (e.g., Pro, GABA) mitigate stress damage, while breeding/engineering (e.g., OsAAP3, OsAAP11, and OsProDH knockout) develops high-yield, high-quality, and stress-tolerant rice. Future work should translate molecular insights into field applications, addressing trade-offs between growth, nutrition, and tolerance to enhance climate-resilient rice production.</p>","PeriodicalId":21408,"journal":{"name":"Rice","volume":"18 1","pages":"73"},"PeriodicalIF":5.0,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12304346/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144733024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nitrogen (N) dynamics critically regulate rice productivity through root-mediated absorption and assimilation processes. This study investigates the differential responses of japonica (Suxiu 867) and indica (Yangxianyou 918) rice to N deficiency and subsequent high-efficiency compensation, integrating metagenomic analysis with physiological assessments of N metabolism. Building on an established high-efficiency N compensation period (18 days after tillering for japonica and 12 days for indica), we demonstrate that optimized N compensation significantly enhances dry matter accumulation and yield in both subspecies through distinct biological mechanisms. Compensation treatment elevated key metabolic indicators including soluble protein content (Cpr), glutamine synthetase (GDH) activity, soil urease (S-UE) activity, glutamate synthase (GOGAT) activity, and glutamine synthetase (GS) activity, collectively enhancing N assimilation efficiency. Rhizosphere microbiome restructuring showed subspecies-specific patterns, with Chloroflexi and Betaproteobacteria abundance positively correlating with N metabolic enzymes in indica, versus Actinomycetia, Deltaproteobacteria associations in japonica. Functional microbial analysis revealed divergent keystone taxa, with Noviherbaspirillum (indica) and Bacillus (japonica) driving N conversion efficiencies through niche-specific community synergies. Notably, indica rice presented a relatively high N absorption capacity and conversion efficiency, while japonica rice presented relatively stable N absorption and distribution mechanisms, and relatively high N fertilizer application significantly increased the abundance of specific microbial communities in japonica rice. These findings elucidate how subspecies-specific root physiology coordinates with rhizosphere microbial ecology to optimize N utilization, providing actionable insights for precision N management strategies tailored to rice genetic types.
{"title":"Metagenomic Insights into the Root‒Soil Response Mechanisms of Indica and Japonica Rice Under Nitrogen Deficiency and High-Efficiency Nitrogen Compensation.","authors":"Qiangqiang Xiong, Runnan Wang, Donghong Lai, Shuo Cai, Haiyuan Wang, Nianbing Zhou","doi":"10.1186/s12284-025-00818-z","DOIUrl":"10.1186/s12284-025-00818-z","url":null,"abstract":"<p><p>Nitrogen (N) dynamics critically regulate rice productivity through root-mediated absorption and assimilation processes. This study investigates the differential responses of japonica (Suxiu 867) and indica (Yangxianyou 918) rice to N deficiency and subsequent high-efficiency compensation, integrating metagenomic analysis with physiological assessments of N metabolism. Building on an established high-efficiency N compensation period (18 days after tillering for japonica and 12 days for indica), we demonstrate that optimized N compensation significantly enhances dry matter accumulation and yield in both subspecies through distinct biological mechanisms. Compensation treatment elevated key metabolic indicators including soluble protein content (Cpr), glutamine synthetase (GDH) activity, soil urease (S-UE) activity, glutamate synthase (GOGAT) activity, and glutamine synthetase (GS) activity, collectively enhancing N assimilation efficiency. Rhizosphere microbiome restructuring showed subspecies-specific patterns, with Chloroflexi and Betaproteobacteria abundance positively correlating with N metabolic enzymes in indica, versus Actinomycetia, Deltaproteobacteria associations in japonica. Functional microbial analysis revealed divergent keystone taxa, with Noviherbaspirillum (indica) and Bacillus (japonica) driving N conversion efficiencies through niche-specific community synergies. Notably, indica rice presented a relatively high N absorption capacity and conversion efficiency, while japonica rice presented relatively stable N absorption and distribution mechanisms, and relatively high N fertilizer application significantly increased the abundance of specific microbial communities in japonica rice. These findings elucidate how subspecies-specific root physiology coordinates with rhizosphere microbial ecology to optimize N utilization, providing actionable insights for precision N management strategies tailored to rice genetic types.</p>","PeriodicalId":21408,"journal":{"name":"Rice","volume":"18 1","pages":"72"},"PeriodicalIF":5.0,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12297215/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144708600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-07-21DOI: 10.1186/s12284-025-00825-0
Ihsan Muhammad, Shah Fahad, Ahlam Khalofah, Bingsong Zheng, Weijun Shen
Melatonin (Mel), a multifunctional molecule, has emerged as a pivotal regulator of plant stress responses, enhancing antioxidant defenses, and modulating metabolic pathways. This meta-analysis evaluated the role of Mel in mitigating various abiotic stresses, including salinity, drought, heavy metals, light intensity, and humidity, across diverse experimental conditions in rice crop. The findings reveal significant improvements in enzymatic antioxidant activities such as superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and ascorbate peroxidase (APX), with notable increases in POD (77%) and CAT (61%) activities under hydroponic application. Mel application reduced oxidative stress markers, such as hydrogen peroxide (H2O2) and malondialdehyde (MDA), by up to 45% and 54%, respectively, highlighting its capacity to alleviate cellular damage under stress conditions. Additionally, Mel enhanced osmotic regulator such as proline, soluble sugar, and protein accumulation, contributing to osmotic adjustment, with an exceptional increase of 987% proline contents in Thailand. Experimental type and application methods significantly influenced the efficacy of Mel. Hydroponic treatments and seed soaking methods consistently showed the highest improvement in stress tolerance, while field experiments exhibited variability. The effects were also modulated by light intensity and humidity. Under light intensity of 150 µmol m⁻2 s⁻1, Mel enhanced antioxidant activities and reduced oxidative damage, while humidity at 70-75% showed the highest stress alleviation effects. These findings highlight Mel's complex contribution to increasing plant resilience by control of antioxidant enzymes, reduction of oxidative damage, and enhancement of osmotic adaptations under abiotic pressures. The present study offers a thorough knowledge of Mel's potential as a plant growth regulator, therefore guiding sustainable development under demanding environmental conditions.
褪黑素(Melatonin, Mel)是一种多功能分子,在植物的逆境反应中起着关键的调节作用,增强抗氧化防御能力,调节代谢途径。本荟萃分析评估了Mel在不同试验条件下减轻水稻作物各种非生物胁迫的作用,包括盐度、干旱、重金属、光照强度和湿度。结果表明,水培显著提高了酶抗氧化活性,如超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、过氧化物酶(POD)和抗坏血酸过氧化物酶(APX),其中POD(77%)和CAT(61%)活性显著提高。Mel的应用降低了氧化应激标志物,如过氧化氢(H2O2)和丙二醛(MDA),分别高达45%和54%,突出了其在应激条件下减轻细胞损伤的能力。此外,Mel增强了脯氨酸、可溶性糖和蛋白质积累等渗透调节因子,有助于渗透调节,泰国脯氨酸含量异常增加987%。实验类型和施用方式对Mel的效果有显著影响。水培处理和浸种处理均表现出最大的抗逆性提高,而田间试验表现出差异。光照强度和湿度也会调节这种效应。在150µmol m - 2 s - 1的光照强度下,梅尔能增强抗氧化活性,减少氧化损伤,而70-75%的湿度表现出最高的应激缓解效果。这些发现强调了Mel通过控制抗氧化酶、减少氧化损伤和增强非生物压力下的渗透适应来提高植物的抗逆性的复杂贡献。本研究提供了Mel作为植物生长调节剂的潜力的全面知识,从而指导在苛刻的环境条件下的可持续发展。
{"title":"Melatonin Enhances Antioxidant Defense Systems and Stress Tolerance in Plants under Variable Environmental Conditions.","authors":"Ihsan Muhammad, Shah Fahad, Ahlam Khalofah, Bingsong Zheng, Weijun Shen","doi":"10.1186/s12284-025-00825-0","DOIUrl":"10.1186/s12284-025-00825-0","url":null,"abstract":"<p><p>Melatonin (Mel), a multifunctional molecule, has emerged as a pivotal regulator of plant stress responses, enhancing antioxidant defenses, and modulating metabolic pathways. This meta-analysis evaluated the role of Mel in mitigating various abiotic stresses, including salinity, drought, heavy metals, light intensity, and humidity, across diverse experimental conditions in rice crop. The findings reveal significant improvements in enzymatic antioxidant activities such as superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and ascorbate peroxidase (APX), with notable increases in POD (77%) and CAT (61%) activities under hydroponic application. Mel application reduced oxidative stress markers, such as hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) and malondialdehyde (MDA), by up to 45% and 54%, respectively, highlighting its capacity to alleviate cellular damage under stress conditions. Additionally, Mel enhanced osmotic regulator such as proline, soluble sugar, and protein accumulation, contributing to osmotic adjustment, with an exceptional increase of 987% proline contents in Thailand. Experimental type and application methods significantly influenced the efficacy of Mel. Hydroponic treatments and seed soaking methods consistently showed the highest improvement in stress tolerance, while field experiments exhibited variability. The effects were also modulated by light intensity and humidity. Under light intensity of 150 µmol m⁻<sup>2</sup> s⁻<sup>1</sup>, Mel enhanced antioxidant activities and reduced oxidative damage, while humidity at 70-75% showed the highest stress alleviation effects. These findings highlight Mel's complex contribution to increasing plant resilience by control of antioxidant enzymes, reduction of oxidative damage, and enhancement of osmotic adaptations under abiotic pressures. The present study offers a thorough knowledge of Mel's potential as a plant growth regulator, therefore guiding sustainable development under demanding environmental conditions.</p>","PeriodicalId":21408,"journal":{"name":"Rice","volume":"18 1","pages":"70"},"PeriodicalIF":4.8,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12279687/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144675603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study presents a detailed analysis of the molecular mechanisms involved in heat stress tolerance in rice, focusing on the endoplasmic reticulum (ER) protein processing pathway. Through RNA sequencing (RNA-seq), we identified differentially expressed genes in two rice varieties, BNP162 and BNP206, emphasizing the importance of ER quality control mechanisms in maintaining cellular balance during heat stress. We identified three novel genes, Os11g0244200, Os01g0135800, and Os04g0445100, belonging to the Hsp20/alpha crystallin family, which are upregulated in response to heat stress. These genes play essential roles in protein stabilization, folding, and preventing aggregation, critical functions for maintaining protein balance under stress conditions. The upregulation of these genes highlights their potential in enhancing thermotolerance, a key trait for rice cultivation in the face of global climate change challenges. Our findings suggest that these novel genes could be promising targets for genetic manipulation to enhance heat tolerance in rice, contributing to the development of heat-resistant rice varieties. This research provides new insights into the molecular mechanisms of heat stress adaptation and lays a solid foundation for future studies aimed at improving crop resilience to environmental stress.
{"title":"Integrative Transcriptomic and Biochemical Analysis Reveals Key HSP20/Alpha-Crystallin Genes Associated with Heat Tolerance in Rice.","authors":"Mvuyeni Nyasulu, Qi Zhong, Zhengjie Wang, Zhicheng Cheng, Chen Zhihao, Jun Yang, Haohua He, Jianmin Bian","doi":"10.1186/s12284-025-00828-x","DOIUrl":"10.1186/s12284-025-00828-x","url":null,"abstract":"<p><p>This study presents a detailed analysis of the molecular mechanisms involved in heat stress tolerance in rice, focusing on the endoplasmic reticulum (ER) protein processing pathway. Through RNA sequencing (RNA-seq), we identified differentially expressed genes in two rice varieties, BNP162 and BNP206, emphasizing the importance of ER quality control mechanisms in maintaining cellular balance during heat stress. We identified three novel genes, Os11g0244200, Os01g0135800, and Os04g0445100, belonging to the Hsp20/alpha crystallin family, which are upregulated in response to heat stress. These genes play essential roles in protein stabilization, folding, and preventing aggregation, critical functions for maintaining protein balance under stress conditions. The upregulation of these genes highlights their potential in enhancing thermotolerance, a key trait for rice cultivation in the face of global climate change challenges. Our findings suggest that these novel genes could be promising targets for genetic manipulation to enhance heat tolerance in rice, contributing to the development of heat-resistant rice varieties. This research provides new insights into the molecular mechanisms of heat stress adaptation and lays a solid foundation for future studies aimed at improving crop resilience to environmental stress.</p>","PeriodicalId":21408,"journal":{"name":"Rice","volume":"18 1","pages":"71"},"PeriodicalIF":4.8,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12279669/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144675602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}