首页 > 最新文献

SmartMat最新文献

英文 中文
Highly robust zinc metal anode directed by organic–inorganic synergistic interfaces for wearable aqueous zinc battery 可穿戴水性锌电池用有机-无机协同界面定向高鲁棒锌金属阳极
Pub Date : 2023-05-19 DOI: 10.1002/smm2.1212
Xixi Zhang, Chuanlin Li, Guangmeng Qu, Chenggang Wang, Shunshun Zhao, Tongkai Wang, Na Li, Xiaojuan Li, Xijin Xu
{"title":"Highly robust zinc metal anode directed by organic–inorganic synergistic interfaces for wearable aqueous zinc battery","authors":"Xixi Zhang, Chuanlin Li, Guangmeng Qu, Chenggang Wang, Shunshun Zhao, Tongkai Wang, Na Li, Xiaojuan Li, Xijin Xu","doi":"10.1002/smm2.1212","DOIUrl":"https://doi.org/10.1002/smm2.1212","url":null,"abstract":"","PeriodicalId":21794,"journal":{"name":"SmartMat","volume":"62 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74985373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Intelligent ion gels: Design, performance, and applications 智能离子凝胶:设计、性能和应用
Pub Date : 2023-05-16 DOI: 10.1002/smm2.1215
Naiwei Gao, Caofeng Pan
{"title":"Intelligent ion gels: Design, performance, and applications","authors":"Naiwei Gao, Caofeng Pan","doi":"10.1002/smm2.1215","DOIUrl":"https://doi.org/10.1002/smm2.1215","url":null,"abstract":"","PeriodicalId":21794,"journal":{"name":"SmartMat","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89678313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Artificial intelligence‐assisted point‐of‐care testing system for ultrafast and quantitative detection of drug‐resistant bacteria 人工智能辅助点护理测试系统,用于超快速和定量检测耐药细菌
Pub Date : 2023-05-10 DOI: 10.1002/smm2.1214
Yang Ding, Jingjie Chen, Qiong Wu, Bin Fang, Wenhui Ji, Xin Li, Changmin Yu, Xuchun Wang, Xiamin Cheng, Haidong Yu, Zhangjun Hu, K. Uvdal, Peng Li, Lin Li, Wei Huang
{"title":"Artificial intelligence‐assisted point‐of‐care testing system for ultrafast and quantitative detection of drug‐resistant bacteria","authors":"Yang Ding, Jingjie Chen, Qiong Wu, Bin Fang, Wenhui Ji, Xin Li, Changmin Yu, Xuchun Wang, Xiamin Cheng, Haidong Yu, Zhangjun Hu, K. Uvdal, Peng Li, Lin Li, Wei Huang","doi":"10.1002/smm2.1214","DOIUrl":"https://doi.org/10.1002/smm2.1214","url":null,"abstract":"","PeriodicalId":21794,"journal":{"name":"SmartMat","volume":"67 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84776487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Advanced nanoengineering strategies endow high‐performance layered transition‐metal oxide cathodes for sodium‐ion batteries 先进的纳米工程技术为钠离子电池提供了高性能的层状过渡金属氧化物阴极
Pub Date : 2023-05-08 DOI: 10.1002/smm2.1211
Jun Xiao, Yang Xiao, Jiayi Li, Cheng Gong, Xinming Nie, Hong Gao, Bing Sun, Hao Liu, Guoxiu Wang
Considering the abundance and low price of sodium, sodium‐ion batteries (SIBs) have shown great potential as an alternative to existing lithium‐based batteries in large‐scale energy storage systems, including electric automobiles and smart grids. Cathode materials, which largely decide the cost and the electrochemical performance of the full SIBs, have been extensively studied. Among the reported cathodes, layered transition‐metal oxides (LTMOs) are regarded as the most extremely promising candidates for the commercial application of the SIBs owing to their high specific capacity, superior redox potential, and suitable scalable preparation. Nevertheless, irreversible structural evolution, sluggish kinetics, and water sensitivity are still the critical bottlenecks for their practical utilization. Nanoengineering may offer an opportunity to address the above issues by increasing reactivity, shortening diffusion pathways, and strengthening structural stability. Herein, a comprehensive summary of the modification strategies for LTMOs is presented, emphasizing optimizing the structure, restraining detrimental phase transition, and promoting diffusion kinetics. This review intends to facilitate an in‐depth understanding of structure–composition–property correlation and offer guidance to the further development of the LTMO cathodes for next‐generation energy storage systems.
考虑到钠的丰富和低廉的价格,钠离子电池(sib)作为现有锂基电池的替代品,在包括电动汽车和智能电网在内的大规模能源存储系统中显示出巨大的潜力。阴极材料在很大程度上决定了全sib的成本和电化学性能,因此得到了广泛的研究。在已报道的阴极中,层状过渡金属氧化物(LTMOs)由于其高比容量、优越的氧化还原电位和合适的可扩展制备而被认为是sib商业应用最有前途的候选者。然而,不可逆的结构演变、缓慢的动力学和水敏感性仍然是其实际应用的关键瓶颈。纳米工程可以通过增加反应性、缩短扩散途径和加强结构稳定性来提供解决上述问题的机会。本文对LTMOs的改性策略进行了全面总结,强调优化结构,抑制有害相变,促进扩散动力学。本文综述旨在促进对结构-组成-性能相关性的深入理解,并为下一代储能系统中LTMO阴极的进一步开发提供指导。
{"title":"Advanced nanoengineering strategies endow high‐performance layered transition‐metal oxide cathodes for sodium‐ion batteries","authors":"Jun Xiao, Yang Xiao, Jiayi Li, Cheng Gong, Xinming Nie, Hong Gao, Bing Sun, Hao Liu, Guoxiu Wang","doi":"10.1002/smm2.1211","DOIUrl":"https://doi.org/10.1002/smm2.1211","url":null,"abstract":"Considering the abundance and low price of sodium, sodium‐ion batteries (SIBs) have shown great potential as an alternative to existing lithium‐based batteries in large‐scale energy storage systems, including electric automobiles and smart grids. Cathode materials, which largely decide the cost and the electrochemical performance of the full SIBs, have been extensively studied. Among the reported cathodes, layered transition‐metal oxides (LTMOs) are regarded as the most extremely promising candidates for the commercial application of the SIBs owing to their high specific capacity, superior redox potential, and suitable scalable preparation. Nevertheless, irreversible structural evolution, sluggish kinetics, and water sensitivity are still the critical bottlenecks for their practical utilization. Nanoengineering may offer an opportunity to address the above issues by increasing reactivity, shortening diffusion pathways, and strengthening structural stability. Herein, a comprehensive summary of the modification strategies for LTMOs is presented, emphasizing optimizing the structure, restraining detrimental phase transition, and promoting diffusion kinetics. This review intends to facilitate an in‐depth understanding of structure–composition–property correlation and offer guidance to the further development of the LTMO cathodes for next‐generation energy storage systems.","PeriodicalId":21794,"journal":{"name":"SmartMat","volume":"603 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77393300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Multicomponent flexible organic crystals 多组分柔性有机晶体
Pub Date : 2023-05-08 DOI: 10.1002/smm2.1213
Xue-Hua Ding, Chuanxin Wei, Lizhi Wang, J. Yang, Wenxin Huang, Yongzheng Chang, Chang-jin Ou, Jinyi Lin, Wei Huang
{"title":"Multicomponent flexible organic crystals","authors":"Xue-Hua Ding, Chuanxin Wei, Lizhi Wang, J. Yang, Wenxin Huang, Yongzheng Chang, Chang-jin Ou, Jinyi Lin, Wei Huang","doi":"10.1002/smm2.1213","DOIUrl":"https://doi.org/10.1002/smm2.1213","url":null,"abstract":"","PeriodicalId":21794,"journal":{"name":"SmartMat","volume":"393 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86824502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Recent progress in intermetallic nanocrystals for electrocatalysis: From binary to ternary to high‐entropy intermetallics 电催化用金属间纳米晶体的最新进展:从二元到三元再到高熵金属间化合物
Pub Date : 2023-05-03 DOI: 10.1002/smm2.1210
Jiawei Liu, Carmen Lee, Y. Hu, Zhishan Liang, R. Ji, X. Y. D. Soo, Qiang Zhu, Q. Yan
Developing sustainable and clean energy‐conversion techniques is one of the strategies to simultaneously meet the global energy demand, save fossil fuels and protect the environment, in which nanocatalysts with high activity, selectivity and durability are of great importance. Intermetallic nanocrystals, featuring their ordered atomic arrangements and predictable electronic structures, have been recognized as a type of active and durable catalysts in energy‐related applications. In this minireview, the very recent progress in the syntheses and electrocatalytic applications of noble metal‐based intermetallic nanocrystals is summarized. Various synthetic strategies, including the conventional thermal annealing approach and its diverse modifications, as well as the wet‐chemical synthesis, for the construction of binary, ternary and high‐entropy intermetallic nanocrystals have been discussed with representative examples, highlighting their strengths and limitations. Then, their electrocatalytic applications toward oxygen reduction reaction, small molecule oxidation reactions, hydrogen evolution reaction, CO2/CO reduction reactions, and nitrogen reduction reaction are discussed, with the emphasis on how the ordered intermetallic structures contribute to the enhanced performance. We conclude the minireview by addressing the current challenges and opportunities of intermetallic nanocrystals in terms of syntheses and electrocatalytic applications.
发展可持续和清洁的能源转化技术是满足全球能源需求、节约化石燃料和保护环境的战略之一,其中具有高活性、选择性和耐用性的纳米催化剂具有重要意义。金属间纳米晶体以其有序的原子排列和可预测的电子结构而被认为是一种活性和耐用的能源相关催化剂。本文综述了贵金属基金属间纳米晶体的合成及其电催化应用的最新进展。各种合成策略,包括传统的热退火方法及其各种修改,以及湿化学合成,用于构建二元,三元和高熵金属间纳米晶体,并以代表性的例子进行了讨论,突出了它们的优势和局限性。然后讨论了它们在氧还原反应、小分子氧化反应、析氢反应、CO2/CO还原反应和氮还原反应中的电催化应用,重点讨论了有序的金属间结构如何促进性能的提高。本文总结了金属间纳米晶体在合成和电催化应用方面面临的挑战和机遇。
{"title":"Recent progress in intermetallic nanocrystals for electrocatalysis: From binary to ternary to high‐entropy intermetallics","authors":"Jiawei Liu, Carmen Lee, Y. Hu, Zhishan Liang, R. Ji, X. Y. D. Soo, Qiang Zhu, Q. Yan","doi":"10.1002/smm2.1210","DOIUrl":"https://doi.org/10.1002/smm2.1210","url":null,"abstract":"Developing sustainable and clean energy‐conversion techniques is one of the strategies to simultaneously meet the global energy demand, save fossil fuels and protect the environment, in which nanocatalysts with high activity, selectivity and durability are of great importance. Intermetallic nanocrystals, featuring their ordered atomic arrangements and predictable electronic structures, have been recognized as a type of active and durable catalysts in energy‐related applications. In this minireview, the very recent progress in the syntheses and electrocatalytic applications of noble metal‐based intermetallic nanocrystals is summarized. Various synthetic strategies, including the conventional thermal annealing approach and its diverse modifications, as well as the wet‐chemical synthesis, for the construction of binary, ternary and high‐entropy intermetallic nanocrystals have been discussed with representative examples, highlighting their strengths and limitations. Then, their electrocatalytic applications toward oxygen reduction reaction, small molecule oxidation reactions, hydrogen evolution reaction, CO2/CO reduction reactions, and nitrogen reduction reaction are discussed, with the emphasis on how the ordered intermetallic structures contribute to the enhanced performance. We conclude the minireview by addressing the current challenges and opportunities of intermetallic nanocrystals in terms of syntheses and electrocatalytic applications.","PeriodicalId":21794,"journal":{"name":"SmartMat","volume":"22 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84314057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Revealing active Cu nanograins for electrocatalytic CO 2 reduction through operando studies 通过operando研究揭示电催化CO 2还原活性Cu纳米颗粒
Pub Date : 2023-04-27 DOI: 10.1002/smm2.1209
Junjun Li, Yajing Sun, Zhicheng Zhang
{"title":"Revealing active Cu nanograins for electrocatalytic CO\u0000 2\u0000 reduction through operando studies","authors":"Junjun Li, Yajing Sun, Zhicheng Zhang","doi":"10.1002/smm2.1209","DOIUrl":"https://doi.org/10.1002/smm2.1209","url":null,"abstract":"","PeriodicalId":21794,"journal":{"name":"SmartMat","volume":"31 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75296381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Enabling rechargeable Li‐MnO2 batteries using ether electrolytes 使用乙醚电解质实现可充电锂-二氧化锰电池
Pub Date : 2023-04-25 DOI: 10.1002/smm2.1208
D. Xia, Hongpeng Gao, Mingqian Li, John Holoubek, Qizhang Yan, Yijie Yin, Panpan Xu, Zhengyu Chen
A low‐carbon future demands more affordable batteries utilizing abundant elements with sustainable end‐of‐life battery management. Despite the economic and environmental advantages of Li‐MnO2 batteries, their application so far has been largely constrained to primary batteries. Here, we demonstrate that one of the major limiting factors preventing the stable cycling of Li‐MnO2 batteries, Mn dissolution, can be effectively mitigated by employing a common ether electrolyte, 1 mol/L lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) in 1,3‐dioxane (DOL)/1,2‐dimethoxyethane (DME). We discover that the suppression of this dissolution enables highly reversible cycling of the MnO2 cathode regardless of the synthesized phase and morphology. Moreover, we find that both the LiPF6 salt and carbonate solvents present in conventional electrolytes are responsible for previous cycling challenges. The ether electrolyte, paired with MnO2 cathodes is able to demonstrate stable cycling performance at various rates, even at elevated temperature such as 60°C. Our discovery not only represents a defining step in Li‐MnO2 batteries with extended life but provides design criteria of electrolytes for vast manganese‐based cathodes in rechargeable batteries.
低碳的未来需要更经济实惠的电池,利用丰富的元素和可持续的电池寿命管理。尽管Li - MnO2电池具有经济和环境优势,但到目前为止,它们的应用主要局限于一次电池。在这里,我们证明了阻碍Li - MnO2电池稳定循环的主要限制因素之一,Mn溶解,可以通过在1,3‐二氧六环(DOL)/1,2‐二甲氧基乙烷(DME)中使用一种常见的醚电解质,1 mol/L的锂二(三氟甲烷磺酰)亚胺(LiTFSI)有效地缓解。我们发现,抑制这种溶解可以使二氧化锰阴极的高度可逆循环,而不管合成的相和形态如何。此外,我们发现传统电解质中存在的LiPF6盐和碳酸盐溶剂都是之前循环挑战的原因。与MnO2阴极配对的醚电解质能够在各种速率下表现出稳定的循环性能,即使在60°C这样的高温下也是如此。我们的发现不仅代表了Li - MnO2电池具有延长寿命的决定性步骤,而且为可充电电池中巨大的锰基阴极提供了电解质的设计标准。
{"title":"Enabling rechargeable Li‐MnO2 batteries using ether electrolytes","authors":"D. Xia, Hongpeng Gao, Mingqian Li, John Holoubek, Qizhang Yan, Yijie Yin, Panpan Xu, Zhengyu Chen","doi":"10.1002/smm2.1208","DOIUrl":"https://doi.org/10.1002/smm2.1208","url":null,"abstract":"A low‐carbon future demands more affordable batteries utilizing abundant elements with sustainable end‐of‐life battery management. Despite the economic and environmental advantages of Li‐MnO2 batteries, their application so far has been largely constrained to primary batteries. Here, we demonstrate that one of the major limiting factors preventing the stable cycling of Li‐MnO2 batteries, Mn dissolution, can be effectively mitigated by employing a common ether electrolyte, 1 mol/L lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) in 1,3‐dioxane (DOL)/1,2‐dimethoxyethane (DME). We discover that the suppression of this dissolution enables highly reversible cycling of the MnO2 cathode regardless of the synthesized phase and morphology. Moreover, we find that both the LiPF6 salt and carbonate solvents present in conventional electrolytes are responsible for previous cycling challenges. The ether electrolyte, paired with MnO2 cathodes is able to demonstrate stable cycling performance at various rates, even at elevated temperature such as 60°C. Our discovery not only represents a defining step in Li‐MnO2 batteries with extended life but provides design criteria of electrolytes for vast manganese‐based cathodes in rechargeable batteries.","PeriodicalId":21794,"journal":{"name":"SmartMat","volume":"61 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73171806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Controllable surface reconstruction of copper foam for electrooxidation of benzyl alcohol integrated with pure hydrogen production 苯甲醇电氧化与纯氢生产相结合的泡沫铜可控表面重构
Pub Date : 2023-04-21 DOI: 10.1002/smm2.1206
Yingnan Han, Chang Yu, Hongling Huang, Qianbing Wei, Junting Dong, Lin Chen, J. Qiu
{"title":"Controllable surface reconstruction of copper foam for electrooxidation of benzyl alcohol integrated with pure hydrogen production","authors":"Yingnan Han, Chang Yu, Hongling Huang, Qianbing Wei, Junting Dong, Lin Chen, J. Qiu","doi":"10.1002/smm2.1206","DOIUrl":"https://doi.org/10.1002/smm2.1206","url":null,"abstract":"","PeriodicalId":21794,"journal":{"name":"SmartMat","volume":"263 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86336583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Sequentially bridged MXene platelets for strong high‐temperature EM‐IR bi‐stealth sheets 序贯桥接MXene血小板用于强高温EM - IR双隐身片材
Pub Date : 2023-04-17 DOI: 10.1002/smm2.1207
Yushan Yang, Kaicong Chen, Yipeng Chen, Chao Wang, Baokang Dang, Yingying Li, Meilin Liu, Qingfeng Sun
{"title":"Sequentially bridged MXene platelets for strong high‐temperature EM‐IR bi‐stealth sheets","authors":"Yushan Yang, Kaicong Chen, Yipeng Chen, Chao Wang, Baokang Dang, Yingying Li, Meilin Liu, Qingfeng Sun","doi":"10.1002/smm2.1207","DOIUrl":"https://doi.org/10.1002/smm2.1207","url":null,"abstract":"","PeriodicalId":21794,"journal":{"name":"SmartMat","volume":"32 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84860103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
期刊
SmartMat
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1