The small G-protein Rac1 is the main regulatory factor of the actin cytoskeleton. Rac1 cycles between the inactive GDP-bound form and the active GTP-bound form. Rac1 not only promotes viral replication and infection, but also regulates the actin cytoskeleton rearrangement, adhesion, and invasion of glioma cells. In addition, Rac1 is implicated in human diseases such as tumors and epilepsy. This article reviews the latest research on the small G-protein Rac1 in virology, cell biology, and human pathology. It is found that the existence of Rac1 is closely related to the replication and infection of viruses, that is, inhibiting the existence of Rac1 can effectively reduce the replication and transportation of viruses, providing new ideas for the development of various therapeutic drugs targeting Rac1.
小 G 蛋白 Rac1 是肌动蛋白细胞骨架的主要调节因子。Rac1 在非活性的 GDP 结合型和活性的 GTP 结合型之间循环。Rac1 不仅能促进病毒复制和感染,还能调节肌动蛋白细胞骨架的重排、粘附和胶质瘤细胞的侵袭。此外,Rac1 还与肿瘤和癫痫等人类疾病有关。本文回顾了有关小 G 蛋白 Rac1 在病毒学、细胞生物学和人类病理学方面的最新研究。研究发现,Rac1的存在与病毒的复制和感染密切相关,即抑制Rac1的存在可有效减少病毒的复制和运输,为开发针对Rac1的各种治疗药物提供了新思路。
{"title":"[Research progress in the small G-protein Rac1].","authors":"Yiheng Yang, Shuling Zhao, Changyong Liang","doi":"10.13345/j.cjb.240072","DOIUrl":"https://doi.org/10.13345/j.cjb.240072","url":null,"abstract":"<p><p>The small G-protein Rac1 is the main regulatory factor of the actin cytoskeleton. Rac1 cycles between the inactive GDP-bound form and the active GTP-bound form. Rac1 not only promotes viral replication and infection, but also regulates the actin cytoskeleton rearrangement, adhesion, and invasion of glioma cells. In addition, Rac1 is implicated in human diseases such as tumors and epilepsy. This article reviews the latest research on the small G-protein Rac1 in virology, cell biology, and human pathology. It is found that the existence of Rac1 is closely related to the replication and infection of viruses, that is, inhibiting the existence of Rac1 can effectively reduce the replication and transportation of viruses, providing new ideas for the development of various therapeutic drugs targeting Rac1.</p>","PeriodicalId":21778,"journal":{"name":"Sheng wu gong cheng xue bao = Chinese journal of biotechnology","volume":"40 11","pages":"3902-3911"},"PeriodicalIF":0.0,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142710710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Human epidermal growth factor (hEGF) can be applied in the treatment of surgical trauma (burns, scalds), tissue repair, skin moisturizing, beauty, skincare, etc. However, the low expression and high cost limit the application of hEGF. In order to improve the expression level of hEGF and reduce the production cost, considering the high expression of polyhedrin, this study fused a partial sequence of polyhedrin with hEGF and expressed the fused sequence by using a silkworm baculovirus expression vector system. In view of the small molecular weight of hEGF, we connected hEGF genes in series and optimized the codons to construct multiple fusion expression vectors by fusing different partial sequences of polyhedrin at the N-terminus. The results showed that through the above strategy, the protein expression level of hEGF was significantly increased. The expression vector containing three concatenated hEGF genes with optimized codons and fused with the sequence encoding 25 or 35 residues at the N-terminus of polyhedrin showed the highest expression level.
{"title":"[Enhancing the expression level of human epidermal growth factor using the polyhedrin protein sequence of BmNPV].","authors":"Yuedong Li, Xingyang Wang, Shuohao Li, Xiaofeng Wu","doi":"10.13345/j.cjb.240348","DOIUrl":"https://doi.org/10.13345/j.cjb.240348","url":null,"abstract":"<p><p>Human epidermal growth factor (hEGF) can be applied in the treatment of surgical trauma (burns, scalds), tissue repair, skin moisturizing, beauty, skincare, etc. However, the low expression and high cost limit the application of hEGF. In order to improve the expression level of hEGF and reduce the production cost, considering the high expression of polyhedrin, this study fused a partial sequence of polyhedrin with <i>hEGF</i> and expressed the fused sequence by using a silkworm baculovirus expression vector system. In view of the small molecular weight of hEGF, we connected <i>hEGF</i> genes in series and optimized the codons to construct multiple fusion expression vectors by fusing different partial sequences of polyhedrin at the N-terminus. The results showed that through the above strategy, the protein expression level of hEGF was significantly increased. The expression vector containing three concatenated <i>hEGF</i> genes with optimized codons and fused with the sequence encoding 25 or 35 residues at the N-terminus of polyhedrin showed the highest expression level.</p>","PeriodicalId":21778,"journal":{"name":"Sheng wu gong cheng xue bao = Chinese journal of biotechnology","volume":"40 11","pages":"4211-4218"},"PeriodicalIF":0.0,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142710998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We knocked out the retinoic acid-inducible gene I (RIG-I) in HEK293 cells via CRISPR/Cas9 to reveal the effects of RIG-I knockout on the key factors in the type I interferon signaling pathway. Three single guide RNAs (sgRNAs) targeting RIG-I were designed, and the recombination vectors were constructed on the basis of the pX459 vector and used to transfect HEK293 cells, which were screened by puromycin subsequently. Furthermore, a mimic of virus, poly I: C, was used to transfect the cells screened out. RIG-I knockout was checked by sequencing, real-time quantitative PCR, Western blotting, and immunofluorescence assay. Meanwhile, the expression levels of key factors of type I interferon signaling pathway such as melanoma differentiation-associated gene 5 (MDA5), interferonβ1 (IFNβ1), and nuclear factor-kappa B p65 [NF-κB(p65)], as well as cell viability, were determined. The results showed that two HEK293 cell lines (S1 and S3) with RIG-I knockout were obtained, which exhibited lower mRNA and protein levels of RIG-I than the wild type HEK293 cells (P < 0.05). The mRNA levels of MDA5 and IFNβ1 in S1 and S3 cells and the protein level of NF-κB(p65) in S3 cells were lower than those in the wild type (P < 0.05). More extranuclear NF-κB(p65) protein was detected in S1 cells than in the wild type after transfection with poly I: C. Plus, the wild-type and S1 cells transfected with poly I: C for 48 h showcased reduced viability (P < 0.05), while S3 cells did not display the reduction in cell viability. In summary, the present study obtained two HEK293 cell lines with RIG-I knockout via CRISPR/Cas9, which provided a stable cell model for exploring the mechanism of type I interferon signaling pathway.
我们通过CRISPR/Cas9技术敲除了HEK293细胞中的视黄酸诱导基因I(RIG-I),以揭示敲除RIG-I对I型干扰素信号通路中关键因子的影响。研究人员设计了三种靶向RIG-I的单导RNA(sgRNA),并在pX459载体的基础上构建了重组载体,用于转染HEK293细胞,随后用嘌呤霉素进行筛选。此外,还使用了病毒的模拟物 poly I: C 来转染筛选出的细胞。通过测序、实时定量 PCR、Western 印迹和免疫荧光检测 RIG-I 基因敲除。同时,测定了 I 型干扰素信号通路关键因子的表达水平,如黑色素瘤分化相关基因 5(MDA5)、干扰素β1(IFNβ1)和核因子-kappa B p65 [NF-κB(p65)],以及细胞活力。结果显示,RIG-I基因敲除的两个HEK293细胞系(S1和S3)的RIG-I mRNA和蛋白水平均低于野生型HEK293细胞(P < 0.05)。S1 和 S3 细胞中 MDA5 和 IFNβ1 的 mRNA 水平以及 S3 细胞中 NF-κB(p65) 的蛋白水平均低于野生型(P < 0.05)。此外,转染 poly I: C 48 h 的野生型和 S1 细胞的存活率降低(P < 0.05),而 S3 细胞的存活率没有降低。综上所述,本研究通过 CRISPR/Cas9 获得了两种 RIG-I 基因敲除的 HEK293 细胞系,为探索 I 型干扰素信号通路的机制提供了一个稳定的细胞模型。
{"title":"[Knockout of <i>RIG-I</i> in HEK293 cells by CRISPR/Cas9].","authors":"Ziyi Chen, Yirong Wu, Yuting Zhang, Youling Gao","doi":"10.13345/j.cjb.240130","DOIUrl":"https://doi.org/10.13345/j.cjb.240130","url":null,"abstract":"<p><p>We knocked out the retinoic acid-inducible gene I (<i>RIG</i>-<i>I)</i> in HEK293 cells <i>via</i> CRISPR/Cas9 to reveal the effects of <i>RIG-I</i> knockout on the key factors in the type I interferon signaling pathway. Three single guide RNAs (sgRNAs) targeting <i>RIG-I</i> were designed, and the recombination vectors were constructed on the basis of the pX459 vector and used to transfect HEK293 cells, which were screened by puromycin subsequently. Furthermore, a mimic of virus, poly I: C, was used to transfect the cells screened out. <i>RIG-I</i> knockout was checked by sequencing, real-time quantitative PCR, Western blotting, and immunofluorescence assay. Meanwhile, the expression levels of key factors of type I interferon signaling pathway such as melanoma differentiation-associated gene 5 (MDA5), interferonβ1 (IFNβ1), and nuclear factor-kappa B p65 [NF-κB(p65)], as well as cell viability, were determined. The results showed that two HEK293 cell lines (S1 and S3) with <i>RIG-I</i> knockout were obtained, which exhibited lower mRNA and protein levels of RIG-I than the wild type HEK293 cells (<i>P</i> < 0.05). The mRNA levels of <i>MDA5</i> and <i>IFNβ1</i> in S1 and S3 cells and the protein level of NF-κB(p65) in S3 cells were lower than those in the wild type (<i>P</i> < 0.05). More extranuclear NF-κB(p65) protein was detected in S1 cells than in the wild type after transfection with poly I: C. Plus, the wild-type and S1 cells transfected with poly I: C for 48 h showcased reduced viability (<i>P</i> < 0.05), while S3 cells did not display the reduction in cell viability. In summary, the present study obtained two HEK293 cell lines with <i>RIG-I</i> knockout <i>via</i> CRISPR/Cas9, which provided a stable cell model for exploring the mechanism of type I interferon signaling pathway.</p>","PeriodicalId":21778,"journal":{"name":"Sheng wu gong cheng xue bao = Chinese journal of biotechnology","volume":"40 11","pages":"4254-4265"},"PeriodicalIF":0.0,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142710951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The transcription factors (TFs) in the NAC family are involved in regulating multiple biological processes, playing an important role in plant growth, development, and stress adaptation. Our previous studies have demonstrated that TaNAC14, a member of the NAC family in wheat (Triticum aestivum L.), positively regulates root growth and development and enhances the drought tolerance of wheat seedlings. In this study, we analyzed the physicochemical properties and structure and verified the subcellular localization and transcriptional activation activity of TaNAC14. The prokaryotic expression vector pET21a-HMT-TaNAC14 was constructed and transformed into Escherichia coli BL21 CodonPlus (DE3)-RIPL. The conditions for inducing the expression of the recombinant protein HMT-TaNAC14 were optimized. The solubility of the recombinant protein was analyzed, and the protein was purified by affinity chromatography on a Ni-nitrilotriacetic acid column. The results indicated that TaNAC14 had a conserved domain of the NAM family. It was located in the nucleus and had transcriptional activation activity. The optimal conditions for expression of the recombinant protein in E. coli were induction with 0.2mmol/L IPTG for 4 h. The recombinant protein mainly existed in the soluble form, and the target protein was obtained after purification. This study lays a foundation for the identification of target genes regulated by TaNAC14.
{"title":"[Prokaryotic expression and purification of the transcription factor TaNAC14 in wheat (<i>Triticum aestivum</i>)].","authors":"Zhijun Chen, Lijian Zhang, Qing Chi, Baowei Wu, Lanjiya Ao, Huixian Zhao","doi":"10.13345/j.cjb.240092","DOIUrl":"https://doi.org/10.13345/j.cjb.240092","url":null,"abstract":"<p><p>The transcription factors (TFs) in the NAC family are involved in regulating multiple biological processes, playing an important role in plant growth, development, and stress adaptation. Our previous studies have demonstrated that TaNAC14, a member of the NAC family in wheat (<i>Triticum aestivum</i> L.), positively regulates root growth and development and enhances the drought tolerance of wheat seedlings. In this study, we analyzed the physicochemical properties and structure and verified the subcellular localization and transcriptional activation activity of TaNAC14. The prokaryotic expression vector pET21a-HMT-TaNAC14 was constructed and transformed into <i>Escherichia coli</i> BL21 CodonPlus (DE3)-RIPL. The conditions for inducing the expression of the recombinant protein HMT-TaNAC14 were optimized. The solubility of the recombinant protein was analyzed, and the protein was purified by affinity chromatography on a Ni-nitrilotriacetic acid column. The results indicated that TaNAC14 had a conserved domain of the NAM family. It was located in the nucleus and had transcriptional activation activity. The optimal conditions for expression of the recombinant protein in <i>E. coli</i> were induction with 0.2mmol/L IPTG for 4 h. The recombinant protein mainly existed in the soluble form, and the target protein was obtained after purification. This study lays a foundation for the identification of target genes regulated by TaNAC14.</p>","PeriodicalId":21778,"journal":{"name":"Sheng wu gong cheng xue bao = Chinese journal of biotechnology","volume":"40 11","pages":"4171-4182"},"PeriodicalIF":0.0,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142711017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nan Liu, Xiaocheng Jin, Chongzhou Yang, Ziyang Wang, Xiaoping Min, Shengxiang Ge
Proteins with specific functions and characteristics play a crucial role in biomedicine and nanotechnology. De novo protein design enables the customization of sequences to produce proteins with desired structures that do not exist in the nature. In recent years, with the rapid development of artificial intelligence (AI), deep learning-based generative models have increasingly become powerful tools, enabling the design of functional proteins with atomic-level precision. This article provides an overview of the evolution of de novo protein design, with focus on the latest algorithmic models, and then analyzes existing challenges such as low design success rates, insufficient accuracy, and dependence on experimental validation. Furthermore, this article discusses the future trends in protein design, aiming to provide insights for researchers and practitioners in this field.
{"title":"[<i>De novo</i> protein design in the age of artificial intelligence].","authors":"Nan Liu, Xiaocheng Jin, Chongzhou Yang, Ziyang Wang, Xiaoping Min, Shengxiang Ge","doi":"10.13345/j.cjb.240087","DOIUrl":"https://doi.org/10.13345/j.cjb.240087","url":null,"abstract":"<p><p>Proteins with specific functions and characteristics play a crucial role in biomedicine and nanotechnology. <i>De novo</i> protein design enables the customization of sequences to produce proteins with desired structures that do not exist in the nature. In recent years, with the rapid development of artificial intelligence (AI), deep learning-based generative models have increasingly become powerful tools, enabling the design of functional proteins with atomic-level precision. This article provides an overview of the evolution of <i>de novo</i> protein design, with focus on the latest algorithmic models, and then analyzes existing challenges such as low design success rates, insufficient accuracy, and dependence on experimental validation. Furthermore, this article discusses the future trends in protein design, aiming to provide insights for researchers and practitioners in this field.</p>","PeriodicalId":21778,"journal":{"name":"Sheng wu gong cheng xue bao = Chinese journal of biotechnology","volume":"40 11","pages":"3912-3929"},"PeriodicalIF":0.0,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142710979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shuzhen Tan, Hu Dong, Songjia Pan, Suyu Mu, Yongjie Chen, Yun Zhang, Shiqi Sun, Huichen Guo
The variable domain of heavy-chain antibody (VHH) has been developed widely in drug therapy, diagnosis, and research. Escherichia coli is the most popular expression system for VHH production, whereas low bioactivity occurs sometimes. Mammalian cells are one of the most ideal hosts for VHH expression at present. To improve the yield of VHH in Expi293F cells, we optimized the signal peptide (SP) and codons of VHH. Firstly, the fusion protein VHH1-Fc was used to screen SPs. The SP IFN-α2 showed the highest secretion as quantified by enzyme-linked immunosorbent assay (ELISA). Subsequently, codon optimization by improving GC3 and GC content doubled the yield of VHH1 and kept its binding activity to Senecavirus A (SVA). Finally, the mean yields of other 5 VHHs that fused with SP IFN-α2 and codon-optimized were over 191.6 mg/L, and these VHHs had high recovery and high purity in the culture supernatant. This study confirms that SP IFN-α2 and codon optimization could produce VHHs in Expi293F cells efficiently, which provides a reference for the large-scale production of VHHs.
{"title":"[High expression of variable domain of heavy-chain antibodies in Expi293F cells with optimized signal peptide and codons].","authors":"Shuzhen Tan, Hu Dong, Songjia Pan, Suyu Mu, Yongjie Chen, Yun Zhang, Shiqi Sun, Huichen Guo","doi":"10.13345/j.cjb.230763","DOIUrl":"https://doi.org/10.13345/j.cjb.230763","url":null,"abstract":"<p><p>The variable domain of heavy-chain antibody (VHH) has been developed widely in drug therapy, diagnosis, and research. <i>Escherichia coli</i> is the most popular expression system for VHH production, whereas low bioactivity occurs sometimes. Mammalian cells are one of the most ideal hosts for VHH expression at present. To improve the yield of VHH in Expi293F cells, we optimized the signal peptide (SP) and codons of VHH. Firstly, the fusion protein VHH1-Fc was used to screen SPs. The SP IFN-α2 showed the highest secretion as quantified by enzyme-linked immunosorbent assay (ELISA). Subsequently, codon optimization by improving GC3 and GC content doubled the yield of VHH1 and kept its binding activity to Senecavirus A (SVA). Finally, the mean yields of other 5 VHHs that fused with SP IFN-α2 and codon-optimized were over 191.6 mg/L, and these VHHs had high recovery and high purity in the culture supernatant. This study confirms that SP IFN-α2 and codon optimization could produce VHHs in Expi293F cells efficiently, which provides a reference for the large-scale production of VHHs.</p>","PeriodicalId":21778,"journal":{"name":"Sheng wu gong cheng xue bao = Chinese journal of biotechnology","volume":"40 11","pages":"4219-4227"},"PeriodicalIF":0.0,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142711008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ghrelin, a hormone mainly produced and released by the stomach, has numerous functions, including releasing growth hormones, regulating appetite, and processing sugar and lipids. Researchers have made great efforts to study the relationship between ghrelin and metabolic diseases. It is believed that human butyrylcholinesterase (hBChE) could hydrolyze ghrelin to the inactive form (desacyl-ghrelin). However, the low catalytic activity of wild hBChE against ghrelin hinders the clinical application. Recently, a soluble catalytically active hBChE mutant was successfully expressed in Escherichia coli for the first time. We then adopted HotSpot Wizard 3.0 to analyze the mutant structure and rationally selected 10 mutants. Furthermore, we determined the catalytic activities of the mutants against several substrates and the thermostability of these mutants. The results showed that the mutants E197D and A199S improved catalytic activity against ghrelin by 4.6 times and 3.5 times, respectively. The findings provide clues for treating endocrine diseases with the agents for regulating ghrelin.
{"title":"[Semi-rational design improves the catalytic activity of butyrylcholinesterase against ghrelin].","authors":"Yingting Cai, Tianzhu Zhang, Fengyun Lin","doi":"10.13345/j.cjb.240185","DOIUrl":"https://doi.org/10.13345/j.cjb.240185","url":null,"abstract":"<p><p>Ghrelin, a hormone mainly produced and released by the stomach, has numerous functions, including releasing growth hormones, regulating appetite, and processing sugar and lipids. Researchers have made great efforts to study the relationship between ghrelin and metabolic diseases. It is believed that human butyrylcholinesterase (hBChE) could hydrolyze ghrelin to the inactive form (desacyl-ghrelin). However, the low catalytic activity of wild hBChE against ghrelin hinders the clinical application. Recently, a soluble catalytically active hBChE mutant was successfully expressed in <i>Escherichia coli</i> for the first time. We then adopted HotSpot Wizard 3.0 to analyze the mutant structure and rationally selected 10 mutants. Furthermore, we determined the catalytic activities of the mutants against several substrates and the thermostability of these mutants. The results showed that the mutants E197D and A199S improved catalytic activity against ghrelin by 4.6 times and 3.5 times, respectively. The findings provide clues for treating endocrine diseases with the agents for regulating ghrelin.</p>","PeriodicalId":21778,"journal":{"name":"Sheng wu gong cheng xue bao = Chinese journal of biotechnology","volume":"40 11","pages":"4228-4241"},"PeriodicalIF":0.0,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142710663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Visual detection is a technique for evaluating the results through visual judgment without relying on complex optical detection systems. It obtains results quickly based on signals, such as visible light, changes in air pressure, and migration distance, that can be directly observed by naked eyes, being widely used in the in vitro diagnostics industry. The CRISPR-Cas system has the potential to be used in the development of point of care testing (POCT) technologies due to the advantages of mild reaction conditions, no need for thermal cycling or other control measures, and a robust signal amplification capability. In recent years, the combination of visual detection and CRISPR-Cas has significantly reduced the need for laboratory infrastructures, precision instruments, and specialized personnel for nucleic acid detection. This has promoted the development of POCT technology and methods for nucleic acids. This article summarizes the signal output modes and characteristics of the visual detection of nucleic acid by CRISPR-Cas and discusses the issues in the application. Finally, its future clinical translation is envisioned with a view to informing the development of CRISPR-Cas visualization assays.
{"title":"[Advances in visual detection of pathogen nucleic acids by CRISPR-Cas].","authors":"You Hu, Zhongfu Chen, Shiyin Zhang, Shengxiang Ge","doi":"10.13345/j.cjb.240111","DOIUrl":"https://doi.org/10.13345/j.cjb.240111","url":null,"abstract":"<p><p>Visual detection is a technique for evaluating the results through visual judgment without relying on complex optical detection systems. It obtains results quickly based on signals, such as visible light, changes in air pressure, and migration distance, that can be directly observed by naked eyes, being widely used in the <i>in vitro</i> diagnostics industry. The CRISPR-Cas system has the potential to be used in the development of point of care testing (POCT) technologies due to the advantages of mild reaction conditions, no need for thermal cycling or other control measures, and a robust signal amplification capability. In recent years, the combination of visual detection and CRISPR-Cas has significantly reduced the need for laboratory infrastructures, precision instruments, and specialized personnel for nucleic acid detection. This has promoted the development of POCT technology and methods for nucleic acids. This article summarizes the signal output modes and characteristics of the visual detection of nucleic acid by CRISPR-Cas and discusses the issues in the application. Finally, its future clinical translation is envisioned with a view to informing the development of CRISPR-Cas visualization assays.</p>","PeriodicalId":21778,"journal":{"name":"Sheng wu gong cheng xue bao = Chinese journal of biotechnology","volume":"40 11","pages":"3872-3887"},"PeriodicalIF":0.0,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142710985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yan Dai, Jiayu Lin, Xiaoya Zhang, Haorui Lu, Lang Rao
The spike (S) protein plays a crucial role in the entry of SARS-CoV-2 into host cells. The S protein contains two subunits, S1 and S2. The receptor-binding domain (RBD) of the S1 subunit binds to the receptor angiotensin-converting enzyme 2 (ACE2) to enter the host cells. Therefore, degrading S1 is one of the feasible strategies to inhibit SARS-CoV-2 infection. The purpose of this study is to develop a degradation tool targeting S1. First, we constructed a HEK 293 cell line stably expressing S1 by using a three-plasmid lentivirus system. The overexpression of the mitochondrial E3 ubiquitin protein ligase 1 (MUL1) in this cell line promoted the ubiquitination of S1 and accelerated its proteasomal degradation. Further research showed the polyubiquitination of S1 catalyzed by MUL1 mainly occurred via the addition of K48-linked chains. Moreover, the specific peptide LCB1, which targets and recognizes S1, was combined with MUL1 to create the chimeric E3 ubiquitin ligase LCB1-MUL1. In comparison to MUL1, this chimeric enzyme demonstrated improved catalytic efficiency, resulting in a reduction of S1's half-life from 12 h to 9 h. In summary, this study elucidated the mechanism by which MUL1 promotes the ubiquitination modification of S1 and facilitates its degradation through the proteasome, and preliminarily validated the effectiveness of targeted degradation of S1 by chimeric enzyme LCB1-MUL1.
{"title":"[Design and functional validation of a chimeric E3 ubiquitin ligase targeting the spike protein S1 subunit of SARS-CoV-2].","authors":"Yan Dai, Jiayu Lin, Xiaoya Zhang, Haorui Lu, Lang Rao","doi":"10.13345/j.cjb.240187","DOIUrl":"https://doi.org/10.13345/j.cjb.240187","url":null,"abstract":"<p><p>The spike (S) protein plays a crucial role in the entry of SARS-CoV-2 into host cells. The S protein contains two subunits, S1 and S2. The receptor-binding domain (RBD) of the S1 subunit binds to the receptor angiotensin-converting enzyme 2 (ACE2) to enter the host cells. Therefore, degrading S1 is one of the feasible strategies to inhibit SARS-CoV-2 infection. The purpose of this study is to develop a degradation tool targeting S1. First, we constructed a HEK 293 cell line stably expressing S1 by using a three-plasmid lentivirus system. The overexpression of the mitochondrial E3 ubiquitin protein ligase 1 (MUL1) in this cell line promoted the ubiquitination of S1 and accelerated its proteasomal degradation. Further research showed the polyubiquitination of S1 catalyzed by MUL1 mainly occurred <i>via</i> the addition of K48-linked chains. Moreover, the specific peptide LCB1, which targets and recognizes S1, was combined with MUL1 to create the chimeric E3 ubiquitin ligase LCB1-MUL1. In comparison to MUL1, this chimeric enzyme demonstrated improved catalytic efficiency, resulting in a reduction of S1's half-life from 12 h to 9 h. In summary, this study elucidated the mechanism by which MUL1 promotes the ubiquitination modification of S1 and facilitates its degradation through the proteasome, and preliminarily validated the effectiveness of targeted degradation of S1 by chimeric enzyme LCB1-MUL1.</p>","PeriodicalId":21778,"journal":{"name":"Sheng wu gong cheng xue bao = Chinese journal of biotechnology","volume":"40 11","pages":"4071-4083"},"PeriodicalIF":0.0,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142710992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Principle of Biotechnology is a compulsory course for undergraduates majoring in bioengineering at Zhejiang University of Technology. In response to the "Double First-Class" initiative and in order to improve the teaching effect of this course and the quality of talent training, we reformed the teaching of Principle of Biotechnology, the core course in bioengineering. Specifically, we reorganized the teaching contents, improved the process management of teaching and learning, and implemented multi-dimensional teaching practice. These measures improved teaching quality and promoted the achievement of training goals, which was of great significance for developing "First-Class" disciplines.
{"title":"[Practice and thinking of multi-dimensional teaching of \"Principle of Biotechnology\" under the \"Double First-Class\" initiative].","authors":"Haiyan Zhou, Zhongce Hu, Xue Cai, Zhiqiang Liu, Liqun Jin, Yuguo Zheng","doi":"10.13345/j.cjb.240050","DOIUrl":"https://doi.org/10.13345/j.cjb.240050","url":null,"abstract":"<p><p>The Principle of Biotechnology is a compulsory course for undergraduates majoring in bioengineering at Zhejiang University of Technology. In response to the \"Double First-Class\" initiative and in order to improve the teaching effect of this course and the quality of talent training, we reformed the teaching of Principle of Biotechnology, the core course in bioengineering. Specifically, we reorganized the teaching contents, improved the process management of teaching and learning, and implemented multi-dimensional teaching practice. These measures improved teaching quality and promoted the achievement of training goals, which was of great significance for developing \"First-Class\" disciplines.</p>","PeriodicalId":21778,"journal":{"name":"Sheng wu gong cheng xue bao = Chinese journal of biotechnology","volume":"40 11","pages":"4288-4300"},"PeriodicalIF":0.0,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142710957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}