Wenke Zhang, Jiani Yuan, Bin Wu, Yuxia Yan, Nanjun Lu, Wen Luo
The study aims to explore the methods for preparing nanocomplexes of Prussian blue nanoparticles (PBNPs) with UNO peptide (UNO-PBNPs) and the functions of the nanocomplexes targeting M2-type macrophages in vitro. PBNPs were prepared by the hydrothermal synthesis method. Subsequently, the peptide UNO (CSPGAKVRC) targeting the mannose receptor was modified on their surface by a heterobifunctional coupling approach. The morphological characteristics of nanoparticles were observed by scanning and transmission electron microscopy. Additionally, their particle size, Zeta potential, and dispersion stability were assessed. The structural characteristics of nanoparticles were analyzed by X-ray diffraction and other techniques. The biological safety of the nanoparticles was evaluated by the CCK-8 assay and hemolysis experiments. Moreover, the targeting performance of UNO-PBNPs towards M2-type macrophages was assessed in vitro. The results showed that the synthesized UNO-PBNPs exhibited uniform cubic morphology, with an average particle size of (202.00±4.21) nm. They were negative charged, well dispersed, and stable. At concentrations ≤ 200 μg/mL, the synthesized UNO-PBNPs led to the hemolysis rate below 5%, demonstrating excellent biocompatibility. The laser confocal imaging results showed that after co-incubation with M2-type macrophages, the FITC-labeled UNO-PBNPs were effectively accumulated in the cells, presenting a distinct fluorescence signal. Quantitative analysis by flow cytometry showed that the intracellular mean fluorescence intensity (6 019.00±346.04) of UNO-PBNPs was higher than that (4 054.00±379.14) of unmodified PBNPs (P < 0.001). In summary, the UNO-PBNPs prepared in this study exhibited a targeting effect on M2-type macrophages, providing a potential method for targeted delivery of PBNPs in the tumor microenvironment and laying a foundation for the remodeling of the tumor immunosuppressive microenvironment.
{"title":"[Preparation and <i>in vitro</i> targeting function evaluation of UNO peptide-modified Prussian blue nanoparticles].","authors":"Wenke Zhang, Jiani Yuan, Bin Wu, Yuxia Yan, Nanjun Lu, Wen Luo","doi":"10.13345/j.cjb.250338","DOIUrl":"https://doi.org/10.13345/j.cjb.250338","url":null,"abstract":"<p><p>The study aims to explore the methods for preparing nanocomplexes of Prussian blue nanoparticles (PBNPs) with UNO peptide (UNO-PBNPs) and the functions of the nanocomplexes targeting M2-type macrophages <i>in vitro</i>. PBNPs were prepared by the hydrothermal synthesis method. Subsequently, the peptide UNO (CSPGAKVRC) targeting the mannose receptor was modified on their surface by a heterobifunctional coupling approach. The morphological characteristics of nanoparticles were observed by scanning and transmission electron microscopy. Additionally, their particle size, Zeta potential, and dispersion stability were assessed. The structural characteristics of nanoparticles were analyzed by X-ray diffraction and other techniques. The biological safety of the nanoparticles was evaluated by the CCK-8 assay and hemolysis experiments. Moreover, the targeting performance of UNO-PBNPs towards M2-type macrophages was assessed <i>in vitro</i>. The results showed that the synthesized UNO-PBNPs exhibited uniform cubic morphology, with an average particle size of (202.00±4.21) nm. They were negative charged, well dispersed, and stable. At concentrations ≤ 200 μg/mL, the synthesized UNO-PBNPs led to the hemolysis rate below 5%, demonstrating excellent biocompatibility. The laser confocal imaging results showed that after co-incubation with M2-type macrophages, the FITC-labeled UNO-PBNPs were effectively accumulated in the cells, presenting a distinct fluorescence signal. Quantitative analysis by flow cytometry showed that the intracellular mean fluorescence intensity (6 019.00±346.04) of UNO-PBNPs was higher than that (4 054.00±379.14) of unmodified PBNPs (<i>P</i> < 0.001). In summary, the UNO-PBNPs prepared in this study exhibited a targeting effect on M2-type macrophages, providing a potential method for targeted delivery of PBNPs in the tumor microenvironment and laying a foundation for the remodeling of the tumor immunosuppressive microenvironment.</p>","PeriodicalId":21778,"journal":{"name":"Sheng wu gong cheng xue bao = Chinese journal of biotechnology","volume":"41 8","pages":"3187-3198"},"PeriodicalIF":0.0,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144967818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
As the need for antibody production rises, there is an urgent need to lower the costs and enhance the efficiency of the separation process. Currently, the chromatographic media used for antibody separation and purification often focus on individual properties of antibodies, such as affinity, hydrophobicity, and charge, leading to issues like low purification efficiency or inadequate adsorption capacity. To address this, an electrostatically coupled polypeptide affinity medium (FD7-3, 5-diaminobenzoic acid n-sepharose, FD7-DA-Sepharose) was developed for rapid purification of antibodies from cell culture supernatant. This medium utilized 3, 5-diaminobenzoic acid as a spacer to attach the heptapeptide-affinity ligand (FYEILHD, FD7) to agarose microspheres. Antibodies could be adsorbed through charge interactions with the carboxyl functional group of the FD7-DA-Sepharose spacer, while FD7 enhanced electrostatic coupling and affinity adsorption through synergistic effects, significantly increasing the adsorption capacity while maintaining the affinity and specificity. The influences of pH and ionic strength on adsorption capacity were investigated with human immunoglobulin as a model protein. The static adsorption capacity (Qm) of FD7-DA-Sepharose in the solution of pH 6.0 reached 67.73 mg/mL, representing a 52.68% increase compared with that (44.36 mg/mL) of the commercial Protein A affinity medium. Furthermore, the elution conditions for FD7-DA- Sepharose were mild (20 mmol/L PB, 0.5 mol/L NaCl, pH 6.0), in contrast to the harsh acidic elution (pH 2.7-3.6) typically associated with Protein A, which can damage antibody integrity. The FD7-DA-Sepharose medium was then employed to purify antibodies from cell culture supernatant, achieving the yield of 94.8% and the purity of 98.4%. The secondary structure of the purified antibody was determined by circular dichroism spectroscopy. The results demonstrated that FD7-DA-Sepharose enabled efficient purification of antibodies from cell culture supernatant, which provided a cost-effective solution (approximately one-third the price of commercial Protein A affinity medium) with gentle elution conditions that preserve the natural conformation of antibodies. This approach paves a novel, economical, and efficient way for the separation and purification of antibodies from cell culture supernatant.
{"title":"[An electrostatically coupled polypeptide affinity multimodal chromatography medium for the purification of antibodies and their separation efficiency].","authors":"Yuxuan Cheng, Liuyang Wang, Kaixuan Jiang, Songping Zhang, Hongbo Yan, Jian Luo","doi":"10.13345/j.cjb.250137","DOIUrl":"https://doi.org/10.13345/j.cjb.250137","url":null,"abstract":"<p><p>As the need for antibody production rises, there is an urgent need to lower the costs and enhance the efficiency of the separation process. Currently, the chromatographic media used for antibody separation and purification often focus on individual properties of antibodies, such as affinity, hydrophobicity, and charge, leading to issues like low purification efficiency or inadequate adsorption capacity. To address this, an electrostatically coupled polypeptide affinity medium (FD7-3, 5-diaminobenzoic acid n-sepharose, FD7-DA-Sepharose) was developed for rapid purification of antibodies from cell culture supernatant. This medium utilized 3, 5-diaminobenzoic acid as a spacer to attach the heptapeptide-affinity ligand (FYEILHD, FD7) to agarose microspheres. Antibodies could be adsorbed through charge interactions with the carboxyl functional group of the FD7-DA-Sepharose spacer, while FD7 enhanced electrostatic coupling and affinity adsorption through synergistic effects, significantly increasing the adsorption capacity while maintaining the affinity and specificity. The influences of pH and ionic strength on adsorption capacity were investigated with human immunoglobulin as a model protein. The static adsorption capacity (<i>Q</i><sub>m</sub>) of FD7-DA-Sepharose in the solution of pH 6.0 reached 67.73 mg/mL, representing a 52.68% increase compared with that (44.36 mg/mL) of the commercial Protein A affinity medium. Furthermore, the elution conditions for FD7-DA- Sepharose were mild (20 mmol/L PB, 0.5 mol/L NaCl, pH 6.0), in contrast to the harsh acidic elution (pH 2.7-3.6) typically associated with Protein A, which can damage antibody integrity. The FD7-DA-Sepharose medium was then employed to purify antibodies from cell culture supernatant, achieving the yield of 94.8% and the purity of 98.4%. The secondary structure of the purified antibody was determined by circular dichroism spectroscopy. The results demonstrated that FD7-DA-Sepharose enabled efficient purification of antibodies from cell culture supernatant, which provided a cost-effective solution (approximately one-third the price of commercial Protein A affinity medium) with gentle elution conditions that preserve the natural conformation of antibodies. This approach paves a novel, economical, and efficient way for the separation and purification of antibodies from cell culture supernatant.</p>","PeriodicalId":21778,"journal":{"name":"Sheng wu gong cheng xue bao = Chinese journal of biotechnology","volume":"41 8","pages":"3262-3274"},"PeriodicalIF":0.0,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144967665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Human alphaherpesvirus 2 (HSV-2) is the main pathogen resulting human genital herpes, which poses a major threat to the socio-economic development, while there is no effective vaccine. In this study, we developed a novel lipopolyplex (LPP)-delivered mRNA vaccine expressing the HSV-2 envelope glycoprotein gD and evaluated its immunogenicity in mice. The mRNA vaccine was prepared from the genetically modified gD mRNA synthesized in vitro combined with the LPP delivery platform and it was named gD-ORI mRNA. The expression of gD antigen in the mRNA vaccine was validated in vitro by Western blotting and indirect immunofluorescence assay, then the immune responses induced by this mRNA vaccine in mice were evaluated. The immunization with gD mRNA alone induced strong humoral and cellular immune responses in mice. Robust and long-lasting gD-specific IgG antibodies were detected in the mouse serum after booster immunization with gD-ORI mRNA. The immunized mice exhibited a Th1/Th2 balanced IgG response and robust neutralizing antibodies against HSV-2, and a clear dose-response relationship was observed. The gD-specific IgG antibodies were maintained in mice for a long time, up to 18 weeks post-booster immunization. At the same time, multifunctional gD-specific CD4+ and CD8+ T cells in vaccinated mice were detected by intracellular cytokine staining (ICS). This novel gD-expressing mRNA vaccine delivered by LPP induces strong and long-lasting immune responses in mice post booster immunization and has a promising prospect for development and application. This study provides scientific evidence and reference for the development of a new mRNA vaccine for HSV-2.
{"title":"[Development and immunogenicity evaluation in mice of a novel mRNA vaccine expressing herpes simplex virus type 2 envelope glycoprotein gD].","authors":"Jialuo Bing, Liye Jin, Yao Deng, Shucai Sun, Xiaotian Han, Xueting Cheng, Zhenyong Qi, Tangqi Wang, Ruiwen Han, Desheng Zhai, Wenjie Tan","doi":"10.13345/j.cjb.250158","DOIUrl":"https://doi.org/10.13345/j.cjb.250158","url":null,"abstract":"<p><p>Human alphaherpesvirus 2 (HSV-2) is the main pathogen resulting human genital herpes, which poses a major threat to the socio-economic development, while there is no effective vaccine. In this study, we developed a novel lipopolyplex (LPP)-delivered mRNA vaccine expressing the HSV-2 envelope glycoprotein gD and evaluated its immunogenicity in mice. The mRNA vaccine was prepared from the genetically modified gD mRNA synthesized <i>in vitro</i> combined with the LPP delivery platform and it was named gD-ORI mRNA. The expression of gD antigen in the mRNA vaccine was validated <i>in vitro</i> by Western blotting and indirect immunofluorescence assay, then the immune responses induced by this mRNA vaccine in mice were evaluated. The immunization with gD mRNA alone induced strong humoral and cellular immune responses in mice. Robust and long-lasting gD-specific IgG antibodies were detected in the mouse serum after booster immunization with gD-ORI mRNA. The immunized mice exhibited a Th1/Th2 balanced IgG response and robust neutralizing antibodies against HSV-2, and a clear dose-response relationship was observed. The gD-specific IgG antibodies were maintained in mice for a long time, up to 18 weeks post-booster immunization. At the same time, multifunctional gD-specific CD4<sup>+</sup> and CD8<sup>+</sup> T cells in vaccinated mice were detected by intracellular cytokine staining (ICS). This novel gD-expressing mRNA vaccine delivered by LPP induces strong and long-lasting immune responses in mice post booster immunization and has a promising prospect for development and application. This study provides scientific evidence and reference for the development of a new mRNA vaccine for HSV-2.</p>","PeriodicalId":21778,"journal":{"name":"Sheng wu gong cheng xue bao = Chinese journal of biotechnology","volume":"41 8","pages":"3241-3251"},"PeriodicalIF":0.0,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144967702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Synthetic biology is a crucial tool for the development of the bio-industry and bio-economy, representing a significant aspect of new quality productive forces. As a core course for graduate students in bioengineering, Synthetic Biology plays a vital role in ensuring the supply of essential talents for the development of the bio-industry in the new era. To better serve regional economic development and provide high-level talents for China's progress in the bio-industry, we analyzed typical issues encountered in the past teaching activities, set up a multi-disciplinary teaching team, optimized the course contents, adjusted the teaching mode, and mobilized students' learning interest. With the application of scientific research project as the starting point, we guided students to think and discuss deeply through the simulation of application writing and project defense, which improved students' critical thinking and innovative thinking. With industrialization as a focus, we explored a new training model combining production, education, and research through the joint practice base of the university and enterprises introduced typical cases of biomanufacturing to encourage students to engage in scientific research. The teaching reform significantly enhances the comprehensive abilities and national sentiments of graduate students. This paper hopes to serve as a reference for colleagues engaged in teaching in this field.
{"title":"[Exploration and practice of teaching reform in Synthetic Biology].","authors":"Bo Zhang, Lianggang Huang, Aiping Pang, Zheyan Wu, Junping Zhou, Xue Cai, Lijuan Wang, Kun Niu, Liqun Jin, Zhiqiang Liu, Yuguo Zheng","doi":"10.13345/j.cjb.240778","DOIUrl":"https://doi.org/10.13345/j.cjb.240778","url":null,"abstract":"<p><p>Synthetic biology is a crucial tool for the development of the bio-industry and bio-economy, representing a significant aspect of new quality productive forces. As a core course for graduate students in bioengineering, Synthetic Biology plays a vital role in ensuring the supply of essential talents for the development of the bio-industry in the new era. To better serve regional economic development and provide high-level talents for China's progress in the bio-industry, we analyzed typical issues encountered in the past teaching activities, set up a multi-disciplinary teaching team, optimized the course contents, adjusted the teaching mode, and mobilized students' learning interest. With the application of scientific research project as the starting point, we guided students to think and discuss deeply through the simulation of application writing and project defense, which improved students' critical thinking and innovative thinking. With industrialization as a focus, we explored a new training model combining production, education, and research through the joint practice base of the university and enterprises introduced typical cases of biomanufacturing to encourage students to engage in scientific research. The teaching reform significantly enhances the comprehensive abilities and national sentiments of graduate students. This paper hopes to serve as a reference for colleagues engaged in teaching in this field.</p>","PeriodicalId":21778,"journal":{"name":"Sheng wu gong cheng xue bao = Chinese journal of biotechnology","volume":"41 8","pages":"3311-3317"},"PeriodicalIF":0.0,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144967820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ubiquitination is one of the most widely distributed, structurally diverse, and functionally important post-translational modifications for proteins in eukaryotic cells. At present, the methods for detecting ubiquitination signals mainly include immunological detection based on specific antibodies, mass spectrometry, and detection based on ubiquitin-binding domain (UBD), which together constitute a tool library for studying ubiquitination signals. Our team has previously developed a high-throughput detection technology based on an artificial tandem hybrid ubiquitin-binding domain (ThUBD), which achieves universal and highly sensitive detection of all polyubiquitin chain modification signals. This study aims to evaluate the specificity and range of ThUBD-coated multi-well plates in detecting ubiquitination signals and verify the reliability and practicality of these plates in practical applications. We then used this technology to analyze the complex and diverse ubiquitination signals in different biological samples such as cells, tissues, and urine and detect ubiquitination signals in different mass ranges. The results showed that this technology had strong universality and good specificity, and it can accurately identify ubiquitinated proteins from non-ubiquitinated proteins and achieve accurate quantification. This study provides a sensitive, specific, rapid, and efficient analytical technology for the high-throughput detection of ubiquitination signals.
{"title":"[Evaluation of high-throughput detection technology for ubiquitination signals based on ThUBD].","authors":"Hui Liu, Lei Chang, Ping Xu","doi":"10.13345/j.cjb.250127","DOIUrl":"10.13345/j.cjb.250127","url":null,"abstract":"<p><p>Ubiquitination is one of the most widely distributed, structurally diverse, and functionally important post-translational modifications for proteins in eukaryotic cells. At present, the methods for detecting ubiquitination signals mainly include immunological detection based on specific antibodies, mass spectrometry, and detection based on ubiquitin-binding domain (UBD), which together constitute a tool library for studying ubiquitination signals. Our team has previously developed a high-throughput detection technology based on an artificial tandem hybrid ubiquitin-binding domain (ThUBD), which achieves universal and highly sensitive detection of all polyubiquitin chain modification signals. This study aims to evaluate the specificity and range of ThUBD-coated multi-well plates in detecting ubiquitination signals and verify the reliability and practicality of these plates in practical applications. We then used this technology to analyze the complex and diverse ubiquitination signals in different biological samples such as cells, tissues, and urine and detect ubiquitination signals in different mass ranges. The results showed that this technology had strong universality and good specificity, and it can accurately identify ubiquitinated proteins from non-ubiquitinated proteins and achieve accurate quantification. This study provides a sensitive, specific, rapid, and efficient analytical technology for the high-throughput detection of ubiquitination signals.</p>","PeriodicalId":21778,"journal":{"name":"Sheng wu gong cheng xue bao = Chinese journal of biotechnology","volume":"41 8","pages":"3301-3310"},"PeriodicalIF":0.0,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144967827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chen Wang, Xun Zhang, Yu Bai, Hainan Liu, Xuan Liu, Cheng Cao
The Ebola virus (EBOV), a member of the Filoviridae family, is a highly pathogenic agent responsible for severe hemorrhagic fever in humans. Understanding the molecular mechanisms governing its replication is critical for developing effective antiviral strategies. VP35-TurboID immunosuppression coupled with quantitative mass spectrometry identified Septin9, the host GTP-binding protein which played a role in cytoskeletal regulation, as a novel interactor of VP35. Western blotting and Far-Western blotting confirmed the direct interaction and demonstrated that the C-terminal region of VP35 was the critical binding domain. Functionally, EBOV replication as well as the formation of viral inclusion bodies (VIBs) was demonstrated to be significantly suppressed by Septin9 knockdown and depletion, as shown by the EBOV minigenome (EBOV MG) and the transcription- and replication-competent virus-like particles (trVLPs) system. This study reveals that VP35 engages in a specific interaction with the GTP-binding protein Septin9, thereby impeding EBOV replication through the disruption of inclusion bodies. The overarching objective of this study is to significantly enhance our understanding about the pathogenic mechanism of EBOV and offer a robust theoretical foundation and solid empirical support for the formulation of innovative therapeutic strategies against EBOV.
{"title":"[Septin9 promotes viral replication by interacting with Ebola virus VP35 to regulate inclusion body formation].","authors":"Chen Wang, Xun Zhang, Yu Bai, Hainan Liu, Xuan Liu, Cheng Cao","doi":"10.13345/j.cjb.250149","DOIUrl":"https://doi.org/10.13345/j.cjb.250149","url":null,"abstract":"<p><p>The Ebola virus (EBOV), a member of the Filoviridae family, is a highly pathogenic agent responsible for severe hemorrhagic fever in humans. Understanding the molecular mechanisms governing its replication is critical for developing effective antiviral strategies. VP35-TurboID immunosuppression coupled with quantitative mass spectrometry identified Septin9, the host GTP-binding protein which played a role in cytoskeletal regulation, as a novel interactor of VP35. Western blotting and Far-Western blotting confirmed the direct interaction and demonstrated that the C-terminal region of VP35 was the critical binding domain. Functionally, EBOV replication as well as the formation of viral inclusion bodies (VIBs) was demonstrated to be significantly suppressed by Septin9 knockdown and depletion, as shown by the EBOV minigenome (EBOV MG) and the transcription- and replication-competent virus-like particles (trVLPs) system. This study reveals that VP35 engages in a specific interaction with the GTP-binding protein Septin9, thereby impeding EBOV replication through the disruption of inclusion bodies. The overarching objective of this study is to significantly enhance our understanding about the pathogenic mechanism of EBOV and offer a robust theoretical foundation and solid empirical support for the formulation of innovative therapeutic strategies against EBOV.</p>","PeriodicalId":21778,"journal":{"name":"Sheng wu gong cheng xue bao = Chinese journal of biotechnology","volume":"41 8","pages":"3228-3240"},"PeriodicalIF":0.0,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144967793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In recent years, the rapid development of transportation and sports industries, coupled with the accelerated population aging in China, has led to a steady increase in the incidence of articular cartilage injuries, wear, and degenerative changes. Currently, the clinical treatment options for cartilage defects primarily include conservative therapies and surgical interventions, both of which have certain limitations. Cartilage tissue engineering (CTE), as a novel technology, provides an infinite prospect for cartilage regeneration and repair. Because of the abilities of scaffolds to mimic the natural cartilage structure, exhibit excellent biocompatibility and biomimetic mechanical properties, and promote cell adhesion and proliferation, scaffolds are considered effective delivery systems for growth factors, genes, and drugs. This review summarizes the clinical treatments for cartilage defects and their limitations, discusses the materials and preparation techniques of scaffolds used in CTE, with a particular focus on drug-loaded scaffold delivery systems in cartilage repair and regeneration, and offers a perspective on the future application of drug-loaded CTE. The aim is to provide theoretical guidance and new approaches for the repair of cartilage defects.
{"title":"[Synergistic strategies of scaffold construction and drug delivery systems for cartilage regeneration].","authors":"Qiyao Zhang, Pei Feng, Zihan Pei, Yinsheng Cao, Kun Jiang, Xiong Cai, Ping Wu","doi":"10.13345/j.cjb.250056","DOIUrl":"https://doi.org/10.13345/j.cjb.250056","url":null,"abstract":"<p><p>In recent years, the rapid development of transportation and sports industries, coupled with the accelerated population aging in China, has led to a steady increase in the incidence of articular cartilage injuries, wear, and degenerative changes. Currently, the clinical treatment options for cartilage defects primarily include conservative therapies and surgical interventions, both of which have certain limitations. Cartilage tissue engineering (CTE), as a novel technology, provides an infinite prospect for cartilage regeneration and repair. Because of the abilities of scaffolds to mimic the natural cartilage structure, exhibit excellent biocompatibility and biomimetic mechanical properties, and promote cell adhesion and proliferation, scaffolds are considered effective delivery systems for growth factors, genes, and drugs. This review summarizes the clinical treatments for cartilage defects and their limitations, discusses the materials and preparation techniques of scaffolds used in CTE, with a particular focus on drug-loaded scaffold delivery systems in cartilage repair and regeneration, and offers a perspective on the future application of drug-loaded CTE. The aim is to provide theoretical guidance and new approaches for the repair of cartilage defects.</p>","PeriodicalId":21778,"journal":{"name":"Sheng wu gong cheng xue bao = Chinese journal of biotechnology","volume":"41 8","pages":"3049-3063"},"PeriodicalIF":0.0,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144967508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ying Chen, Can Wang, Qin Zhao, Mingren Wang, Tiantian Li, Shanshan Dong, Hong Shao, Weidong Xu
To develop a method for determining the antibody-dependent cell-mediated phagocytosis (ADCP) activity of human epidermal growth factor receptor 2 (HER2)-targeted antibody drug conjugate (ADC) based on the reporter gene assay, we established an ADCP activity assay with Jurkat/NFAT/FcγRIIa cells as the effector cells and BT474 as the target cells. Then, the target cell density, the ratio of effector to target cells, the target cell adhesion time, the incubation time for drug administration, and the induction time after adding effector cells were optimized by the method of design of experiment (DOE). The method showed a significant dose-response relationship, which was complied with the four-parameter equation: y=(A-D)/[1+(x/C)B]+D. The durability ranges of the target cell density, the ratio of effector to target cells, the target cell adhesion time, the incubation time for drug administration, and the induction time after adding effector cells were (2.5-4.0)×105 cells/mL, 3-5, 1.0-2.0 h, 0 h, and 5.0-6.0 h, respectively. The results of the methodological validation showed that the linear equation was y=1.106 8x-0.011 6, r=0.969 2. The established method showed the relative accuracy ranging from -6.59% to 2.98% and the geometric coefficient of variation less than 11% in the intermediate precision test. Furthermore, the method was target-specific. The method was then applied to the determination of ADCP activity of HER2-targeted ADC, demonstrating the result of (103.5±5.7)%. We developed a reporter gene assay for determining the ADCP activity of HER2-targeted ADC and the assay demonstrated high accuracy and good reproducibility, which proposes a highly efficient and approache for evaluating ADCP effect of this HER2-targeted ADC, and also provides a referable technique for characterizing the Fc effector functions of ADCs with diverse targets.
{"title":"[A reporter gene assay for determining antibody-dependent cell-mediated phagocytosis activity of HER2-targeted antibody drug conjugate].","authors":"Ying Chen, Can Wang, Qin Zhao, Mingren Wang, Tiantian Li, Shanshan Dong, Hong Shao, Weidong Xu","doi":"10.13345/j.cjb.240955","DOIUrl":"https://doi.org/10.13345/j.cjb.240955","url":null,"abstract":"<p><p>To develop a method for determining the antibody-dependent cell-mediated phagocytosis (ADCP) activity of human epidermal growth factor receptor 2 (HER2)-targeted antibody drug conjugate (ADC) based on the reporter gene assay, we established an ADCP activity assay with Jurkat/NFAT/FcγRIIa cells as the effector cells and BT474 as the target cells. Then, the target cell density, the ratio of effector to target cells, the target cell adhesion time, the incubation time for drug administration, and the induction time after adding effector cells were optimized by the method of design of experiment (DOE). The method showed a significant dose-response relationship, which was complied with the four-parameter equation: <i>y</i>=(A-D)/[1+(<i>x</i>/C)<sup>B</sup>]+D. The durability ranges of the target cell density, the ratio of effector to target cells, the target cell adhesion time, the incubation time for drug administration, and the induction time after adding effector cells were (2.5-4.0)×10<sup>5</sup> cells/mL, 3-5, 1.0-2.0 h, 0 h, and 5.0-6.0 h, respectively. The results of the methodological validation showed that the linear equation was <i>y</i>=1.106 8<i>x</i>-0.011 6, <i>r</i>=0.969 2. The established method showed the relative accuracy ranging from -6.59% to 2.98% and the geometric coefficient of variation less than 11% in the intermediate precision test. Furthermore, the method was target-specific. The method was then applied to the determination of ADCP activity of HER2-targeted ADC, demonstrating the result of (103.5±5.7)%. We developed a reporter gene assay for determining the ADCP activity of HER2-targeted ADC and the assay demonstrated high accuracy and good reproducibility, which proposes a highly efficient and approache for evaluating ADCP effect of this HER2-targeted ADC, and also provides a referable technique for characterizing the Fc effector functions of ADCs with diverse targets.</p>","PeriodicalId":21778,"journal":{"name":"Sheng wu gong cheng xue bao = Chinese journal of biotechnology","volume":"41 8","pages":"3122-3130"},"PeriodicalIF":0.0,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144967657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuhao Zhu, Wenlong Zhu, Yujie Lai, Mengjia Zhang, Wentao Li
Phage immunoprecipitation sequencing (PhIP-Seq) is a high-throughput and low-cost method for analyzing the specific binding of target proteins to peptide libraries. The method uses oligonucleotide library synthesis (OLS) to encode proteome-scale peptide libraries for display on phages, and then immunoprecipitates these library phages with target proteins (such as antibodies) for subsequent analysis by high-throughput DNA sequencing. PhIP-Seq enables the screening of peptide targets that react specifically with hundreds of proteins or pathogens. PhIP-Seq has been successfully applied in various fields such as disease detection, screening of autoimmune disease biomarkers, vaccine development, and allergen detection, becoming a high-throughput diagnostic technology. This article systematically describes the development, applications, and result evaluation of PhIP-Seq, in order to gain a more comprehensive understanding of the application and future development prospects of this technology in various fields.
{"title":"[Advances in phage immunoprecipitation sequencing technology].","authors":"Yuhao Zhu, Wenlong Zhu, Yujie Lai, Mengjia Zhang, Wentao Li","doi":"10.13345/j.cjb.250221","DOIUrl":"https://doi.org/10.13345/j.cjb.250221","url":null,"abstract":"<p><p>Phage immunoprecipitation sequencing (PhIP-Seq) is a high-throughput and low-cost method for analyzing the specific binding of target proteins to peptide libraries. The method uses oligonucleotide library synthesis (OLS) to encode proteome-scale peptide libraries for display on phages, and then immunoprecipitates these library phages with target proteins (such as antibodies) for subsequent analysis by high-throughput DNA sequencing. PhIP-Seq enables the screening of peptide targets that react specifically with hundreds of proteins or pathogens. PhIP-Seq has been successfully applied in various fields such as disease detection, screening of autoimmune disease biomarkers, vaccine development, and allergen detection, becoming a high-throughput diagnostic technology. This article systematically describes the development, applications, and result evaluation of PhIP-Seq, in order to gain a more comprehensive understanding of the application and future development prospects of this technology in various fields.</p>","PeriodicalId":21778,"journal":{"name":"Sheng wu gong cheng xue bao = Chinese journal of biotechnology","volume":"41 8","pages":"2987-3007"},"PeriodicalIF":0.0,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144967684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhuowei Shi, Ying Zhang, Qingya Tian, Ziqiang Wang, Hong Shao
This study aims to establish a method for counting the viral particles in adenovirus vector-based vaccines. Nano-flow cytometry was employed to analyze the viral particles in adenovirus-based vector vaccines at the single-particle level. Monodisperse silica nanoparticles with a refractive index close to that of the virus were selected as the particle size standard to calculate the viral particle size, which was then compared with the results obtained from transmission electron microscopy (TEM) to determine the gating strategy. Subsequently, a particle count standard was employed to calculate the viral particle concentration. The established method demonstrated good linearity, accuracy, precision, and specificity. The results of determined viral particle concentration showed a good correlation with the infectious titer. Compared with the conventional OD260 method, nano-flow cytometry can directly measure the viral particle concentration and indicate whether the sample has been disassembled according to changes in viral particle concentration and size, thus more accurately reflecting the actual infectious potency of the sample. The novel quantification method established in this study is capable of indicating the efficacy of adenovirus vector-based vaccines and provides effective technical support for the quality control of such products.
{"title":"[Quantification of viral particles in adenovirus vector-based vaccines by nano-flow cytometry].","authors":"Zhuowei Shi, Ying Zhang, Qingya Tian, Ziqiang Wang, Hong Shao","doi":"10.13345/j.cjb.250160","DOIUrl":"https://doi.org/10.13345/j.cjb.250160","url":null,"abstract":"<p><p>This study aims to establish a method for counting the viral particles in adenovirus vector-based vaccines. Nano-flow cytometry was employed to analyze the viral particles in adenovirus-based vector vaccines at the single-particle level. Monodisperse silica nanoparticles with a refractive index close to that of the virus were selected as the particle size standard to calculate the viral particle size, which was then compared with the results obtained from transmission electron microscopy (TEM) to determine the gating strategy. Subsequently, a particle count standard was employed to calculate the viral particle concentration. The established method demonstrated good linearity, accuracy, precision, and specificity. The results of determined viral particle concentration showed a good correlation with the infectious titer. Compared with the conventional <i>OD</i><sub>260</sub> method, nano-flow cytometry can directly measure the viral particle concentration and indicate whether the sample has been disassembled according to changes in viral particle concentration and size, thus more accurately reflecting the actual infectious potency of the sample. The novel quantification method established in this study is capable of indicating the efficacy of adenovirus vector-based vaccines and provides effective technical support for the quality control of such products.</p>","PeriodicalId":21778,"journal":{"name":"Sheng wu gong cheng xue bao = Chinese journal of biotechnology","volume":"41 8","pages":"3155-3164"},"PeriodicalIF":0.0,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144967766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}