首页 > 最新文献

SmartMat最新文献

英文 中文
Self‐repairable, high‐uniform conductive‐bridge random access memory based on amorphous NbSe2 基于非晶NbSe2的自修复、高均匀导电桥随机存取存储器
Pub Date : 2023-08-08 DOI: 10.1002/smm2.1240
B. Lu, Dunan Hu, Ruqi Yang, Jigang Du, Lingxiang Hu, Siqin Li, Fengzhi Wang, Jingyun Huang, Pingwei Liu, F. Zhuge, Yutian Zeng, Zhuolin Ye, Jianguo Lu
Conductive‐bridge random access memory (CBRAM) emerges as a promising candidate for next‐generation memory and storage device. However, CBRAMs are prone to degenerate and fail during electrochemical metallization processes. To address this issue, herein we propose a self‐repairability strategy for CBRAMs. Amorphous NbSe2 was designed as the resistive switching layer, with Cu and Au as the top and bottom electrodes, respectively. The NbSe2 CBRAMs demonstrate exceptional cycle‐to‐cycle and device‐to‐device uniformity, with forming‐free and compliance current‐free resistive switching characteristics, low‐operation voltage, and competitive endurance and retention performance. Most importantly, the self‐repairable behavior is discovered for the first time in CBRAM. The device after failure can recover its performance to the initially normal state by operating with a slightly large reset voltage. The existence of Cu conductive filament and excellent controllability of Cu migration in the NbSe2 switching layer has been revealed by a designed broken‐down point approach, which is responsible for the self‐repairable behavior of NbSe2 CBRAMs. Our self‐repairable and high‐uniform amorphous NbSe2 CBRAM may open the door to the development of memory and storage devices in the future.
导电桥随机存取存储器(CBRAM)是下一代存储器和存储器件的一个很有前途的候选者。然而,在电化学金属化过程中,cbram容易发生退化和失效。为了解决这一问题,本文提出了一种cbram的自我修复策略。非晶NbSe2被设计为电阻开关层,Cu和Au分别作为上电极和下电极。NbSe2 cbram具有优异的周期到周期和器件到器件的均匀性,具有无成形和无电流的电阻开关特性,低工作电压,具有竞争力的耐用性和保持性能。最重要的是,在CBRAM中首次发现了自修复行为。故障后的器件可以通过稍大的复位电压运行,使其性能恢复到最初的正常状态。通过设计的击穿点方法揭示了Cu导电丝的存在和Cu在NbSe2开关层中迁移的优异可控性,这是NbSe2 cbram自修复行为的原因。我们的自修复和高均匀非晶NbSe2 CBRAM可能为未来存储器和存储设备的发展打开大门。
{"title":"Self‐repairable, high‐uniform conductive‐bridge random access memory based on amorphous NbSe2","authors":"B. Lu, Dunan Hu, Ruqi Yang, Jigang Du, Lingxiang Hu, Siqin Li, Fengzhi Wang, Jingyun Huang, Pingwei Liu, F. Zhuge, Yutian Zeng, Zhuolin Ye, Jianguo Lu","doi":"10.1002/smm2.1240","DOIUrl":"https://doi.org/10.1002/smm2.1240","url":null,"abstract":"Conductive‐bridge random access memory (CBRAM) emerges as a promising candidate for next‐generation memory and storage device. However, CBRAMs are prone to degenerate and fail during electrochemical metallization processes. To address this issue, herein we propose a self‐repairability strategy for CBRAMs. Amorphous NbSe2 was designed as the resistive switching layer, with Cu and Au as the top and bottom electrodes, respectively. The NbSe2 CBRAMs demonstrate exceptional cycle‐to‐cycle and device‐to‐device uniformity, with forming‐free and compliance current‐free resistive switching characteristics, low‐operation voltage, and competitive endurance and retention performance. Most importantly, the self‐repairable behavior is discovered for the first time in CBRAM. The device after failure can recover its performance to the initially normal state by operating with a slightly large reset voltage. The existence of Cu conductive filament and excellent controllability of Cu migration in the NbSe2 switching layer has been revealed by a designed broken‐down point approach, which is responsible for the self‐repairable behavior of NbSe2 CBRAMs. Our self‐repairable and high‐uniform amorphous NbSe2 CBRAM may open the door to the development of memory and storage devices in the future.","PeriodicalId":21794,"journal":{"name":"SmartMat","volume":"91 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80537067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Overcoming the voltage losses caused by the acceptor‐based interlayer in laminated indoor OPVs 克服了室内层压opv中基于受体的中间层造成的电压损失
Pub Date : 2023-08-02 DOI: 10.1002/smm2.1237
Gulzada Beket, A. Zubayer, Qilun Zhang, J. Stahn, F. Eriksson, M. Fahlman, T. Österberg, J. Bergqvist, Feng Gao
Harvesting indoor light to power electronic devices for the Internet of Things has become an application scenario for emerging photovoltaics, especially utilizing organic photovoltaics (OPVs). Combined liquid‐ and solid‐state processing, such as printing and lamination used in industry for developing indoor OPVs, also provides a new opportunity to investigate the device structure, which is otherwise hardly possible based on the conventional approach due to solvent orthogonality. This study investigates the impact of fullerene‐based acceptor interlayer on the performance of conjugated polymer–fullerene‐based laminated OPVs for indoor applications. We observe open‐circuit voltage (VOC) loss across the interface despite this arrangement being presumed to be ideal for optimal device performance. Incorporating insulating organic components such as polyethyleneimine (PEI) or polystyrene (PS) into fullerene interlayers decreases the work function of the cathode, leading to better energy level alignment with the active layer (AL) and reducing the VOC loss across the interface. Neutron reflectivity studies further uncover two different mechanisms behind the VOC increase upon the incorporation of these insulating organic components. The self‐organized PEI layer could hinder the transfer of holes from the AL to the acceptor interlayer, while the gradient distribution of the PS‐incorporated fullerene interlayer eliminates the thermalization losses. This work highlights the importance of structural dynamics near the extraction interfaces in OPVs and provides experimental demonstrations of interface investigation between solution‐processed cathodic fullerene layer and bulk heterojunction AL.
收集室内光为物联网电子设备供电已成为新兴光伏,特别是利用有机光伏(opv)的应用场景。结合液态和固态处理,例如用于工业开发室内opv的印刷和层压,也为研究器件结构提供了新的机会,否则基于溶剂正交性的传统方法几乎不可能。本研究探讨了富勒烯基受体间层对室内应用的共轭聚合物-富勒烯基叠层opv性能的影响。尽管这种排列被认为是理想的最佳器件性能,但我们观察到整个接口的开路电压(VOC)损耗。将绝缘有机成分(如聚乙烯亚胺(PEI)或聚苯乙烯(PS))纳入富勒烯中间层可以降低阴极的功函数,从而与活性层(AL)形成更好的能级排列,并减少通过界面的VOC损失。中子反射率研究进一步揭示了两种不同的机制背后的VOC增加在这些绝缘有机成分的合并。自组织的PEI层阻碍了空穴从AL向受体间层的转移,而PS掺杂的富勒烯间层的梯度分布消除了热化损失。这项工作强调了opv中萃取界面附近结构动力学的重要性,并提供了溶液处理阴极富勒烯层和体异质结AL之间界面研究的实验证明。
{"title":"Overcoming the voltage losses caused by the acceptor‐based interlayer in laminated indoor OPVs","authors":"Gulzada Beket, A. Zubayer, Qilun Zhang, J. Stahn, F. Eriksson, M. Fahlman, T. Österberg, J. Bergqvist, Feng Gao","doi":"10.1002/smm2.1237","DOIUrl":"https://doi.org/10.1002/smm2.1237","url":null,"abstract":"Harvesting indoor light to power electronic devices for the Internet of Things has become an application scenario for emerging photovoltaics, especially utilizing organic photovoltaics (OPVs). Combined liquid‐ and solid‐state processing, such as printing and lamination used in industry for developing indoor OPVs, also provides a new opportunity to investigate the device structure, which is otherwise hardly possible based on the conventional approach due to solvent orthogonality. This study investigates the impact of fullerene‐based acceptor interlayer on the performance of conjugated polymer–fullerene‐based laminated OPVs for indoor applications. We observe open‐circuit voltage (VOC) loss across the interface despite this arrangement being presumed to be ideal for optimal device performance. Incorporating insulating organic components such as polyethyleneimine (PEI) or polystyrene (PS) into fullerene interlayers decreases the work function of the cathode, leading to better energy level alignment with the active layer (AL) and reducing the VOC loss across the interface. Neutron reflectivity studies further uncover two different mechanisms behind the VOC increase upon the incorporation of these insulating organic components. The self‐organized PEI layer could hinder the transfer of holes from the AL to the acceptor interlayer, while the gradient distribution of the PS‐incorporated fullerene interlayer eliminates the thermalization losses. This work highlights the importance of structural dynamics near the extraction interfaces in OPVs and provides experimental demonstrations of interface investigation between solution‐processed cathodic fullerene layer and bulk heterojunction AL.","PeriodicalId":21794,"journal":{"name":"SmartMat","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85580615","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Outside Back Cover: Volume 4 Issue 4 外封底:第4卷第4期
Pub Date : 2023-08-01 DOI: 10.1002/smm2.1242
Chiwei Xu, Jinjue Zeng, Yue Wang, Xiangfen Jiang, Xuebin Wang
Outside back cover image: Advanced light-element inorganic foams, such as graphene or boron nitride foams, have the ability to deliver the outstanding nano-scaled properties upon the macroscopic foam bulks. Their 3D network structure can avoid the severe agglomeration and the weak interconnection between building blocks in previous powder state. Consequently, such 3D network confers large surface area and excellent mechanical, thermal, and electrical characteristics. These graphene or boron nitride foams are utilized in smart multi-functional applications such as supporters, elastomers, acoustic and electromagnetic shields or absorbers, thermal management, adsorbents, electro- and thermo-catalysts, and battery electrodes. (DOI: https://doi.org/10.1002/smm2.1199)
后盖外图:先进的轻元素无机泡沫,如石墨烯或氮化硼泡沫,能够在宏观泡沫体上提供出色的纳米级性能。它们的三维网络结构可以避免先前粉末状态下构件之间的严重团聚和弱互连。因此,这种3D网络具有较大的表面积和优异的机械、热学和电学特性。这些石墨烯或氮化硼泡沫可用于智能多功能应用,如支撑体、弹性体、声学和电磁屏蔽或吸收剂、热管理、吸附剂、电和热催化剂以及电池电极。(DOI: https://doi.org/10.1002/smm2.1199)
{"title":"Outside Back Cover: Volume 4 Issue 4","authors":"Chiwei Xu, Jinjue Zeng, Yue Wang, Xiangfen Jiang, Xuebin Wang","doi":"10.1002/smm2.1242","DOIUrl":"https://doi.org/10.1002/smm2.1242","url":null,"abstract":"Outside back cover image: Advanced light-element inorganic foams, such as graphene or boron nitride foams, have the ability to deliver the outstanding nano-scaled properties upon the macroscopic foam bulks. Their 3D network structure can avoid the severe agglomeration and the weak interconnection between building blocks in previous powder state. Consequently, such 3D network confers large surface area and excellent mechanical, thermal, and electrical characteristics. These graphene or boron nitride foams are utilized in smart multi-functional applications such as supporters, elastomers, acoustic and electromagnetic shields or absorbers, thermal management, adsorbents, electro- and thermo-catalysts, and battery electrodes. (DOI: https://doi.org/10.1002/smm2.1199)","PeriodicalId":21794,"journal":{"name":"SmartMat","volume":"32 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136223064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Outside Front Cover: Volume 4 Issue 4 封面:第4卷第4期
Pub Date : 2023-08-01 DOI: 10.1002/smm2.1241
Yuxuan Guo, Qicong Qin, Ziqing Han, Roshan Plamthottam, Mason Possinger, Qibing Pei
Outside front cover image: Dielectric elastomer actuators (DEAs) emerge as a soft actuation technology that exhibits such advantageous properties as large strains, fast responses, high energy densities, and mechanical compliancy. Extensive research over the past few decades has advanced the performance of DEAs to match or even exceed the capabilities of natural muscles. These exciting breakthroughs have led to a wide range of applications in the field of soft robotics, including automation, manipulation, locomotion, and human-robot interaction. Here, we review major advancements in dielectric elastomer materials, and provide an overview of groundbreaking soft robotic applications. (DOI: https://doi.org/10.1002/smm2.1203)
外部封面图像:介电弹性体致动器(dea)作为一种软致动技术出现,具有大应变、快速响应、高能量密度和机械顺应性等优点。在过去的几十年里,广泛的研究已经将dea的性能提升到与天然肌肉相匹配甚至超过天然肌肉的能力。这些令人兴奋的突破导致了软机器人领域的广泛应用,包括自动化、操纵、运动和人机交互。在这里,我们回顾了介电弹性体材料的主要进展,并提供了突破性的软机器人应用概述。(DOI: https://doi.org/10.1002/smm2.1203)
{"title":"Outside Front Cover: Volume 4 Issue 4","authors":"Yuxuan Guo, Qicong Qin, Ziqing Han, Roshan Plamthottam, Mason Possinger, Qibing Pei","doi":"10.1002/smm2.1241","DOIUrl":"https://doi.org/10.1002/smm2.1241","url":null,"abstract":"Outside front cover image: Dielectric elastomer actuators (DEAs) emerge as a soft actuation technology that exhibits such advantageous properties as large strains, fast responses, high energy densities, and mechanical compliancy. Extensive research over the past few decades has advanced the performance of DEAs to match or even exceed the capabilities of natural muscles. These exciting breakthroughs have led to a wide range of applications in the field of soft robotics, including automation, manipulation, locomotion, and human-robot interaction. Here, we review major advancements in dielectric elastomer materials, and provide an overview of groundbreaking soft robotic applications. (DOI: https://doi.org/10.1002/smm2.1203)","PeriodicalId":21794,"journal":{"name":"SmartMat","volume":"218 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136223065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Atomic‐scale interface engineering for two‐dimensional materials based field‐effect transistors 基于二维材料的场效应晶体管的原子尺度界面工程
Pub Date : 2023-07-26 DOI: 10.1002/smm2.1236
Xiangyu Hou, Tengyu Jin, Yue Zheng, Wei Chen
{"title":"Atomic‐scale interface engineering for two‐dimensional materials based field‐effect transistors","authors":"Xiangyu Hou, Tengyu Jin, Yue Zheng, Wei Chen","doi":"10.1002/smm2.1236","DOIUrl":"https://doi.org/10.1002/smm2.1236","url":null,"abstract":"","PeriodicalId":21794,"journal":{"name":"SmartMat","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86506222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Light‐controlled switchable underwater adhesive 光控可切换水下粘合剂
Pub Date : 2023-07-26 DOI: 10.1002/smm2.1235
Song Yang, Yanfei Ma, Chenxi Qin, Zhizhi Zhang, Jianqing Yu, Xiaowei Pei, Bo Yu, Wenbo Sheng, F. Zhou, Weiming Liu
{"title":"Light‐controlled switchable underwater adhesive","authors":"Song Yang, Yanfei Ma, Chenxi Qin, Zhizhi Zhang, Jianqing Yu, Xiaowei Pei, Bo Yu, Wenbo Sheng, F. Zhou, Weiming Liu","doi":"10.1002/smm2.1235","DOIUrl":"https://doi.org/10.1002/smm2.1235","url":null,"abstract":"","PeriodicalId":21794,"journal":{"name":"SmartMat","volume":"12 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74568984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultrasmall high‐entropy alloy nanoparticles with 1 nm size by continuous‐flow reactor 通过连续流反应器制备1nm尺寸的超小型高熵合金纳米颗粒
Pub Date : 2023-07-26 DOI: 10.1002/smm2.1239
Li Li, Zhicheng Zhang
{"title":"Ultrasmall high‐entropy alloy nanoparticles with 1 nm size by continuous‐flow reactor","authors":"Li Li, Zhicheng Zhang","doi":"10.1002/smm2.1239","DOIUrl":"https://doi.org/10.1002/smm2.1239","url":null,"abstract":"","PeriodicalId":21794,"journal":{"name":"SmartMat","volume":"26 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83922770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Iontronic and electrochemical investigations of 2D tellurene in aqueous electrolytes 二维碲在水溶液中的离子电子和电化学研究
Pub Date : 2023-07-14 DOI: 10.1002/smm2.1234
Zongxiao Wu, Junlei Qi, Wenbin Wang, Pengzhan Yang, Chen Ma, Haoxin Huang, Kaijing Bao, Jingkun Wu, Chengxuan Ke, Yenying W. Chen, Chaoliang Tan, D. Repaka, Qiyuan He
{"title":"Iontronic and electrochemical investigations of 2D tellurene in aqueous electrolytes","authors":"Zongxiao Wu, Junlei Qi, Wenbin Wang, Pengzhan Yang, Chen Ma, Haoxin Huang, Kaijing Bao, Jingkun Wu, Chengxuan Ke, Yenying W. Chen, Chaoliang Tan, D. Repaka, Qiyuan He","doi":"10.1002/smm2.1234","DOIUrl":"https://doi.org/10.1002/smm2.1234","url":null,"abstract":"","PeriodicalId":21794,"journal":{"name":"SmartMat","volume":"9 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75042676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Better engineering layered vanadium oxides for aqueous zinc‐ion batteries: Going beyond widening the interlayer spacing 更好的工程层状氧化钒水锌离子电池:超越扩大层间间距
Pub Date : 2023-07-14 DOI: 10.1002/smm2.1231
Yue Guo, Hanmei Jiang, Binbin Liu, Xingyang Wang, Yifu Zhang, Jianguo Sun, John Wang
{"title":"Better engineering layered vanadium oxides for aqueous zinc‐ion batteries: Going beyond widening the interlayer spacing","authors":"Yue Guo, Hanmei Jiang, Binbin Liu, Xingyang Wang, Yifu Zhang, Jianguo Sun, John Wang","doi":"10.1002/smm2.1231","DOIUrl":"https://doi.org/10.1002/smm2.1231","url":null,"abstract":"","PeriodicalId":21794,"journal":{"name":"SmartMat","volume":"269 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77168816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A‐site coordinating cation engineering in zero‐dimensional antimony halide perovskites for strong self‐trapped exciton emission 零维卤化锑钙钛矿中的A位配位阳离子工程用于强自俘获激子发射
Pub Date : 2023-07-04 DOI: 10.1002/smm2.1224
Xingyi Liu, Xiaowen Gao, Lin Xiong, Shuo-Xue Li, Yu Zhang, Qi Li, Hong Jiang, Dongsheng Xu
{"title":"A‐site coordinating cation engineering in zero‐dimensional antimony halide perovskites for strong self‐trapped exciton emission","authors":"Xingyi Liu, Xiaowen Gao, Lin Xiong, Shuo-Xue Li, Yu Zhang, Qi Li, Hong Jiang, Dongsheng Xu","doi":"10.1002/smm2.1224","DOIUrl":"https://doi.org/10.1002/smm2.1224","url":null,"abstract":"","PeriodicalId":21794,"journal":{"name":"SmartMat","volume":"28 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83031512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
SmartMat
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1