Pub Date : 2018-08-22DOI: 10.5772/INTECHOPEN.75824
E. A. S. Filho, Adriana B. Regattieri
Emulsions are thermodynamically unstable systems and are used in various types of industrial applications such as oil recovery, resin preparation, among many other applications. In the present work are discussed and shown data of the new emulsion system formed by components Chitosan/SDS/Hexane. The preparation and characterization of this emulsion were used the techniques of tensiometry, turbidity and flow time. The methodology requires that the participation of the paraffinic compounds as hexane, the biopolymer chitosan and the anionic surfactant Sodium Dodecylsulfate (SDS) with favorable intermolecular interactions between these three components. The results showed that a larger amount of chitosan about 85% (v/v) in the system causes of an increase in the value of surface tension, reaching 39.62 mN/m. However, high amounts of SDS about 70% (v/v) there is an increase in the turbidity values of the emulsions, with a maximum value of 110.8 NTU.
{"title":"New Emulsion Containing Paraffinic Compounds","authors":"E. A. S. Filho, Adriana B. Regattieri","doi":"10.5772/INTECHOPEN.75824","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.75824","url":null,"abstract":"Emulsions are thermodynamically unstable systems and are used in various types of industrial applications such as oil recovery, resin preparation, among many other applications. In the present work are discussed and shown data of the new emulsion system formed by components Chitosan/SDS/Hexane. The preparation and characterization of this emulsion were used the techniques of tensiometry, turbidity and flow time. The methodology requires that the participation of the paraffinic compounds as hexane, the biopolymer chitosan and the anionic surfactant Sodium Dodecylsulfate (SDS) with favorable intermolecular interactions between these three components. The results showed that a larger amount of chitosan about 85% (v/v) in the system causes of an increase in the value of surface tension, reaching 39.62 mN/m. However, high amounts of SDS about 70% (v/v) there is an increase in the turbidity values of the emulsions, with a maximum value of 110.8 NTU.","PeriodicalId":21423,"journal":{"name":"Science and Technology Behind Nanoemulsions","volume":"20 16 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78181901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-08-22DOI: 10.5772/INTECHOPEN.74769
A. Sulaimon, B. Adeyemi
Resolution of water-in-oil emulsion is a major crude oil processing requirement in oil industry. To improve the quality of the oil and fulfill regulatory requirements numer ous chemical demulsifiers of varying efficiencies and effectiveness have been developed over the years. In this study, we have investigated the effects of water content, tempera ture, and different concentrations of Sodium Methyl Ester Sulfonate ( SMES ) on emulsion viscosity profiles and stability under distinct levels of salinities. The water content was measured with the American Standard Testing Method ASTM D4928 while SARA analysis was conducted using the ASTM D3279 and ASTM D6591 methods. The den - sity and viscosity of the samples were measured following the ASTM D5002 and ASTM D445 techniques respectively while the emulsion stability was evaluated based on the rate of sedimentation, flocculation and coalescence from Turbiscan classic MA 2000. Refractometer with the aid of a light-emitting diode, a sapphire prism and a high-reso - lution optical sensor was used to measure the refractive index while interfacial tension was measured with spinning drop tensiometer. The emulsion samples were investigated at 25, 50 and 75°C. Analyses show that the interactions of the constituents of a crude oil system, the produced water system and the emulsion system play major roles in the characterization of water-in-crude oil emulsions. Hence, the stability of water-in-crude oil emulsions is related to the viscous force presented by the continuous phase, water cut and salinity.
{"title":"Effects of Interfacial Tension Alteration on the Destabilization of Water-Oil Emulsions","authors":"A. Sulaimon, B. Adeyemi","doi":"10.5772/INTECHOPEN.74769","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.74769","url":null,"abstract":"Resolution of water-in-oil emulsion is a major crude oil processing requirement in oil industry. To improve the quality of the oil and fulfill regulatory requirements numer ous chemical demulsifiers of varying efficiencies and effectiveness have been developed over the years. In this study, we have investigated the effects of water content, tempera ture, and different concentrations of Sodium Methyl Ester Sulfonate ( SMES ) on emulsion viscosity profiles and stability under distinct levels of salinities. The water content was measured with the American Standard Testing Method ASTM D4928 while SARA analysis was conducted using the ASTM D3279 and ASTM D6591 methods. The den - sity and viscosity of the samples were measured following the ASTM D5002 and ASTM D445 techniques respectively while the emulsion stability was evaluated based on the rate of sedimentation, flocculation and coalescence from Turbiscan classic MA 2000. Refractometer with the aid of a light-emitting diode, a sapphire prism and a high-reso - lution optical sensor was used to measure the refractive index while interfacial tension was measured with spinning drop tensiometer. The emulsion samples were investigated at 25, 50 and 75°C. Analyses show that the interactions of the constituents of a crude oil system, the produced water system and the emulsion system play major roles in the characterization of water-in-crude oil emulsions. Hence, the stability of water-in-crude oil emulsions is related to the viscous force presented by the continuous phase, water cut and salinity.","PeriodicalId":21423,"journal":{"name":"Science and Technology Behind Nanoemulsions","volume":"92 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77948238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-08-22DOI: 10.5772/INTECHOPEN.75308
Y. Maphosa, V. Jideani
There has been an increase in consumer demand for healthy food products made from natural ingredients. This demand has been partly addressed by the substitution of natural alternatives to synthetic ingredients. One such example in this endeavour, is the study of the application of natural biopolymers as food emulsion stabilisers. When biopolymers such as proteins and polysaccharides or their complexes are applied as emulsion stabilis- ers, they exhibit different modes of action. These include acting as emulsifiers (polypep -tides), increasing the viscosity of the medium (polysaccharides), reducing coalescence by coating individual droplets as well as acting as weighting agents (polysaccharides and polypeptides). Biopolymers can be covalently complexed using chemical, enzymatic or thermal treatments. These treatments generally increase the robustness and solubility of the final complexes. Biopolymer complexes have been reported to show higher stability to varying temperatures, pH and ionic strength. When two incompatible biopolymers are mixed, either associative or segregative phase separation occurs. The former involves separation of oppositely charged polymers due to electrostatic repulsion and the latter involves separation of similarly charged or neutral biopolymers. In this chapter, the sta- bilising effect, complexation, mode of action, phase behaviour and future application of biopolymers in emulsions are discussed.
{"title":"Factors Affecting the Stability of Emulsions Stabilised by Biopolymers","authors":"Y. Maphosa, V. Jideani","doi":"10.5772/INTECHOPEN.75308","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.75308","url":null,"abstract":"There has been an increase in consumer demand for healthy food products made from natural ingredients. This demand has been partly addressed by the substitution of natural alternatives to synthetic ingredients. One such example in this endeavour, is the study of the application of natural biopolymers as food emulsion stabilisers. When biopolymers such as proteins and polysaccharides or their complexes are applied as emulsion stabilis- ers, they exhibit different modes of action. These include acting as emulsifiers (polypep -tides), increasing the viscosity of the medium (polysaccharides), reducing coalescence by coating individual droplets as well as acting as weighting agents (polysaccharides and polypeptides). Biopolymers can be covalently complexed using chemical, enzymatic or thermal treatments. These treatments generally increase the robustness and solubility of the final complexes. Biopolymer complexes have been reported to show higher stability to varying temperatures, pH and ionic strength. When two incompatible biopolymers are mixed, either associative or segregative phase separation occurs. The former involves separation of oppositely charged polymers due to electrostatic repulsion and the latter involves separation of similarly charged or neutral biopolymers. In this chapter, the sta- bilising effect, complexation, mode of action, phase behaviour and future application of biopolymers in emulsions are discussed.","PeriodicalId":21423,"journal":{"name":"Science and Technology Behind Nanoemulsions","volume":"311 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76094375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-08-22DOI: 10.5772/INTECHOPEN.75621
H. Husin, H. H. Hussain
Crude oil emulsion is causing a lot of problems, especially during crude oil production. There are many ways to mitigate the emulsion problems but this leads to an increment in operating expenses of oil production. In order to comply with the standard sales oil quality, crude oil emulsion must be treated properly. Hence, better understanding of emulsion is essential since emulsion can be available in almost all phases of oil production and process- ing. This chapter describes how temperature parameters would affect the rheological prop erty of a low-viscous emulsion and how it would become a significant point associated with stability of crude oil emulsion in oilfield production. Experimental results indicated that the water-in-crude oil emulsion formed from low-viscous crude oil exhibits a non-Newtonian shear thinning behavior, which was best presented by the Herschel-Bulkley rheological model. Temperature ranges from 20 to 90°C were examined to study the effect of tempera - ture toward shear stress and viscosity of oilfield emulsion. Measurement of shear stress at shear rates higher than 600 s −1 is a new direction in rheology study that not much is known about its effect on shear stress.
{"title":"Temperature Effect on Shear Thinning Behavior of Low-Viscous Oilfield Emulsion","authors":"H. Husin, H. H. Hussain","doi":"10.5772/INTECHOPEN.75621","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.75621","url":null,"abstract":"Crude oil emulsion is causing a lot of problems, especially during crude oil production. There are many ways to mitigate the emulsion problems but this leads to an increment in operating expenses of oil production. In order to comply with the standard sales oil quality, crude oil emulsion must be treated properly. Hence, better understanding of emulsion is essential since emulsion can be available in almost all phases of oil production and process- ing. This chapter describes how temperature parameters would affect the rheological prop erty of a low-viscous emulsion and how it would become a significant point associated with stability of crude oil emulsion in oilfield production. Experimental results indicated that the water-in-crude oil emulsion formed from low-viscous crude oil exhibits a non-Newtonian shear thinning behavior, which was best presented by the Herschel-Bulkley rheological model. Temperature ranges from 20 to 90°C were examined to study the effect of tempera - ture toward shear stress and viscosity of oilfield emulsion. Measurement of shear stress at shear rates higher than 600 s −1 is a new direction in rheology study that not much is known about its effect on shear stress.","PeriodicalId":21423,"journal":{"name":"Science and Technology Behind Nanoemulsions","volume":"64 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80168346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-08-22DOI: 10.5772/INTECHOPEN.74473
E. Olorunsola, E. I. Akpabio, M. Adedokun, D. Ajibola
This chapter focuses on the emulsifying properties of hemicelluloses. Hemicelluloses are gummy polysaccharides of complexity between gum and cellulose. Based on the major monosaccharide constituents of their backbone, hemicelluloses can be classified into xylans, mannans, xylogalactans and xyloglucans. Their sources include seeds, husks, straws, leaves and wood. Hemicelluloses bring about emulsification by viscosity modification and by formation of multilayered films around each globule of the dispersed phase. They have strong emulsifying power but are somehow limited by batch-to-batch variation and susceptibility to microbial and chemical degradations. These limitations are overcome by the use of purified and semisynthetic derivatives. Hemicelluloses and derivatives herein considered for their emulsifying properties include those from barley straw, wheat straw, corn fiber, locust bean, guar, soy bean, konjac, prosopis seed and afzelia seed. Hemicelluloses, as plant polysaccharides, are only second to cellulose in terms of abundance. They have superior emulsifying properties compared to the typical gums. They are amenable to many chemical modifications for the enhancement of stability and for the improvement of emulsifying properties. Hemicelluloses were not given adequate attention in the past; but this chapter shows that they are potentially useful emulsifying agents.
{"title":"Emulsifying Properties of Hemicelluloses","authors":"E. Olorunsola, E. I. Akpabio, M. Adedokun, D. Ajibola","doi":"10.5772/INTECHOPEN.74473","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.74473","url":null,"abstract":"This chapter focuses on the emulsifying properties of hemicelluloses. Hemicelluloses are gummy polysaccharides of complexity between gum and cellulose. Based on the major monosaccharide constituents of their backbone, hemicelluloses can be classified into xylans, mannans, xylogalactans and xyloglucans. Their sources include seeds, husks, straws, leaves and wood. Hemicelluloses bring about emulsification by viscosity modification and by formation of multilayered films around each globule of the dispersed phase. They have strong emulsifying power but are somehow limited by batch-to-batch variation and susceptibility to microbial and chemical degradations. These limitations are overcome by the use of purified and semisynthetic derivatives. Hemicelluloses and derivatives herein considered for their emulsifying properties include those from barley straw, wheat straw, corn fiber, locust bean, guar, soy bean, konjac, prosopis seed and afzelia seed. Hemicelluloses, as plant polysaccharides, are only second to cellulose in terms of abundance. They have superior emulsifying properties compared to the typical gums. They are amenable to many chemical modifications for the enhancement of stability and for the improvement of emulsifying properties. Hemicelluloses were not given adequate attention in the past; but this chapter shows that they are potentially useful emulsifying agents.","PeriodicalId":21423,"journal":{"name":"Science and Technology Behind Nanoemulsions","volume":"68 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75997681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-08-22DOI: 10.5772/INTECHOPEN.74221
H. K. Shanbara, F. Ruddock, W. Atherton
Cold bitumen emulsion mixtures (CBEMs) offer an energy-efficient, sustainable and costeffective alternative to conventional hot asphalt mixtures, as no heating is required to produce the CBEMs. The enhancement of flexible pavements performance by modifying asphalt mixture has been considered valuable. This is due to the undesirable environmental conditions and heavy loads that will cause unsatisfactory performance of conventional mixtures. Empirical methods using layers with elastic response have been largely used to design such mixtures. Currently fast and powerful design techniques are used to reduce the limitation in determining stresses, strains and displacement in flexible pavements analysis. This research presents a simple and more practicable design procedure of CBEM and discusses limitations of this design. Also, present the properties and characteristics of modified CBEMs for surface course mixture using glass fibre as a reinforcing material. In addition, a three-dimensional (3D) finite element analysis (FEA) simulation for the prediction of pavement mechanical behaviour and performance is carried out using ABAQUS software in which element types, model dimensions and meshing have been taken to achieve appropriate accuracy and convergence.
{"title":"Stresses and Strains Distribution of a Developed Cold Bituminous Emulsion Mixture Using Finite Element Analysis","authors":"H. K. Shanbara, F. Ruddock, W. Atherton","doi":"10.5772/INTECHOPEN.74221","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.74221","url":null,"abstract":"Cold bitumen emulsion mixtures (CBEMs) offer an energy-efficient, sustainable and costeffective alternative to conventional hot asphalt mixtures, as no heating is required to produce the CBEMs. The enhancement of flexible pavements performance by modifying asphalt mixture has been considered valuable. This is due to the undesirable environmental conditions and heavy loads that will cause unsatisfactory performance of conventional mixtures. Empirical methods using layers with elastic response have been largely used to design such mixtures. Currently fast and powerful design techniques are used to reduce the limitation in determining stresses, strains and displacement in flexible pavements analysis. This research presents a simple and more practicable design procedure of CBEM and discusses limitations of this design. Also, present the properties and characteristics of modified CBEMs for surface course mixture using glass fibre as a reinforcing material. In addition, a three-dimensional (3D) finite element analysis (FEA) simulation for the prediction of pavement mechanical behaviour and performance is carried out using ABAQUS software in which element types, model dimensions and meshing have been taken to achieve appropriate accuracy and convergence.","PeriodicalId":21423,"journal":{"name":"Science and Technology Behind Nanoemulsions","volume":"136 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78188048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-08-22DOI: 10.5772/INTECHOPEN.75727
S. Karakuş
Emulsions (0.1–100 mm) are metastable systems and commonly used in our daily life. They are extensively preferred on many industrial processes in the food, beverage, dye, detergent, drug, cosmetic, coating, technological areas, agricultural, and petroleum production due to their special rheological (yield stress, viscosity and storage or loss modulus) and antibacterial properties [1–3]. Generally, synthesis methods for emulsion systems are stirring, colloid mills, and high-pressure homogenizers [4, 5].
{"title":"Introductory Chapter: The Perspective of Emulsion Systems","authors":"S. Karakuş","doi":"10.5772/INTECHOPEN.75727","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.75727","url":null,"abstract":"Emulsions (0.1–100 mm) are metastable systems and commonly used in our daily life. They are extensively preferred on many industrial processes in the food, beverage, dye, detergent, drug, cosmetic, coating, technological areas, agricultural, and petroleum production due to their special rheological (yield stress, viscosity and storage or loss modulus) and antibacterial properties [1–3]. Generally, synthesis methods for emulsion systems are stirring, colloid mills, and high-pressure homogenizers [4, 5].","PeriodicalId":21423,"journal":{"name":"Science and Technology Behind Nanoemulsions","volume":"22 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74720201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-08-22DOI: 10.5772/INTECHOPEN.75778
Shehzad Ahmed, K. Elraies
The success of surfactant flooding for enhanced oil recovery (EOR) process depends on the efficiency of designed chemical formula. In this chapter, a thorough discussion on Winsor Type III microemulsion was included which is considered the most desirable condition for achieving an ultra-low interfacial tension during surfactant-flooding process. A brief literature review on chemicals, experimental approaches, and methods used for the generation of the desirable phase was presented. Phase behavior studies of microemulsion are a very important tool in describing the interaction of an aqueous phase containing surfactant with hydrocarbon phase to form the Type III microemulsion. Microemulsion highly depends on brine salinity and the interfacial tension (IFT) changes as microemulsion phase transition occurs. At optimal salinity, Type III microemulsion forms, whereas salinity greater or lower than optimal value causes a significant increase in the IFT, resulting in insufficient oil displacement efficiency. Type III microemulsion at optimum salinity is characterized by ultra-low IFT, and extremely high oil recovery can be achieved. In addition, this chapter also stated various other mechanisms relating to oil entrapment, microemulsion phase transition, and surfactant loss in porous media.
{"title":"Microemulsion in Enhanced Oil Recovery","authors":"Shehzad Ahmed, K. Elraies","doi":"10.5772/INTECHOPEN.75778","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.75778","url":null,"abstract":"The success of surfactant flooding for enhanced oil recovery (EOR) process depends on the efficiency of designed chemical formula. In this chapter, a thorough discussion on Winsor Type III microemulsion was included which is considered the most desirable condition for achieving an ultra-low interfacial tension during surfactant-flooding process. A brief literature review on chemicals, experimental approaches, and methods used for the generation of the desirable phase was presented. Phase behavior studies of microemulsion are a very important tool in describing the interaction of an aqueous phase containing surfactant with hydrocarbon phase to form the Type III microemulsion. Microemulsion highly depends on brine salinity and the interfacial tension (IFT) changes as microemulsion phase transition occurs. At optimal salinity, Type III microemulsion forms, whereas salinity greater or lower than optimal value causes a significant increase in the IFT, resulting in insufficient oil displacement efficiency. Type III microemulsion at optimum salinity is characterized by ultra-low IFT, and extremely high oil recovery can be achieved. In addition, this chapter also stated various other mechanisms relating to oil entrapment, microemulsion phase transition, and surfactant loss in porous media.","PeriodicalId":21423,"journal":{"name":"Science and Technology Behind Nanoemulsions","volume":"27 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75165180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-08-22DOI: 10.5772/INTECHOPEN.75707
A. A. Umar, I. Saaid, A. Sulaimon
Emulsions are metastable systems typically formed in the presence of surfactant mole- cules, amphiphilic polymers, or solid particles, as a mixture of two mutually immiscible liquids, one of which is dispersed as very small droplets in the other. These dispersions are unwanted occurrences in some areas, like those formed during crude oil production, but are also put into many other useful applications in the oil and gas industry, food industry, and construction industry, among others. These emulsions form when two immiscible liquids come together in the presence of an emulsifying agent and sufficient agitation strong enough to disperse one of the liquids in the other. Thermodynamically, these emulsions are unstable and thus would separate into their individual phases when left alone. To be stabilized, surface-active agents (surfactants) or solids (that act in so many ways like surfactants) ought to be used. Like many commercially available products, several phar- maceutical products are usually supplied in the form of emulsions that must be stabilized before they are being administered. Pharmaceutical emulsions used for oral administra- tion either as medications themselves or or emulsions Classifying such emulsions using results the use of a more scientific and intelligent method of classification. The objective of this study is to employ support vector machine (SVM) as a new technique to classify synthetic emulsions. The study will assess the effects of nonionic surfactant (sodium monooleate) and Laponite clay (LC) on the stability of synthetic emulsions prepared using a response surface methodology (RSM) based on a Box-Behnken design. The stability of the emulsions was measured using batch test and TurbiScan, and the SVM was used to classify the emulsions into stable, moderately stable and unstable emulsions. The study showed that an increase in surfactant concentration in the presence of moderate to high concentrations of LC can provide a stable emulsion. Also, a clear classification of the emulsion samples was provided by the SVM, with high accuracy and reduced misclas - sifications due to human error. A higher accuracy in classification would reduce the risk of using the wrong formulation for any pharmaceutical product.
{"title":"An SVM-Based Classification and Stability Analysis of Synthetic Emulsions Co-Stabilized by a Nonionic Surfactant and Laponite Clay","authors":"A. A. Umar, I. Saaid, A. Sulaimon","doi":"10.5772/INTECHOPEN.75707","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.75707","url":null,"abstract":"Emulsions are metastable systems typically formed in the presence of surfactant mole- cules, amphiphilic polymers, or solid particles, as a mixture of two mutually immiscible liquids, one of which is dispersed as very small droplets in the other. These dispersions are unwanted occurrences in some areas, like those formed during crude oil production, but are also put into many other useful applications in the oil and gas industry, food industry, and construction industry, among others. These emulsions form when two immiscible liquids come together in the presence of an emulsifying agent and sufficient agitation strong enough to disperse one of the liquids in the other. Thermodynamically, these emulsions are unstable and thus would separate into their individual phases when left alone. To be stabilized, surface-active agents (surfactants) or solids (that act in so many ways like surfactants) ought to be used. Like many commercially available products, several phar- maceutical products are usually supplied in the form of emulsions that must be stabilized before they are being administered. Pharmaceutical emulsions used for oral administra- tion either as medications themselves or or emulsions Classifying such emulsions using results the use of a more scientific and intelligent method of classification. The objective of this study is to employ support vector machine (SVM) as a new technique to classify synthetic emulsions. The study will assess the effects of nonionic surfactant (sodium monooleate) and Laponite clay (LC) on the stability of synthetic emulsions prepared using a response surface methodology (RSM) based on a Box-Behnken design. The stability of the emulsions was measured using batch test and TurbiScan, and the SVM was used to classify the emulsions into stable, moderately stable and unstable emulsions. The study showed that an increase in surfactant concentration in the presence of moderate to high concentrations of LC can provide a stable emulsion. Also, a clear classification of the emulsion samples was provided by the SVM, with high accuracy and reduced misclas - sifications due to human error. A higher accuracy in classification would reduce the risk of using the wrong formulation for any pharmaceutical product.","PeriodicalId":21423,"journal":{"name":"Science and Technology Behind Nanoemulsions","volume":"118 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80290302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Metalworking fluids (MWFs) is one among the emulsions widely applied in various industries in machining process. Generally, MWFs consist of oil, emulsifiers, and addi -tives, are used either in the forms of diluted and undiluted fluids. The spent metalwork - ing fluids usually become a very stable emulsion, it requires an appropriate handling procedure. Two typical approaches for dealing with rejected MWFs are recovery and disposal, in which largely involve separation as the first essential step. This chapter pres ents the topics related to metalworking fluids, ranging from their types, composition, usages, lifecycle, and handling. Afterwards, processes for separating MWFs emulsion are presented, including chemical coagulation, flotation, and electrocoagulation-flotation for their background and results from experiments. Performance in separation, condi tion, and mechanisms of these three processes dealing with oily emulsion are shown. The understanding in the separation of MWFs by physico-chemical processes can benefit the selection of proper technology for handling of oil emulsion, either generated from machining industries or other activities such as household or petrochemical process.
{"title":"Separation of Emulsified Metalworking Fluid by Destabilization and Flotation","authors":"Nattawin Chawaloesphonsiya, Nawadol Thongtaluang, PisutPainmanakul","doi":"10.5772/INTECHOPEN.75307","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.75307","url":null,"abstract":"Metalworking fluids (MWFs) is one among the emulsions widely applied in various industries in machining process. Generally, MWFs consist of oil, emulsifiers, and addi -tives, are used either in the forms of diluted and undiluted fluids. The spent metalwork - ing fluids usually become a very stable emulsion, it requires an appropriate handling procedure. Two typical approaches for dealing with rejected MWFs are recovery and disposal, in which largely involve separation as the first essential step. This chapter pres ents the topics related to metalworking fluids, ranging from their types, composition, usages, lifecycle, and handling. Afterwards, processes for separating MWFs emulsion are presented, including chemical coagulation, flotation, and electrocoagulation-flotation for their background and results from experiments. Performance in separation, condi tion, and mechanisms of these three processes dealing with oily emulsion are shown. The understanding in the separation of MWFs by physico-chemical processes can benefit the selection of proper technology for handling of oil emulsion, either generated from machining industries or other activities such as household or petrochemical process.","PeriodicalId":21423,"journal":{"name":"Science and Technology Behind Nanoemulsions","volume":"48 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84519285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}