Pub Date : 2024-07-27DOI: 10.1016/j.semcancer.2024.07.003
Veronica De Giorgis , Elettra Barberis , Marcello Manfredi
Extracellular vesicles (EVs) are a promising source of early biomarkers for cancer diagnosis. They are enriched with diverse molecular content, such as proteins, DNA, mRNA, miRNA, lipids, and metabolites. EV proteins have been widely investigated as potential biomarkers since they reflect specific patient conditions. However, although many markers have been validated and confirmed using external cohorts of patients and different analytical approaches, no EV protein markers are approved for diagnostic use. This review presents the primary strategies adopted using mass spectrometry and immune-based techniques to identify and validate EV protein biomarkers. We report and discuss recent scientific research focusing on cancer biomarker discovery through EVs, emphasizing their significant potential for the tempestive diagnosis of several cancer typologies. Finally, recent advancements in the standardization of EV isolation and quantitation through the development of easy-to-use and high-throughput kits for sample preparation—that should make protein EV biomarkers more reliable and accessible—are presented. The data reported here showed that there are still several challenges to be addressed before a protein vesicle marker becomes an essential tool in diagnosing cancer.
细胞外囊泡(EVs)是一种很有前景的癌症诊断早期生物标记物来源。它们富含多种分子成分,如蛋白质、DNA、mRNA、miRNA、脂质和代谢物。EV 蛋白作为潜在的生物标记物已被广泛研究,因为它们能反映患者的具体情况。然而,尽管许多标记物已通过外部患者队列和不同的分析方法进行了验证和确认,但还没有 EV 蛋白标记物被批准用于诊断。本综述介绍了使用质谱和免疫技术鉴定和验证 EV 蛋白生物标记物的主要策略。我们报告并讨论了最近通过 EV 发现癌症生物标记物的科学研究,强调了 EV 在几种癌症类型的临时诊断中的巨大潜力。最后,我们还介绍了通过开发简单易用的高通量样品制备试剂盒在EV分离和定量标准化方面取得的最新进展,这些进展将使EV蛋白生物标志物更加可靠和易于获得。本文报告的数据表明,在蛋白囊泡标记物成为诊断癌症的重要工具之前,仍有一些挑战有待解决。
{"title":"Extracellular vesicles proteins for early cancer diagnosis: From omics to biomarkers","authors":"Veronica De Giorgis , Elettra Barberis , Marcello Manfredi","doi":"10.1016/j.semcancer.2024.07.003","DOIUrl":"10.1016/j.semcancer.2024.07.003","url":null,"abstract":"<div><p>Extracellular vesicles (EVs) are a promising source of early biomarkers for cancer diagnosis. They are enriched with diverse molecular content, such as proteins, DNA, mRNA, miRNA, lipids, and metabolites. EV proteins have been widely investigated as potential biomarkers since they reflect specific patient conditions. However, although many markers have been validated and confirmed using external cohorts of patients and different analytical approaches, no EV protein markers are approved for diagnostic use. This review presents the primary strategies adopted using mass spectrometry and immune-based techniques to identify and validate EV protein biomarkers. We report and discuss recent scientific research focusing on cancer biomarker discovery through EVs, emphasizing their significant potential for the tempestive diagnosis of several cancer typologies. Finally, recent advancements in the standardization of EV isolation and quantitation through the development of easy-to-use and high-throughput kits for sample preparation—that should make protein EV biomarkers more reliable and accessible—are presented. The data reported here showed that there are still several challenges to be addressed before a protein vesicle marker becomes an essential tool in diagnosing cancer.</p></div>","PeriodicalId":21594,"journal":{"name":"Seminars in cancer biology","volume":"104 ","pages":"Pages 18-31"},"PeriodicalIF":12.1,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141793385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-18DOI: 10.1016/j.semcancer.2024.07.001
Jiao Zhao , Zhongmiao Wang , Yingying Tian , Jing Ning , Huinan Ye
Ovarian cancer is a common gynecological malignancy, and its treatment remains challenging. Although ovarian cancer may respond to immunotherapy because of endogenous immunity at the molecular or T cell level, immunotherapy has so far not had the desired effect. The functional status of preexisting T cells is an indispensable determinant of powerful antitumor immunity and immunotherapy. T cell exhaustion and senescence are two crucial states of T cell dysfunction, which share some overlapping phenotypic and functional features, but each status possesses unique molecular and developmental signatures. It has been widely accepted that exhaustion and senescence of T cells are important strategies for cancer cells to evade immunosurveillance and maintain the immunosuppressive microenvironment. Herein, this review summarizes the phenotypic and functional features of exhaust and senescent T cells, and describes the key drivers of the two T cell dysfunctional states in the tumor microenvironment and their functional roles in ovarian cancer. Furthermore, we present a summary of the molecular machinery and signaling pathways governing T cell exhaustion and senescence. Possible strategies that can prevent and/or reverse T cell dysfunction are also explored. An in-depth understanding of exhausted and senescent T cells will provide novel strategies to enhance immunotherapy of ovarian cancer through redirecting tumor-specific T cells away from a dysfunctional developmental trajectory.
卵巢癌是一种常见的妇科恶性肿瘤,其治疗仍然具有挑战性。尽管卵巢癌可能会因分子或 T 细胞水平的内源性免疫而对免疫疗法产生反应,但免疫疗法至今仍未取得预期效果。原有 T 细胞的功能状态是强大的抗肿瘤免疫和免疫疗法不可或缺的决定因素。T 细胞衰竭和衰老是 T 细胞功能障碍的两种关键状态,它们在表型和功能特征上有一些重叠,但每种状态都具有独特的分子和发育特征。人们普遍认为,T细胞衰竭和衰老是癌细胞逃避免疫监视和维持免疫抑制微环境的重要策略。本综述总结了衰竭和衰老 T 细胞的表型和功能特征,描述了肿瘤微环境中这两种 T 细胞功能失调状态的关键驱动因素及其在卵巢癌中的功能作用。此外,我们还总结了支配T细胞衰竭和衰老的分子机制和信号通路。我们还探讨了预防和/或逆转 T 细胞功能障碍的可能策略。深入了解衰竭和衰老的T细胞将提供新的策略,通过重新引导肿瘤特异性T细胞脱离功能失调的发育轨迹来增强卵巢癌的免疫疗法。
{"title":"T cell exhaustion and senescence for ovarian cancer immunotherapy","authors":"Jiao Zhao , Zhongmiao Wang , Yingying Tian , Jing Ning , Huinan Ye","doi":"10.1016/j.semcancer.2024.07.001","DOIUrl":"10.1016/j.semcancer.2024.07.001","url":null,"abstract":"<div><p>Ovarian cancer is a common gynecological malignancy, and its treatment remains challenging. Although ovarian cancer may respond to immunotherapy because of endogenous immunity at the molecular or T cell level, immunotherapy has so far not had the desired effect. The functional status of preexisting T cells is an indispensable determinant of powerful antitumor immunity and immunotherapy. T cell exhaustion and senescence are two crucial states of T cell dysfunction, which share some overlapping phenotypic and functional features, but each status possesses unique molecular and developmental signatures. It has been widely accepted that exhaustion and senescence of T cells are important strategies for cancer cells to evade immunosurveillance and maintain the immunosuppressive microenvironment. Herein, this review summarizes the phenotypic and functional features of exhaust and senescent T cells, and describes the key drivers of the two T cell dysfunctional states in the tumor microenvironment and their functional roles in ovarian cancer. Furthermore, we present a summary of the molecular machinery and signaling pathways governing T cell exhaustion and senescence. Possible strategies that can prevent and/or reverse T cell dysfunction are also explored. An in-depth understanding of exhausted and senescent T cells will provide novel strategies to enhance immunotherapy of ovarian cancer through redirecting tumor-specific T cells away from a dysfunctional developmental trajectory.</p></div>","PeriodicalId":21594,"journal":{"name":"Seminars in cancer biology","volume":"104 ","pages":"Pages 1-15"},"PeriodicalIF":12.1,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141735007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01DOI: 10.1016/j.semcancer.2024.06.002
Peter ten Dijke , Kohei Miyazono , Carl-Henrik Heldin , Aristidis Moustakas
{"title":"Special issue: TGF-β and epithelial-mesenchymal transition in cancer","authors":"Peter ten Dijke , Kohei Miyazono , Carl-Henrik Heldin , Aristidis Moustakas","doi":"10.1016/j.semcancer.2024.06.002","DOIUrl":"10.1016/j.semcancer.2024.06.002","url":null,"abstract":"","PeriodicalId":21594,"journal":{"name":"Seminars in cancer biology","volume":"102 ","pages":"Pages 1-3"},"PeriodicalIF":12.1,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141470540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01DOI: 10.1016/j.semcancer.2024.06.001
Cameron P. Bracken , Gregory J. Goodall , Philip A. Gregory
Epithelial-mesenchymal transition (EMT) is a major contributor to metastatic progression and is prominently regulated by TGF-β signalling. Both EMT and TGF-β pathway components are tightly controlled by non-coding RNAs - including microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) - that collectively have major impacts on gene expression and resulting cellular states. While miRNAs are the best characterised regulators of EMT and TGF-β signaling and the miR-200-ZEB1/2 feedback loop plays a central role, important functions for lncRNAs and circRNAs are also now emerging. This review will summarise our current understanding of the roles of non-coding RNAs in EMT and TGF-β signaling with a focus on their functions in cancer progression.
{"title":"RNA regulatory mechanisms controlling TGF-β signaling and EMT in cancer","authors":"Cameron P. Bracken , Gregory J. Goodall , Philip A. Gregory","doi":"10.1016/j.semcancer.2024.06.001","DOIUrl":"10.1016/j.semcancer.2024.06.001","url":null,"abstract":"<div><p>Epithelial-mesenchymal transition (EMT) is a major contributor to metastatic progression and is prominently regulated by TGF-β signalling. Both EMT and TGF-β pathway components are tightly controlled by non-coding RNAs - including microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) - that collectively have major impacts on gene expression and resulting cellular states. While miRNAs are the best characterised regulators of EMT and TGF-β signaling and the miR-200-ZEB1/2 feedback loop plays a central role, important functions for lncRNAs and circRNAs are also now emerging. This review will summarise our current understanding of the roles of non-coding RNAs in EMT and TGF-β signaling with a focus on their functions in cancer progression.</p></div>","PeriodicalId":21594,"journal":{"name":"Seminars in cancer biology","volume":"102 ","pages":"Pages 4-16"},"PeriodicalIF":12.1,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1044579X24000439/pdfft?md5=d6b7a1b203085fb93f06e9ca6c92ff35&pid=1-s2.0-S1044579X24000439-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141451414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01DOI: 10.1016/j.semcancer.2024.06.003
Ranjini Bhattacharya , Joel S. Brown , Robert A. Gatenby , Arig Ibrahim-Hashim
Oxygen played a pivotal role in the evolution of multicellularity during the Cambrian Explosion. Not surprisingly, responses to fluctuating oxygen concentrations are integral to the evolution of cancer—a disease characterized by the breakdown of multicellularity. Poorly organized tumor vasculature results in chaotic patterns of blood flow characterized by large spatial and temporal variations in intra-tumoral oxygen concentrations. Hypoxia-inducible growth factor (HIF-1) plays a pivotal role in enabling cells to adapt, metabolize, and proliferate in low oxygen conditions. HIF-1 is often constitutively activated in cancers, underscoring its importance in cancer progression. Here, we argue that the phenotypic changes mediated by HIF-1, in addition to adapting the cancer cells to their local environment, also “pre-adapt” them for proliferation at distant, metastatic sites. HIF-1-mediated adaptations include a metabolic shift towards anaerobic respiration or glycolysis, activation of cell survival mechanisms like phenotypic plasticity and epigenetic reprogramming, and formation of tumor vasculature through angiogenesis. Hypoxia induced epigenetic reprogramming can trigger epithelial to mesenchymal transition in cancer cells—the first step in the metastatic cascade. Highly glycolytic cells facilitate local invasion by acidifying the tumor microenvironment. New blood vessels, formed due to angiogenesis, provide cancer cells a conduit to the circulatory system. Moreover, survival mechanisms acquired by cancer cells in the primary site allow them to remodel tissue at the metastatic site generating tumor promoting microenvironment. Thus, hypoxia in the primary tumor promoted adaptations conducive to all stages of the metastatic cascade from the initial escape entry into a blood vessel, intravascular survival, extravasation into distant tissues, and establishment of secondary tumors.
{"title":"A gene for all seasons: The evolutionary consequences of HIF-1 in carcinogenesis, tumor growth and metastasis","authors":"Ranjini Bhattacharya , Joel S. Brown , Robert A. Gatenby , Arig Ibrahim-Hashim","doi":"10.1016/j.semcancer.2024.06.003","DOIUrl":"10.1016/j.semcancer.2024.06.003","url":null,"abstract":"<div><p>Oxygen played a pivotal role in the evolution of multicellularity during the Cambrian Explosion. Not surprisingly, responses to fluctuating oxygen concentrations are integral to the evolution of cancer—a disease characterized by the breakdown of multicellularity. Poorly organized tumor vasculature results in chaotic patterns of blood flow characterized by large spatial and temporal variations in intra-tumoral oxygen concentrations. Hypoxia-inducible growth factor (HIF-1) plays a pivotal role in enabling cells to adapt, metabolize, and proliferate in low oxygen conditions. HIF-1 is often constitutively activated in cancers, underscoring its importance in cancer progression. Here, we argue that the phenotypic changes mediated by HIF-1, in addition to adapting the cancer cells to their local environment, also “pre-adapt” them for proliferation at distant, metastatic sites. HIF-1-mediated adaptations include a metabolic shift towards anaerobic respiration or glycolysis, activation of cell survival mechanisms like phenotypic plasticity and epigenetic reprogramming, and formation of tumor vasculature through angiogenesis. Hypoxia induced epigenetic reprogramming can trigger epithelial to mesenchymal transition in cancer cells—the first step in the metastatic cascade. Highly glycolytic cells facilitate local invasion by acidifying the tumor microenvironment. New blood vessels, formed due to angiogenesis, provide cancer cells a conduit to the circulatory system. Moreover, survival mechanisms acquired by cancer cells in the primary site allow them to remodel tissue at the metastatic site generating tumor promoting microenvironment. Thus, hypoxia in the primary tumor promoted adaptations conducive to all stages of the metastatic cascade from the initial escape entry into a blood vessel, intravascular survival, extravasation into distant tissues, and establishment of secondary tumors.</p></div>","PeriodicalId":21594,"journal":{"name":"Seminars in cancer biology","volume":"102 ","pages":"Pages 17-24"},"PeriodicalIF":12.1,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1044579X24000452/pdfft?md5=7cc6690e16b91210d964ab28430a4b0f&pid=1-s2.0-S1044579X24000452-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141538580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01Epub Date: 2024-05-14DOI: 10.1016/j.semcancer.2024.04.003
Ilaria Cela, Emily Capone, Gianluca Trevisi, Gianluca Sala
Glioblastoma (GBM) is the most aggressive tumor among the gliomas and intracranial tumors and to date prognosis for GBM patients remains poor, with a median survival typically measured in months to a few years depending on various factors. Although standardized therapies are routinely employed, it is clear that these strategies are unable to cope with heterogeneity and invasiveness of GBM. Furthermore, diagnosis and monitoring of responses to therapies are directly dependent on tissue biopsies or magnetic resonance imaging (MRI) techniques. From this point of view, liquid biopsies are arising as key sources of a variety of biomarkers with the advantage of being easily accessible and monitorable. In this context, extracellular vesicles (EVs), physiologically shed into body fluids by virtually all cells, are gaining increasing interest both as natural carriers of biomarkers and as specific signatures even for GBM. What makes these vesicles particularly attractive is they are also emerging as therapeutical vehicles to treat GBM given their native ability to cross the blood-brain barrier (BBB). Here, we reviewed recent advances on the use of EVs as biomarker for liquid biopsy and nanocarriers for targeted delivery of anticancer drugs in glioblastoma.
{"title":"Extracellular vesicles in glioblastoma: Biomarkers and therapeutic tools.","authors":"Ilaria Cela, Emily Capone, Gianluca Trevisi, Gianluca Sala","doi":"10.1016/j.semcancer.2024.04.003","DOIUrl":"10.1016/j.semcancer.2024.04.003","url":null,"abstract":"<p><p>Glioblastoma (GBM) is the most aggressive tumor among the gliomas and intracranial tumors and to date prognosis for GBM patients remains poor, with a median survival typically measured in months to a few years depending on various factors. Although standardized therapies are routinely employed, it is clear that these strategies are unable to cope with heterogeneity and invasiveness of GBM. Furthermore, diagnosis and monitoring of responses to therapies are directly dependent on tissue biopsies or magnetic resonance imaging (MRI) techniques. From this point of view, liquid biopsies are arising as key sources of a variety of biomarkers with the advantage of being easily accessible and monitorable. In this context, extracellular vesicles (EVs), physiologically shed into body fluids by virtually all cells, are gaining increasing interest both as natural carriers of biomarkers and as specific signatures even for GBM. What makes these vesicles particularly attractive is they are also emerging as therapeutical vehicles to treat GBM given their native ability to cross the blood-brain barrier (BBB). Here, we reviewed recent advances on the use of EVs as biomarker for liquid biopsy and nanocarriers for targeted delivery of anticancer drugs in glioblastoma.</p>","PeriodicalId":21594,"journal":{"name":"Seminars in cancer biology","volume":" ","pages":"25-43"},"PeriodicalIF":14.5,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140959292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-27DOI: 10.1016/j.semcancer.2024.05.002
Birong Jiang , Wei Zhang , Xuguang Zhang , Yu Sun
Cancer is daunting pathology with remarkable breadth and scope, spanning genetics, epigenetics, proteomics, metalobomics and cell biology. Cellular senescence represents a stress-induced and essentially irreversible cell fate associated with aging and various age-related diseases, including malignancies. Senescent cells are characterized of morphologic alterations and metabolic reprogramming, and develop a highly active secretome termed as the senescence-associated secretory phenotype (SASP). Since the first discovery, senescence has been understood as an important barrier to tumor progression, as its induction in pre-neoplastic cells limits carcinogenesis. Paradoxically, senescent cells arising in the tumor microenvironment (TME) contribute to tumor progression, including augmented therapeutic resistance. In this article, we define typical forms of senescent cells commonly observed within the TME and how senescent cells functionally remodel their surrounding niche, affect immune responses and promote cancer evolution. Furthermore, we highlight the recently emerging pipelines of senotherapies particularly senolytics, which can selectively deplete senescent cells from affected organs in vivo and impede tumor progression by restoring therapeutic responses and securing anticancer efficacies. Together, co-targeting cancer cells and their normal but senescent counterparts in the TME holds the potential to achieve increased therapeutic benefits and restrained disease relapse in future clinical oncology.
{"title":"Targeting senescent cells to reshape the tumor microenvironment and improve anticancer efficacy","authors":"Birong Jiang , Wei Zhang , Xuguang Zhang , Yu Sun","doi":"10.1016/j.semcancer.2024.05.002","DOIUrl":"https://doi.org/10.1016/j.semcancer.2024.05.002","url":null,"abstract":"<div><p>Cancer is daunting pathology with remarkable breadth and scope, spanning genetics, epigenetics, proteomics, metalobomics and cell biology. Cellular senescence represents a stress-induced and essentially irreversible cell fate associated with aging and various age-related diseases, including malignancies. Senescent cells are characterized of morphologic alterations and metabolic reprogramming, and develop a highly active secretome termed as the senescence-associated secretory phenotype (SASP). Since the first discovery, senescence has been understood as an important barrier to tumor progression, as its induction in pre-neoplastic cells limits carcinogenesis. Paradoxically, senescent cells arising in the tumor microenvironment (TME) contribute to tumor progression, including augmented therapeutic resistance. In this article, we define typical forms of senescent cells commonly observed within the TME and how senescent cells functionally remodel their surrounding niche, affect immune responses and promote cancer evolution. Furthermore, we highlight the recently emerging pipelines of senotherapies particularly senolytics, which can selectively deplete senescent cells from affected organs <em>in vivo</em> and impede tumor progression by restoring therapeutic responses and securing anticancer efficacies. Together, co-targeting cancer cells and their normal but senescent counterparts in the TME holds the potential to achieve increased therapeutic benefits and restrained disease relapse in future clinical oncology.</p></div>","PeriodicalId":21594,"journal":{"name":"Seminars in cancer biology","volume":"101 ","pages":"Pages 58-73"},"PeriodicalIF":14.5,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1044579X24000361/pdfft?md5=021560fd6bcbef775d840491f4108ba6&pid=1-s2.0-S1044579X24000361-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141163265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-17DOI: 10.1016/j.semcancer.2024.05.001
Youyi Huang, Xiaofang Che, Peter W Wang, Xiujuan Qu
A wealth of evidence has emerged that there is an association between aging, senescence and tumorigenesis. Senescence, a biological process by which cells cease to divide and enter a status of permanent cell cycle arrest, contributes to aging and aging-related diseases, including cancer. Aging populations have the higher incidence of cancer due to a lifetime of exposure to cancer-causing agents, reduction of repairing DNA damage, accumulated genetic mutations, and decreased immune system efficiency. Cancer patients undergoing cytotoxic therapies, such as chemotherapy and radiotherapy, accelerate aging. There is growing evidence that p53/MDM2 (murine double minute 2) axis is critically involved in regulation of aging, senescence and oncogenesis. Therefore, in this review, we describe the functions and mechanisms of p53/MDM2-mediated senescence, aging and carcinogenesis. Moreover, we highlight the small molecular inhibitors, natural compounds and PROTACs (proteolysis targeting chimeras) that target p53/MDM2 pathway to influence aging and cancer. Modification of p53/MDM2 could be a potential strategy for treatment of aging, senescence and tumorigenesis.
{"title":"p53/MDM2 signaling pathway in aging, senescence and tumorigenesis.","authors":"Youyi Huang, Xiaofang Che, Peter W Wang, Xiujuan Qu","doi":"10.1016/j.semcancer.2024.05.001","DOIUrl":"10.1016/j.semcancer.2024.05.001","url":null,"abstract":"<p><p>A wealth of evidence has emerged that there is an association between aging, senescence and tumorigenesis. Senescence, a biological process by which cells cease to divide and enter a status of permanent cell cycle arrest, contributes to aging and aging-related diseases, including cancer. Aging populations have the higher incidence of cancer due to a lifetime of exposure to cancer-causing agents, reduction of repairing DNA damage, accumulated genetic mutations, and decreased immune system efficiency. Cancer patients undergoing cytotoxic therapies, such as chemotherapy and radiotherapy, accelerate aging. There is growing evidence that p53/MDM2 (murine double minute 2) axis is critically involved in regulation of aging, senescence and oncogenesis. Therefore, in this review, we describe the functions and mechanisms of p53/MDM2-mediated senescence, aging and carcinogenesis. Moreover, we highlight the small molecular inhibitors, natural compounds and PROTACs (proteolysis targeting chimeras) that target p53/MDM2 pathway to influence aging and cancer. Modification of p53/MDM2 could be a potential strategy for treatment of aging, senescence and tumorigenesis.</p>","PeriodicalId":21594,"journal":{"name":"Seminars in cancer biology","volume":" ","pages":"44-57"},"PeriodicalIF":14.5,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140959295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-17DOI: 10.1016/j.semcancer.2024.05.001
Youyi Huang , Xiaofang Che , Peter W. Wang , Xiujuan Qu
A wealth of evidence has emerged that there is an association between aging, senescence and tumorigenesis. Senescence, a biological process by which cells cease to divide and enter a status of permanent cell cycle arrest, contributes to aging and aging-related diseases, including cancer. Aging populations have the higher incidence of cancer due to a lifetime of exposure to cancer-causing agents, reduction of repairing DNA damage, accumulated genetic mutations, and decreased immune system efficiency. Cancer patients undergoing cytotoxic therapies, such as chemotherapy and radiotherapy, accelerate aging. There is growing evidence that p53/MDM2 (murine double minute 2) axis is critically involved in regulation of aging, senescence and oncogenesis. Therefore, in this review, we describe the functions and mechanisms of p53/MDM2-mediated senescence, aging and carcinogenesis. Moreover, we highlight the small molecular inhibitors, natural compounds and PROTACs (proteolysis targeting chimeras) that target p53/MDM2 pathway to influence aging and cancer. Modification of p53/MDM2 could be a potential strategy for treatment of aging, senescence and tumorigenesis.
{"title":"p53/MDM2 signaling pathway in aging, senescence and tumorigenesis","authors":"Youyi Huang , Xiaofang Che , Peter W. Wang , Xiujuan Qu","doi":"10.1016/j.semcancer.2024.05.001","DOIUrl":"10.1016/j.semcancer.2024.05.001","url":null,"abstract":"<div><p>A wealth of evidence has emerged that there is an association between aging, senescence and tumorigenesis. Senescence, a biological process by which cells cease to divide and enter a status of permanent cell cycle arrest, contributes to aging and aging-related diseases, including cancer. Aging populations have the higher incidence of cancer due to a lifetime of exposure to cancer-causing agents, reduction of repairing DNA damage, accumulated genetic mutations, and decreased immune system efficiency. Cancer patients undergoing cytotoxic therapies, such as chemotherapy and radiotherapy, accelerate aging. There is growing evidence that p53/MDM2 (murine double minute 2) axis is critically involved in regulation of aging, senescence and oncogenesis. Therefore, in this review, we describe the functions and mechanisms of p53/MDM2-mediated senescence, aging and carcinogenesis. Moreover, we highlight the small molecular inhibitors, natural compounds and PROTACs (proteolysis targeting chimeras) that target p53/MDM2 pathway to influence aging and cancer. Modification of p53/MDM2 could be a potential strategy for treatment of aging, senescence and tumorigenesis.</p></div>","PeriodicalId":21594,"journal":{"name":"Seminars in cancer biology","volume":"101 ","pages":"Pages 44-57"},"PeriodicalIF":14.5,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141035897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}