首页 > 最新文献

Silicon Photonics XIV最新文献

英文 中文
Direct thermo-optical tuning of silicon photonic devices (Conference Presentation) 硅光子器件的直接热光调谐(会议报告)
Pub Date : 2019-03-04 DOI: 10.1117/12.2510421
P. Chevalier, L. Koehler, E. Shim, B. Desiatov, A. Shams-Ansari, M. Piccardo, M. Lončar, M. Lipson, A. Gaeta, F. Capasso
Thanks to its high Kerr non-linearity and its low linear absorption, silicon is a material of choice for optical devices in the mid-infrared (from 3 to 5 microns) such as microresonators. In this wavelength range, the available optical sources such as quantum cascade lasers have a limited tunability. Tuning the refractive index of silicon can be achieved by a temperature change of the chip and has been previously demonstrated on ring resonators using integrated heaters or thermo-electric elements. We present a new method for thermo-optical tuning of silicon devices by directly using the light from a laser diode operating at 450 nm. The blue light focused on the silicon induces a local elevation of temperature and thus the refractive index locally increases. When applying this method on silicon ring resonator, the elevation of temperature leads to a decreasing free-spectral range and thus shift the resonances to lower frequencies. At 4.5 µm we measured a tuning efficiency of 200 MHz per mW of incident light. Numerical simulations of the thermo-optical effect show the locality of this tuning method, and confirm the experimental results. Finally a frequency study of the response of this method is performed and a time constant of the order of the micro-second is measured. In conclusion, we propose a fast, local, and non-invasive method for tuning silicon resonators operating in the mid-infrared that can be extended to any silicon-based device.
由于其高克尔非线性和低线性吸收,硅是中红外(3至5微米)光学器件(如微谐振器)的首选材料。在这个波长范围内,现有的光源如量子级联激光器具有有限的可调性。调整硅的折射率可以通过芯片的温度变化来实现,并且已经在使用集成加热器或热电元件的环形谐振器上进行了演示。我们提出了一种直接利用工作在450 nm的激光二极管的光对硅器件进行热光学调谐的新方法。聚焦在硅上的蓝光引起局部温度升高,因此局部折射率增加。将该方法应用于硅环谐振器时,温度升高导致自由光谱范围减小,从而使谐振向低频偏移。在4.5 μ m处,我们测量到每兆瓦入射光的调谐效率为200 MHz。热光效应的数值模拟表明了该调谐方法的局部性,并证实了实验结果。最后对该方法的响应进行了频率研究,并测量了微秒级的时间常数。总之,我们提出了一种快速、局部和非侵入性的调谐中红外硅谐振器的方法,该方法可以扩展到任何硅基器件。
{"title":"Direct thermo-optical tuning of silicon photonic devices (Conference Presentation)","authors":"P. Chevalier, L. Koehler, E. Shim, B. Desiatov, A. Shams-Ansari, M. Piccardo, M. Lončar, M. Lipson, A. Gaeta, F. Capasso","doi":"10.1117/12.2510421","DOIUrl":"https://doi.org/10.1117/12.2510421","url":null,"abstract":"Thanks to its high Kerr non-linearity and its low linear absorption, silicon is a material of choice for optical devices in the mid-infrared (from 3 to 5 microns) such as microresonators. In this wavelength range, the available optical sources such as quantum cascade lasers have a limited tunability. Tuning the refractive index of silicon can be achieved by a temperature change of the chip and has been previously demonstrated on ring resonators using integrated heaters or thermo-electric elements. We present a new method for thermo-optical tuning of silicon devices by directly using the light from a laser diode operating at 450 nm. The blue light focused on the silicon induces a local elevation of temperature and thus the refractive index locally increases. When applying this method on silicon ring resonator, the elevation of temperature leads to a decreasing free-spectral range and thus shift the resonances to lower frequencies. At 4.5 µm we measured a tuning efficiency of 200 MHz per mW of incident light. Numerical simulations of the thermo-optical effect show the locality of this tuning method, and confirm the experimental results. Finally a frequency study of the response of this method is performed and a time constant of the order of the micro-second is measured. In conclusion, we propose a fast, local, and non-invasive method for tuning silicon resonators operating in the mid-infrared that can be extended to any silicon-based device.","PeriodicalId":21725,"journal":{"name":"Silicon Photonics XIV","volume":"20 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90030240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Engineering sub-wavelength silicon waveguides for sensing applications in the near-infrared and mid-infrared band (Conference Presentation) 用于近红外和中红外波段传感应用的工程亚波长硅波导(会议报告)
Pub Date : 2019-02-08 DOI: 10.1117/12.2508749
J. G. Wanguemert-Perez, A. Sánchez-Postigo, A. Hadij-ElHouati, J. Leuermann, C. Pérez-Armenta, J. Luque‐González, A. Ortega-Moñux, R. Halir, Í. Molina-Fernández, P. Cheben, Danxia Xu, J. Schmid, J. Čtyroký, J. Soler-Penadés, M. Nedeljkovic, G. Mashanovich
Silicon photonics is one of the most promising candidates to achieve lab-on-a-chip systems. Making use of the evanescent-field sensing principle, it is possible to determine the presence and concentration of substances by simply measuring the variation produced by the light-matter interaction in the real part of the mode effective index (in the near-infrared band), or in its imaginary part in a specific range of wavelengths (in the mid-infrared band).Regardless of which is the operating wavelength range, it is essential to select the proper sensing waveguide in order to maximize the device sensitivity. In this work we will review the potential of diffractionless subwavelength grating waveguides (SWG) for sensing applications by demonstrating their powerful capability to engineer the spatial distribution of the mode profile, and thereby to maximize the light-matter interaction. Among other things, we will demonstrate that the SWG waveguide dimensions used until now in the near-infrared are not optimal for sensing applications.In the mid-infrared band, due to the unacceptable losses of silicon dioxide for wavelengths longer than 4 μm, an additional effort is required to provide a more convenient platform for the development of future applications. In this regard, we will also show our recent progress in the development of a new platform, the suspended silicon waveguide with subwavelength metamaterial cladding. A complete set of elemental building blocks capable of covering the full transparency window of silicon (λ < ∼8.5 μm) will be discussed.
硅光子学是最有希望实现片上实验室系统的候选者之一。利用倏逝场传感原理,可以通过简单地测量光-物质相互作用在模式有效指数的实部(近红外波段)或在特定波长范围内(中红外波段)的虚部所产生的变化来确定物质的存在和浓度。无论工作波长范围是什么,为了最大限度地提高器件灵敏度,选择合适的传感波导是至关重要的。在这项工作中,我们将回顾无衍射亚波长光栅波导(SWG)在传感应用中的潜力,通过展示其强大的能力来设计模式剖面的空间分布,从而最大化光-物质相互作用。除其他事项外,我们将证明到目前为止在近红外中使用的SWG波导尺寸并不是传感应用的最佳选择。在中红外波段,由于二氧化硅在波长大于4 μm时的损耗是不可接受的,因此需要额外的努力来为未来应用的开发提供更方便的平台。在这方面,我们还将展示我们最近在开发新平台方面的进展,即亚波长超材料包层的悬浮硅波导。一套完整的元素构建块能够覆盖硅的全透明窗口(λ < ~ 8.5 μm)将被讨论。
{"title":"Engineering sub-wavelength silicon waveguides for sensing applications in the near-infrared and mid-infrared band (Conference Presentation)","authors":"J. G. Wanguemert-Perez, A. Sánchez-Postigo, A. Hadij-ElHouati, J. Leuermann, C. Pérez-Armenta, J. Luque‐González, A. Ortega-Moñux, R. Halir, Í. Molina-Fernández, P. Cheben, Danxia Xu, J. Schmid, J. Čtyroký, J. Soler-Penadés, M. Nedeljkovic, G. Mashanovich","doi":"10.1117/12.2508749","DOIUrl":"https://doi.org/10.1117/12.2508749","url":null,"abstract":"Silicon photonics is one of the most promising candidates to achieve lab-on-a-chip systems. Making use of the evanescent-field sensing principle, it is possible to determine the presence and concentration of substances by simply measuring the variation produced by the light-matter interaction in the real part of the mode effective index (in the near-infrared band), or in its imaginary part in a specific range of wavelengths (in the mid-infrared band).\u0000Regardless of which is the operating wavelength range, it is essential to select the proper sensing waveguide in order to maximize the device sensitivity. In this work we will review the potential of diffractionless subwavelength grating waveguides (SWG) for sensing applications by demonstrating their powerful capability to engineer the spatial distribution of the mode profile, and thereby to maximize the light-matter interaction. Among other things, we will demonstrate that the SWG waveguide dimensions used until now in the near-infrared are not optimal for sensing applications.\u0000In the mid-infrared band, due to the unacceptable losses of silicon dioxide for wavelengths longer than 4 μm, an additional effort is required to provide a more convenient platform for the development of future applications. In this regard, we will also show our recent progress in the development of a new platform, the suspended silicon waveguide with subwavelength metamaterial cladding. A complete set of elemental building blocks capable of covering the full transparency window of silicon (λ < ∼8.5 μm) will be discussed.","PeriodicalId":21725,"journal":{"name":"Silicon Photonics XIV","volume":"48 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81419840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Silicon Photonics XIV
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1