首页 > 最新文献

Scientific Reports最新文献

英文 中文
High-intensity interval training remodels perineuronal nets in the medial prefrontal cortex to drive microglial polarization and alleviate osteoarthritis pain. 高强度间歇训练重塑内侧前额皮质的神经网络,驱动小胶质细胞极化,减轻骨关节炎疼痛。
IF 3.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Pub Date : 2026-02-20 DOI: 10.1038/s41598-026-40823-w
Changsheng Lin, Xiao Zhang, Ziqi Ye, Fang Zhou, Kaizong Huang, Shiting Zhu, Anliang Chen, Xueping Li
{"title":"High-intensity interval training remodels perineuronal nets in the medial prefrontal cortex to drive microglial polarization and alleviate osteoarthritis pain.","authors":"Changsheng Lin, Xiao Zhang, Ziqi Ye, Fang Zhou, Kaizong Huang, Shiting Zhu, Anliang Chen, Xueping Li","doi":"10.1038/s41598-026-40823-w","DOIUrl":"https://doi.org/10.1038/s41598-026-40823-w","url":null,"abstract":"","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2026-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146259137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
First principles investigation of arsenic functionalized MgO nanoribbons. 砷功能化氧化镁纳米带的第一性原理研究。
IF 3.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Pub Date : 2026-02-20 DOI: 10.1038/s41598-026-39119-w
M Sankush Krishna, Aruru Sai Kumar, Srinivas Kankanala, Anil Kumar Nayak

The variation in the properties of MgO Nanoribbons towards Arsenic (As) atoms is discussed in the current work. To evaluate the MgONRs behavior towards the As atoms, the first principles approach within the context of density functional theory is deployed to evaluate the electronic and transport characteristics of MgONRs. Results revealed that As-termination is found to improve the stability of the MgONRs compared to hydrogenated MgONRs (H-MgO-H). The electronic characteristics of MgONRs are significantly altered with As passivation. Further, the current-voltage (I-V) characteristics reveal a significantly enhanced current conductivity for the As-terminated MgONRs (As-MgO-As). This determines their transport characteristics are significantly enahnced with As termination. Further, the local device density of states showcase that the carrier transmission majorly occurs through the edges. From the acquired results, it can be concluded that MgONRs can be efficiently utilized as an effective material for the future nanoelectronic applications.

本文讨论了氧化镁纳米带对砷原子性能的变化。为了评估mgonr对As原子的行为,采用密度泛函理论背景下的第一性原理方法来评估mgonr的电子和输运特性。结果表明,与氢化mgonr (H-MgO-H)相比,as终止可以提高mgonr的稳定性。砷钝化后mgonr的电子特性发生了显著变化。此外,电流-电压(I-V)特性显示,端接as的mgonr (As-MgO-As)的电流导电性显著增强。这决定了它们的传输特性随着As的终止而显著增强。此外,局部器件状态密度表明,载波传输主要通过边缘发生。从获得的结果可以看出,mgonr可以作为一种有效的材料在未来的纳米电子应用中得到有效的利用。
{"title":"First principles investigation of arsenic functionalized MgO nanoribbons.","authors":"M Sankush Krishna, Aruru Sai Kumar, Srinivas Kankanala, Anil Kumar Nayak","doi":"10.1038/s41598-026-39119-w","DOIUrl":"https://doi.org/10.1038/s41598-026-39119-w","url":null,"abstract":"<p><p>The variation in the properties of MgO Nanoribbons towards Arsenic (As) atoms is discussed in the current work. To evaluate the MgONRs behavior towards the As atoms, the first principles approach within the context of density functional theory is deployed to evaluate the electronic and transport characteristics of MgONRs. Results revealed that As-termination is found to improve the stability of the MgONRs compared to hydrogenated MgONRs (H-MgO-H). The electronic characteristics of MgONRs are significantly altered with As passivation. Further, the current-voltage (I-V) characteristics reveal a significantly enhanced current conductivity for the As-terminated MgONRs (As-MgO-As). This determines their transport characteristics are significantly enahnced with As termination. Further, the local device density of states showcase that the carrier transmission majorly occurs through the edges. From the acquired results, it can be concluded that MgONRs can be efficiently utilized as an effective material for the future nanoelectronic applications.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2026-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146259146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Classification of rice plant diseases using efficient DenseNet121. 利用高效densenet对水稻病害进行分类[j]。
IF 3.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Pub Date : 2026-02-20 DOI: 10.1038/s41598-026-38078-6
Amr Ismail, Walid Hamdy, Ali H Ibrahim, Wael A Awad

Agriculture and global food security are critically dependent on accurate and timely identification of plant diseases and pests. Traditional approaches to disease identification rely heavily on visual inspection and expert knowledge, which frequently lack the accuracy, speed, and scalability needed to address growing agricultural challenges. Early and precise disease detection enables proactive interventions that can prevent widespread crop damage and reduce excessive pesticide use, thereby supporting sustainable agricultural practices. Artificial intelligence, particularly deep learning methods, has emerged as a transformative solution for automated plant disease diagnosis. Convolutional neural networks (CNNs) have demonstrated remarkable capabilities in image classification tasks, evolving from individual architectures to sophisticated ensembles and transferring learning models. However, existing CNN-based research on rice disease identification has typically focused on a limited number of disease classes, restricting their practical applicability in real-world agricultural settings. This study addresses these limitations by implementing DenseNet121, an advanced CNN architecture known for its efficient feature reuse and gradient flow, for comprehensive rice disease classification. We utilized a dataset comprising seven of the most common rice diseases, significantly expanding the scope beyond previous studies. The model employs transfer learning with pre-trained ImageNet weights and is optimized using the Adam optimizer with carefully tuned hyperparameters. The experimental evaluation on an independent test set demonstrates that our proposed model achieves an overall accuracy of 97.9%, with individual disease classification accuracy ranging from 94% to 99.67%. The model exhibits balanced performance across multiple metrics, including precision (96.2%), recall (97.97%), and F1-score (97%), confirming its robustness and generalizability. These results establish DenseNet121 as a highly effective framework for automated rice disease diagnosis, offering a practical tool for enhancing agricultural productivity and food security.

农业和全球粮食安全严重依赖于准确和及时地识别植物病虫害。传统的疾病识别方法严重依赖于目视检查和专家知识,往往缺乏应对日益增长的农业挑战所需的准确性、速度和可扩展性。早期和精确的疾病检测使我们能够采取主动干预措施,防止作物大面积受损,减少农药的过度使用,从而支持可持续的农业做法。人工智能,特别是深度学习方法,已经成为自动化植物疾病诊断的革命性解决方案。卷积神经网络(cnn)在图像分类任务中表现出了非凡的能力,从单个架构发展到复杂的集成和迁移学习模型。然而,现有的基于cnn的水稻疾病鉴定研究通常集中在有限数量的疾病类别上,限制了它们在现实农业环境中的实际适用性。本研究通过实现DenseNet121解决了这些限制,DenseNet121是一种先进的CNN架构,以其高效的特征重用和梯度流而闻名,用于全面的水稻病害分类。我们利用了一个包含7种最常见水稻病害的数据集,大大扩展了以前研究的范围。该模型使用预训练ImageNet权重的迁移学习,并使用带有精心调优超参数的Adam优化器进行优化。在独立测试集上的实验评估表明,我们提出的模型总体准确率为97.9%,个体疾病分类准确率在94% ~ 99.67%之间。该模型在精度(96.2%)、召回率(97.97%)和f1分数(97%)等多个指标上表现平衡,证实了其稳健性和泛化性。这些结果确立了DenseNet121作为水稻病害自动诊断的高效框架,为提高农业生产力和粮食安全提供了实用工具。
{"title":"Classification of rice plant diseases using efficient DenseNet121.","authors":"Amr Ismail, Walid Hamdy, Ali H Ibrahim, Wael A Awad","doi":"10.1038/s41598-026-38078-6","DOIUrl":"https://doi.org/10.1038/s41598-026-38078-6","url":null,"abstract":"<p><p>Agriculture and global food security are critically dependent on accurate and timely identification of plant diseases and pests. Traditional approaches to disease identification rely heavily on visual inspection and expert knowledge, which frequently lack the accuracy, speed, and scalability needed to address growing agricultural challenges. Early and precise disease detection enables proactive interventions that can prevent widespread crop damage and reduce excessive pesticide use, thereby supporting sustainable agricultural practices. Artificial intelligence, particularly deep learning methods, has emerged as a transformative solution for automated plant disease diagnosis. Convolutional neural networks (CNNs) have demonstrated remarkable capabilities in image classification tasks, evolving from individual architectures to sophisticated ensembles and transferring learning models. However, existing CNN-based research on rice disease identification has typically focused on a limited number of disease classes, restricting their practical applicability in real-world agricultural settings. This study addresses these limitations by implementing DenseNet121, an advanced CNN architecture known for its efficient feature reuse and gradient flow, for comprehensive rice disease classification. We utilized a dataset comprising seven of the most common rice diseases, significantly expanding the scope beyond previous studies. The model employs transfer learning with pre-trained ImageNet weights and is optimized using the Adam optimizer with carefully tuned hyperparameters. The experimental evaluation on an independent test set demonstrates that our proposed model achieves an overall accuracy of 97.9%, with individual disease classification accuracy ranging from 94% to 99.67%. The model exhibits balanced performance across multiple metrics, including precision (96.2%), recall (97.97%), and F1-score (97%), confirming its robustness and generalizability. These results establish DenseNet121 as a highly effective framework for automated rice disease diagnosis, offering a practical tool for enhancing agricultural productivity and food security.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2026-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146259150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electromagnetic-force characteristics of EDS high-speed maglev with tilting angle. 倾斜角度下EDS高速磁悬浮列车的电磁力特性。
IF 3.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Pub Date : 2026-02-20 DOI: 10.1038/s41598-026-39303-y
Lin Fu, Zhihao Chen, Yu Chen, Chonghao Zhu, Siyuan Bao, Jinxin Yue, Xiaoyuan Chen, Boyang Shen
{"title":"Electromagnetic-force characteristics of EDS high-speed maglev with tilting angle.","authors":"Lin Fu, Zhihao Chen, Yu Chen, Chonghao Zhu, Siyuan Bao, Jinxin Yue, Xiaoyuan Chen, Boyang Shen","doi":"10.1038/s41598-026-39303-y","DOIUrl":"https://doi.org/10.1038/s41598-026-39303-y","url":null,"abstract":"","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2026-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146259181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Carvacrol from Moringa oleifera as a potential antidiabetic agent using integrated in-silico approach inhibiting TCF7L2. 辣木香芹酚作为一种潜在的抗糖尿病药物,应用集成芯片方法抑制TCF7L2。
IF 3.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Pub Date : 2026-02-20 DOI: 10.1038/s41598-026-41006-3
Amna Saleem, Nouman Ali, Adeeba Ali, Erkabay Eshchanov, Shakhlokhon Kurbanova
{"title":"Carvacrol from Moringa oleifera as a potential antidiabetic agent using integrated in-silico approach inhibiting TCF7L2.","authors":"Amna Saleem, Nouman Ali, Adeeba Ali, Erkabay Eshchanov, Shakhlokhon Kurbanova","doi":"10.1038/s41598-026-41006-3","DOIUrl":"https://doi.org/10.1038/s41598-026-41006-3","url":null,"abstract":"","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2026-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146259188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cluster-based DFT modeling of Raman vibrations in tetrahedral GeS2 and GeSe2 amorphous chalcogenides. 四面体GeS2和GeS2非晶硫族化合物拉曼振动的聚簇DFT建模。
IF 3.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Pub Date : 2026-02-20 DOI: 10.1038/s41598-026-40010-x
Tomáš Halenkovič, Petr Němec, Virginie Nazabal
{"title":"Cluster-based DFT modeling of Raman vibrations in tetrahedral GeS<sub>2</sub> and GeSe<sub>2</sub> amorphous chalcogenides.","authors":"Tomáš Halenkovič, Petr Němec, Virginie Nazabal","doi":"10.1038/s41598-026-40010-x","DOIUrl":"https://doi.org/10.1038/s41598-026-40010-x","url":null,"abstract":"","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2026-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146259209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rapid test for detecting red-green color vision deficiencies using a neural network-assisted color-naming task. 使用神经网络辅助颜色命名任务检测红绿色觉缺陷的快速测试。
IF 3.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Pub Date : 2026-02-20 DOI: 10.1038/s41598-026-38222-2
José A R Monteiro, Dora N Marques, João M M Linhares, Sérgio M C Nascimento
{"title":"Rapid test for detecting red-green color vision deficiencies using a neural network-assisted color-naming task.","authors":"José A R Monteiro, Dora N Marques, João M M Linhares, Sérgio M C Nascimento","doi":"10.1038/s41598-026-38222-2","DOIUrl":"https://doi.org/10.1038/s41598-026-38222-2","url":null,"abstract":"","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2026-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146259229","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lay beliefs about the badness, likelihood, and importance of human extinction. 散布关于人类灭绝的坏处、可能性和重要性的信念。
IF 3.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Pub Date : 2026-02-20 DOI: 10.1038/s41598-026-39070-w
Matthew Coleman, Lucius Caviola, Joshua Lewis, Geoffrey P Goodwin
{"title":"Lay beliefs about the badness, likelihood, and importance of human extinction.","authors":"Matthew Coleman, Lucius Caviola, Joshua Lewis, Geoffrey P Goodwin","doi":"10.1038/s41598-026-39070-w","DOIUrl":"https://doi.org/10.1038/s41598-026-39070-w","url":null,"abstract":"","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2026-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146259243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Randomized study of the efficacy, safety, and pharmacokinetics of SPR720 for the treatment of Mycobacterium avium complex pulmonary disease. SPR720治疗鸟分枝杆菌复合肺部疾病的疗效、安全性和药代动力学的随机研究
IF 3.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Pub Date : 2026-02-20 DOI: 10.1038/s41598-026-40505-7
Xilla T Ussery, Nivedita Bhatt, Ian A Critchley, Shekman L Wong, John C Pottage, David Melnick, Kamal A Hamed
{"title":"Randomized study of the efficacy, safety, and pharmacokinetics of SPR720 for the treatment of Mycobacterium avium complex pulmonary disease.","authors":"Xilla T Ussery, Nivedita Bhatt, Ian A Critchley, Shekman L Wong, John C Pottage, David Melnick, Kamal A Hamed","doi":"10.1038/s41598-026-40505-7","DOIUrl":"https://doi.org/10.1038/s41598-026-40505-7","url":null,"abstract":"","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2026-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146259304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Trend analysis of dam inflow data using the trend accuracy index and the potential-evapotranspiration correction factor. 利用趋势精度指数和潜在蒸散发校正因子对大坝入流数据进行趋势分析。
IF 3.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Pub Date : 2026-02-20 DOI: 10.1038/s41598-026-40225-y
Won-Joon Wang, Hung Soo Kim
{"title":"Trend analysis of dam inflow data using the trend accuracy index and the potential-evapotranspiration correction factor.","authors":"Won-Joon Wang, Hung Soo Kim","doi":"10.1038/s41598-026-40225-y","DOIUrl":"https://doi.org/10.1038/s41598-026-40225-y","url":null,"abstract":"","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2026-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146259468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Scientific Reports
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1