B. Lu, Dunan Hu, Ruqi Yang, Jigang Du, Lingxiang Hu, Siqin Li, Fengzhi Wang, Jingyun Huang, Pingwei Liu, F. Zhuge, Yutian Zeng, Zhuolin Ye, Jianguo Lu
Conductive‐bridge random access memory (CBRAM) emerges as a promising candidate for next‐generation memory and storage device. However, CBRAMs are prone to degenerate and fail during electrochemical metallization processes. To address this issue, herein we propose a self‐repairability strategy for CBRAMs. Amorphous NbSe2 was designed as the resistive switching layer, with Cu and Au as the top and bottom electrodes, respectively. The NbSe2 CBRAMs demonstrate exceptional cycle‐to‐cycle and device‐to‐device uniformity, with forming‐free and compliance current‐free resistive switching characteristics, low‐operation voltage, and competitive endurance and retention performance. Most importantly, the self‐repairable behavior is discovered for the first time in CBRAM. The device after failure can recover its performance to the initially normal state by operating with a slightly large reset voltage. The existence of Cu conductive filament and excellent controllability of Cu migration in the NbSe2 switching layer has been revealed by a designed broken‐down point approach, which is responsible for the self‐repairable behavior of NbSe2 CBRAMs. Our self‐repairable and high‐uniform amorphous NbSe2 CBRAM may open the door to the development of memory and storage devices in the future.
{"title":"Self‐repairable, high‐uniform conductive‐bridge random access memory based on amorphous NbSe2","authors":"B. Lu, Dunan Hu, Ruqi Yang, Jigang Du, Lingxiang Hu, Siqin Li, Fengzhi Wang, Jingyun Huang, Pingwei Liu, F. Zhuge, Yutian Zeng, Zhuolin Ye, Jianguo Lu","doi":"10.1002/smm2.1240","DOIUrl":"https://doi.org/10.1002/smm2.1240","url":null,"abstract":"Conductive‐bridge random access memory (CBRAM) emerges as a promising candidate for next‐generation memory and storage device. However, CBRAMs are prone to degenerate and fail during electrochemical metallization processes. To address this issue, herein we propose a self‐repairability strategy for CBRAMs. Amorphous NbSe2 was designed as the resistive switching layer, with Cu and Au as the top and bottom electrodes, respectively. The NbSe2 CBRAMs demonstrate exceptional cycle‐to‐cycle and device‐to‐device uniformity, with forming‐free and compliance current‐free resistive switching characteristics, low‐operation voltage, and competitive endurance and retention performance. Most importantly, the self‐repairable behavior is discovered for the first time in CBRAM. The device after failure can recover its performance to the initially normal state by operating with a slightly large reset voltage. The existence of Cu conductive filament and excellent controllability of Cu migration in the NbSe2 switching layer has been revealed by a designed broken‐down point approach, which is responsible for the self‐repairable behavior of NbSe2 CBRAMs. Our self‐repairable and high‐uniform amorphous NbSe2 CBRAM may open the door to the development of memory and storage devices in the future.","PeriodicalId":21794,"journal":{"name":"SmartMat","volume":"91 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80537067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gulzada Beket, A. Zubayer, Qilun Zhang, J. Stahn, F. Eriksson, M. Fahlman, T. Österberg, J. Bergqvist, Feng Gao
Harvesting indoor light to power electronic devices for the Internet of Things has become an application scenario for emerging photovoltaics, especially utilizing organic photovoltaics (OPVs). Combined liquid‐ and solid‐state processing, such as printing and lamination used in industry for developing indoor OPVs, also provides a new opportunity to investigate the device structure, which is otherwise hardly possible based on the conventional approach due to solvent orthogonality. This study investigates the impact of fullerene‐based acceptor interlayer on the performance of conjugated polymer–fullerene‐based laminated OPVs for indoor applications. We observe open‐circuit voltage (VOC) loss across the interface despite this arrangement being presumed to be ideal for optimal device performance. Incorporating insulating organic components such as polyethyleneimine (PEI) or polystyrene (PS) into fullerene interlayers decreases the work function of the cathode, leading to better energy level alignment with the active layer (AL) and reducing the VOC loss across the interface. Neutron reflectivity studies further uncover two different mechanisms behind the VOC increase upon the incorporation of these insulating organic components. The self‐organized PEI layer could hinder the transfer of holes from the AL to the acceptor interlayer, while the gradient distribution of the PS‐incorporated fullerene interlayer eliminates the thermalization losses. This work highlights the importance of structural dynamics near the extraction interfaces in OPVs and provides experimental demonstrations of interface investigation between solution‐processed cathodic fullerene layer and bulk heterojunction AL.
{"title":"Overcoming the voltage losses caused by the acceptor‐based interlayer in laminated indoor OPVs","authors":"Gulzada Beket, A. Zubayer, Qilun Zhang, J. Stahn, F. Eriksson, M. Fahlman, T. Österberg, J. Bergqvist, Feng Gao","doi":"10.1002/smm2.1237","DOIUrl":"https://doi.org/10.1002/smm2.1237","url":null,"abstract":"Harvesting indoor light to power electronic devices for the Internet of Things has become an application scenario for emerging photovoltaics, especially utilizing organic photovoltaics (OPVs). Combined liquid‐ and solid‐state processing, such as printing and lamination used in industry for developing indoor OPVs, also provides a new opportunity to investigate the device structure, which is otherwise hardly possible based on the conventional approach due to solvent orthogonality. This study investigates the impact of fullerene‐based acceptor interlayer on the performance of conjugated polymer–fullerene‐based laminated OPVs for indoor applications. We observe open‐circuit voltage (VOC) loss across the interface despite this arrangement being presumed to be ideal for optimal device performance. Incorporating insulating organic components such as polyethyleneimine (PEI) or polystyrene (PS) into fullerene interlayers decreases the work function of the cathode, leading to better energy level alignment with the active layer (AL) and reducing the VOC loss across the interface. Neutron reflectivity studies further uncover two different mechanisms behind the VOC increase upon the incorporation of these insulating organic components. The self‐organized PEI layer could hinder the transfer of holes from the AL to the acceptor interlayer, while the gradient distribution of the PS‐incorporated fullerene interlayer eliminates the thermalization losses. This work highlights the importance of structural dynamics near the extraction interfaces in OPVs and provides experimental demonstrations of interface investigation between solution‐processed cathodic fullerene layer and bulk heterojunction AL.","PeriodicalId":21794,"journal":{"name":"SmartMat","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85580615","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chiwei Xu, Jinjue Zeng, Yue Wang, Xiangfen Jiang, Xuebin Wang
Outside back cover image: Advanced light-element inorganic foams, such as graphene or boron nitride foams, have the ability to deliver the outstanding nano-scaled properties upon the macroscopic foam bulks. Their 3D network structure can avoid the severe agglomeration and the weak interconnection between building blocks in previous powder state. Consequently, such 3D network confers large surface area and excellent mechanical, thermal, and electrical characteristics. These graphene or boron nitride foams are utilized in smart multi-functional applications such as supporters, elastomers, acoustic and electromagnetic shields or absorbers, thermal management, adsorbents, electro- and thermo-catalysts, and battery electrodes. (DOI: https://doi.org/10.1002/smm2.1199)
{"title":"Outside Back Cover: Volume 4 Issue 4","authors":"Chiwei Xu, Jinjue Zeng, Yue Wang, Xiangfen Jiang, Xuebin Wang","doi":"10.1002/smm2.1242","DOIUrl":"https://doi.org/10.1002/smm2.1242","url":null,"abstract":"Outside back cover image: Advanced light-element inorganic foams, such as graphene or boron nitride foams, have the ability to deliver the outstanding nano-scaled properties upon the macroscopic foam bulks. Their 3D network structure can avoid the severe agglomeration and the weak interconnection between building blocks in previous powder state. Consequently, such 3D network confers large surface area and excellent mechanical, thermal, and electrical characteristics. These graphene or boron nitride foams are utilized in smart multi-functional applications such as supporters, elastomers, acoustic and electromagnetic shields or absorbers, thermal management, adsorbents, electro- and thermo-catalysts, and battery electrodes. (DOI: https://doi.org/10.1002/smm2.1199)","PeriodicalId":21794,"journal":{"name":"SmartMat","volume":"32 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136223064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Outside front cover image: Dielectric elastomer actuators (DEAs) emerge as a soft actuation technology that exhibits such advantageous properties as large strains, fast responses, high energy densities, and mechanical compliancy. Extensive research over the past few decades has advanced the performance of DEAs to match or even exceed the capabilities of natural muscles. These exciting breakthroughs have led to a wide range of applications in the field of soft robotics, including automation, manipulation, locomotion, and human-robot interaction. Here, we review major advancements in dielectric elastomer materials, and provide an overview of groundbreaking soft robotic applications. (DOI: https://doi.org/10.1002/smm2.1203)
{"title":"Outside Front Cover: Volume 4 Issue 4","authors":"Yuxuan Guo, Qicong Qin, Ziqing Han, Roshan Plamthottam, Mason Possinger, Qibing Pei","doi":"10.1002/smm2.1241","DOIUrl":"https://doi.org/10.1002/smm2.1241","url":null,"abstract":"Outside front cover image: Dielectric elastomer actuators (DEAs) emerge as a soft actuation technology that exhibits such advantageous properties as large strains, fast responses, high energy densities, and mechanical compliancy. Extensive research over the past few decades has advanced the performance of DEAs to match or even exceed the capabilities of natural muscles. These exciting breakthroughs have led to a wide range of applications in the field of soft robotics, including automation, manipulation, locomotion, and human-robot interaction. Here, we review major advancements in dielectric elastomer materials, and provide an overview of groundbreaking soft robotic applications. (DOI: https://doi.org/10.1002/smm2.1203)","PeriodicalId":21794,"journal":{"name":"SmartMat","volume":"218 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136223065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}