首页 > 最新文献

Space Science Reviews最新文献

英文 中文
Extreme Solar Events: Setting up a Paradigm 极端太阳事件:建立一个范例
2区 物理与天体物理 Q1 Earth and Planetary Sciences Pub Date : 2023-11-03 DOI: 10.1007/s11214-023-01018-1
Ilya Usoskin, Fusa Miyake, Melanie Baroni, Nicolas Brehm, Silvia Dalla, Hisashi Hayakawa, Hugh Hudson, A. J. Timothy Jull, Delores Knipp, Sergey Koldobskiy, Hiroyuki Maehara, Florian Mekhaldi, Yuta Notsu, Stepan Poluianov, Eugene Rozanov, Alexander Shapiro, Tobias Spiegl, Timofei Sukhodolov, Joonas Uusitalo, Lukas Wacker
Abstract The Sun is magnetically active and often produces eruptive events on different energetic and temporal scales. Until recently, the upper limit of such events was unknown and believed to be roughly represented by direct instrumental observations. However, two types of extreme events were discovered recently: extreme solar energetic particle events on the multi-millennial time scale and super-flares on sun-like stars. Both discoveries imply that the Sun might rarely produce events, called extreme solar events (ESE), whose energy could be orders of magnitude greater than anything we have observed during recent decades. During the years following these discoveries, great progress has been achieved in collecting observational evidence, uncovering new events, making statistical analyses, and developing theoretical modelling. The ESE paradigm lives and is being developed. On the other hand, many outstanding questions still remain open and new ones emerge. Here we present an overview of the current state of the art and the forming paradigm of ESE from different points of view: solar physics, stellar–solar projections, cosmogenic-isotope data, modelling, historical data, as well as terrestrial, technological and societal effects of ESEs. Special focus is paid to open questions and further developments. This review is based on the joint work of the International Space Science Institute (ISSI) team #510 (2020–2022).
太阳的磁场非常活跃,经常在不同的能量和时间尺度上产生喷发事件。直到最近,这类事件的上限还不为人所知,人们认为直接的仪器观测可以粗略地表示出来。然而,最近发现了两种极端事件:数千年时间尺度上的极端太阳高能粒子事件和类太阳恒星上的超级耀斑。这两项发现都表明,太阳可能很少产生所谓的极端太阳事件(ESE),其能量可能比我们近几十年来观测到的任何事件都要大几个数量级。在这些发现之后的几年里,在收集观测证据、发现新事件、进行统计分析和发展理论模型方面取得了巨大进展。ESE范式仍然存在并正在发展中。另一方面,许多尚未解决的问题仍未解决,新的问题也不断出现。在这里,我们从不同的角度概述了ESE的现状和形成范式:太阳物理学、恒星-太阳投影、宇宙成因-同位素数据、建模、历史数据,以及ESE对地球、技术和社会的影响。特别关注悬而未决的问题和进一步的发展。本综述基于国际空间科学研究所(ISSI) 510号团队(2020-2022)的联合工作。
{"title":"Extreme Solar Events: Setting up a Paradigm","authors":"Ilya Usoskin, Fusa Miyake, Melanie Baroni, Nicolas Brehm, Silvia Dalla, Hisashi Hayakawa, Hugh Hudson, A. J. Timothy Jull, Delores Knipp, Sergey Koldobskiy, Hiroyuki Maehara, Florian Mekhaldi, Yuta Notsu, Stepan Poluianov, Eugene Rozanov, Alexander Shapiro, Tobias Spiegl, Timofei Sukhodolov, Joonas Uusitalo, Lukas Wacker","doi":"10.1007/s11214-023-01018-1","DOIUrl":"https://doi.org/10.1007/s11214-023-01018-1","url":null,"abstract":"Abstract The Sun is magnetically active and often produces eruptive events on different energetic and temporal scales. Until recently, the upper limit of such events was unknown and believed to be roughly represented by direct instrumental observations. However, two types of extreme events were discovered recently: extreme solar energetic particle events on the multi-millennial time scale and super-flares on sun-like stars. Both discoveries imply that the Sun might rarely produce events, called extreme solar events (ESE), whose energy could be orders of magnitude greater than anything we have observed during recent decades. During the years following these discoveries, great progress has been achieved in collecting observational evidence, uncovering new events, making statistical analyses, and developing theoretical modelling. The ESE paradigm lives and is being developed. On the other hand, many outstanding questions still remain open and new ones emerge. Here we present an overview of the current state of the art and the forming paradigm of ESE from different points of view: solar physics, stellar–solar projections, cosmogenic-isotope data, modelling, historical data, as well as terrestrial, technological and societal effects of ESEs. Special focus is paid to open questions and further developments. This review is based on the joint work of the International Space Science Institute (ISSI) team #510 (2020–2022).","PeriodicalId":21902,"journal":{"name":"Space Science Reviews","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135819336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to: Venus Evolution Through Time: Key Science Questions, Selected Mission Concepts and Future Investigations 修正:金星的演化:关键的科学问题,选定的任务概念和未来的调查
2区 物理与天体物理 Q1 Earth and Planetary Sciences Pub Date : 2023-10-31 DOI: 10.1007/s11214-023-01022-5
Thomas Widemann, Suzanne E. Smrekar, James B. Garvin, Anne Grete Straume-Lindner, Adriana C. Ocampo, Mitchell D. Schulte, Thomas Voirin, Scott Hensley, M. Darby Dyar, Jennifer L. Whitten, Daniel C. Nunes, Stephanie A. Getty, Giada N. Arney, Natasha M. Johnson, Erika Kohler, Tilman Spohn, Joseph G. O’Rourke, Colin F. Wilson, Michael J. Way, Colby Ostberg, Frances Westall, Dennis Höning, Seth Jacobson, Arnaud Salvador, Guillaume Avice, Doris Breuer, Lynn Carter, Martha S. Gilmore, Richard Ghail, Jörn Helbert, Paul Byrne, Alison R. Santos, Robert R. Herrick, Noam Izenberg, Emmanuel Marcq, Tobias Rolf, Matt Weller, Cedric Gillmann, Oleg Korablev, Lev Zelenyi, Ludmila Zasova, Dmitry Gorinov, Gaurav Seth, C. V. Narasimha Rao, Nilesh Desai
{"title":"Correction to: Venus Evolution Through Time: Key Science Questions, Selected Mission Concepts and Future Investigations","authors":"Thomas Widemann, Suzanne E. Smrekar, James B. Garvin, Anne Grete Straume-Lindner, Adriana C. Ocampo, Mitchell D. Schulte, Thomas Voirin, Scott Hensley, M. Darby Dyar, Jennifer L. Whitten, Daniel C. Nunes, Stephanie A. Getty, Giada N. Arney, Natasha M. Johnson, Erika Kohler, Tilman Spohn, Joseph G. O’Rourke, Colin F. Wilson, Michael J. Way, Colby Ostberg, Frances Westall, Dennis Höning, Seth Jacobson, Arnaud Salvador, Guillaume Avice, Doris Breuer, Lynn Carter, Martha S. Gilmore, Richard Ghail, Jörn Helbert, Paul Byrne, Alison R. Santos, Robert R. Herrick, Noam Izenberg, Emmanuel Marcq, Tobias Rolf, Matt Weller, Cedric Gillmann, Oleg Korablev, Lev Zelenyi, Ludmila Zasova, Dmitry Gorinov, Gaurav Seth, C. V. Narasimha Rao, Nilesh Desai","doi":"10.1007/s11214-023-01022-5","DOIUrl":"https://doi.org/10.1007/s11214-023-01022-5","url":null,"abstract":"","PeriodicalId":21902,"journal":{"name":"Space Science Reviews","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135871358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cross-Scale Processes of Magnetic Reconnection 磁重联的跨尺度过程
2区 物理与天体物理 Q1 Earth and Planetary Sciences Pub Date : 2023-10-30 DOI: 10.1007/s11214-023-01010-9
K.-J. Hwang, R. Nakamura, J. P. Eastwood, S. A. Fuselier, H. Hasegawa, T. Nakamura, B. Lavraud, K. Dokgo, D. L. Turner, R. E. Ergun, P. H. Reiff
Abstract Various physical processes in association with magnetic reconnection occur over multiple scales from the microscopic to macroscopic scale lengths. This paper reviews multi-scale and cross-scale aspects of magnetic reconnection revealed in the near-Earth space beyond the general global-scale features and magnetospheric circulation organized by the Dungey Cycle. Significant and novel advancements recently reported, in particular, since the launch of the Magnetospheric Multi-scale mission (MMS), are highlighted being categorized into different locations with different magnetic topologies. These potentially paradigm-shifting findings include shock and foreshock transient driven reconnection, magnetosheath turbulent reconnection, flow shear driven reconnection, multiple X-line structures generated in the dayside/flankside/nightside magnetospheric current sheets, development and evolution of reconnection-driven structures such as flux transfer events, flux ropes, and dipolarization fronts, and their interactions with ambient plasmas. The paper emphasizes key aspects of kinetic processes leading to multi-scale structures and bringing large-scale impacts of magnetic reconnection as discovered in the geospace environment. These key features can be relevant and applicable to understanding other heliospheric and astrophysical systems.
与磁重联相关的各种物理过程发生在从微观到宏观的多个尺度上。本文综述了近地空间磁重联的多尺度和跨尺度特征,超越了一般的全球尺度特征和邓吉旋回组织的磁层环流。特别是自磁层多尺度任务(MMS)发射以来,最近报道了一些重大的新进展,这些进展被重点分类为具有不同磁拓扑结构的不同位置。这些潜在的范式转换发现包括激波和前激波瞬态驱动重联、磁鞘湍流重联、流切变驱动重联、在白天/侧面/夜晚磁层电流片中产生的多个x线结构、重联驱动结构的发展和演变,如通量转移事件、通量绳和双极化锋,以及它们与周围等离子体的相互作用。本文重点介绍了在地球空间环境中发现的导致多尺度结构和带来大尺度磁重联影响的动力学过程的关键方面。这些关键特征可以相关和适用于理解其他日球层和天体物理系统。
{"title":"Cross-Scale Processes of Magnetic Reconnection","authors":"K.-J. Hwang, R. Nakamura, J. P. Eastwood, S. A. Fuselier, H. Hasegawa, T. Nakamura, B. Lavraud, K. Dokgo, D. L. Turner, R. E. Ergun, P. H. Reiff","doi":"10.1007/s11214-023-01010-9","DOIUrl":"https://doi.org/10.1007/s11214-023-01010-9","url":null,"abstract":"Abstract Various physical processes in association with magnetic reconnection occur over multiple scales from the microscopic to macroscopic scale lengths. This paper reviews multi-scale and cross-scale aspects of magnetic reconnection revealed in the near-Earth space beyond the general global-scale features and magnetospheric circulation organized by the Dungey Cycle. Significant and novel advancements recently reported, in particular, since the launch of the Magnetospheric Multi-scale mission (MMS), are highlighted being categorized into different locations with different magnetic topologies. These potentially paradigm-shifting findings include shock and foreshock transient driven reconnection, magnetosheath turbulent reconnection, flow shear driven reconnection, multiple X-line structures generated in the dayside/flankside/nightside magnetospheric current sheets, development and evolution of reconnection-driven structures such as flux transfer events, flux ropes, and dipolarization fronts, and their interactions with ambient plasmas. The paper emphasizes key aspects of kinetic processes leading to multi-scale structures and bringing large-scale impacts of magnetic reconnection as discovered in the geospace environment. These key features can be relevant and applicable to understanding other heliospheric and astrophysical systems.","PeriodicalId":21902,"journal":{"name":"Space Science Reviews","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136067798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Scaling and Evolution of Stellar Magnetic Activity 恒星磁活动的尺度和演化
2区 物理与天体物理 Q1 Earth and Planetary Sciences Pub Date : 2023-10-30 DOI: 10.1007/s11214-023-01016-3
Emre Işık, Jennifer L. van Saders, Ansgar Reiners, Travis S. Metcalfe
Abstract Magnetic activity is a ubiquitous feature of stars with convective outer layers, with implications from stellar evolution to planetary atmospheres. Investigating the mechanisms responsible for the observed stellar activity signals from days to billions of years is important in deepening our understanding of the spatial configurations and temporal patterns of stellar dynamos, including that of the Sun. In this paper, we focus on three problems and their possible solutions. We start with direct field measurements and show how they probe the dependence of magnetic flux and its density on stellar properties and activity indicators. Next, we review the current state-of-the-art in physics-based models of photospheric activity patterns and their variation from rotational to activity-cycle timescales. We then outline the current state of understanding in the long-term evolution of stellar dynamos, first by using chromospheric and coronal activity diagnostics, then with model-based implications on magnetic braking, which is the key mechanism by which stars spin down and become inactive as they age. We conclude by discussing possible directions to improve the modeling and analysis of stellar magnetic fields.
磁活动是具有对流外层的恒星的普遍特征,从恒星演化到行星大气都有影响。研究从几天到数十亿年观测到的恒星活动信号的机制,对于加深我们对包括太阳在内的恒星发电机的空间结构和时间模式的理解非常重要。在本文中,我们重点讨论了三个问题及其可能的解决方案。我们从直接的磁场测量开始,并展示它们如何探测磁通量及其密度对恒星特性和活动指标的依赖。接下来,我们回顾了当前基于物理的光球活动模式模型及其从旋转到活动周期时间尺度的变化。然后,我们概述了目前对恒星发电机长期演化的理解状态,首先使用色球和日冕活动诊断,然后使用基于模型的磁制动影响,这是恒星随着年龄增长而旋转并变得不活跃的关键机制。最后,我们讨论了改进恒星磁场建模和分析的可能方向。
{"title":"Scaling and Evolution of Stellar Magnetic Activity","authors":"Emre Işık, Jennifer L. van Saders, Ansgar Reiners, Travis S. Metcalfe","doi":"10.1007/s11214-023-01016-3","DOIUrl":"https://doi.org/10.1007/s11214-023-01016-3","url":null,"abstract":"Abstract Magnetic activity is a ubiquitous feature of stars with convective outer layers, with implications from stellar evolution to planetary atmospheres. Investigating the mechanisms responsible for the observed stellar activity signals from days to billions of years is important in deepening our understanding of the spatial configurations and temporal patterns of stellar dynamos, including that of the Sun. In this paper, we focus on three problems and their possible solutions. We start with direct field measurements and show how they probe the dependence of magnetic flux and its density on stellar properties and activity indicators. Next, we review the current state-of-the-art in physics-based models of photospheric activity patterns and their variation from rotational to activity-cycle timescales. We then outline the current state of understanding in the long-term evolution of stellar dynamos, first by using chromospheric and coronal activity diagnostics, then with model-based implications on magnetic braking, which is the key mechanism by which stars spin down and become inactive as they age. We conclude by discussing possible directions to improve the modeling and analysis of stellar magnetic fields.","PeriodicalId":21902,"journal":{"name":"Space Science Reviews","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136103867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
L’Ralph: A Visible/Infrared Spectral Imager for the Lucy Mission to the Trojans 拉夫:露西前往特洛伊的可见/红外光谱成像仪
2区 物理与天体物理 Q1 Earth and Planetary Sciences Pub Date : 2023-10-25 DOI: 10.1007/s11214-023-01009-2
D. C. Reuter, A. A. Simon, A. Lunsford, H. Kaplan, M. Garrison, J. Simpson, G. Casto, Z. Dolch, P. Finneran, W. Grundy, C. Howett, P. Kim, M. Loose, T. Null, F. Parong, J. Rodriguez-ruiz, P. Roming, K. Smith, P. Thompson, B. Tokarcik, T. Veach, S. Wall, J. Ward, E. Weigle, H. Levison
Abstract The Lucy Mission to the Trojan asteroids in Jupiter’s orbit carries an instrument named L’Ralph, a visible/near infrared multi-spectral imager and a short wavelength infrared hyperspectral imager. It is one of the core instruments on Lucy, NASA’s first mission to the Trojans. L’Ralph’s primary purpose is to map the surface geology and composition of these objects, but it will also be used to search for possible tenuous exospheres. It is compact, low mass (32.3 kg), power efficient (24.5 W), and robust with high sensitivity and excellent imaging. These characteristics, and its high degree of redundancy, make L’Ralph ideally suited to this long-duration multi-flyby reconnaissance mission.
探索木星轨道上的特洛伊小行星的“露西”任务携带了一台名为L 'Ralph的仪器,一台可见/近红外多光谱成像仪和一台短波红外高光谱成像仪。它是美国宇航局首次执行特洛伊任务的“露西”号的核心仪器之一。拉尔夫号的主要目的是绘制这些天体的表面地质和组成,但它也将用于寻找可能的脆弱的外逸层。它结构紧凑,质量低(32.3 kg),功率高效(24.5 W),具有高灵敏度和出色的成像能力。这些特点,以及它的高度冗余,使拉尔夫非常适合这种长时间的多次飞越侦察任务。
{"title":"L’Ralph: A Visible/Infrared Spectral Imager for the Lucy Mission to the Trojans","authors":"D. C. Reuter, A. A. Simon, A. Lunsford, H. Kaplan, M. Garrison, J. Simpson, G. Casto, Z. Dolch, P. Finneran, W. Grundy, C. Howett, P. Kim, M. Loose, T. Null, F. Parong, J. Rodriguez-ruiz, P. Roming, K. Smith, P. Thompson, B. Tokarcik, T. Veach, S. Wall, J. Ward, E. Weigle, H. Levison","doi":"10.1007/s11214-023-01009-2","DOIUrl":"https://doi.org/10.1007/s11214-023-01009-2","url":null,"abstract":"Abstract The Lucy Mission to the Trojan asteroids in Jupiter’s orbit carries an instrument named L’Ralph, a visible/near infrared multi-spectral imager and a short wavelength infrared hyperspectral imager. It is one of the core instruments on Lucy, NASA’s first mission to the Trojans. L’Ralph’s primary purpose is to map the surface geology and composition of these objects, but it will also be used to search for possible tenuous exospheres. It is compact, low mass (32.3 kg), power efficient (24.5 W), and robust with high sensitivity and excellent imaging. These characteristics, and its high degree of redundancy, make L’Ralph ideally suited to this long-duration multi-flyby reconnaissance mission.","PeriodicalId":21902,"journal":{"name":"Space Science Reviews","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135216036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
A Radiometric Correction Method and Performance Characteristics for PIXL’s Multispectral Analysis Using LEDs 利用led进行像素多光谱分析的辐射校正方法及性能特点
2区 物理与天体物理 Q1 Earth and Planetary Sciences Pub Date : 2023-10-24 DOI: 10.1007/s11214-023-01014-5
J. Henneke, D. Klevang, Y. Liu, J. Jørgensen, T. Denver, M. Rice, S. VanBommel, C. Toldbo, J. Hurowitz, M. Tice, N. Tosca, J. Johnson, A. Winhold, A. Allwood, J. Bell
Abstract The Planetary Instrument for X-ray Lithochemistry (PIXL) onboard the Perseverance rover, part of NASA’s Mars 2020 mission, has the first camera system that utilizes active light sources to generate multispectral data directly on a planetary surface. PIXL collects the multispectral data using three different components in the Optical Fiducial System (OFS): Micro Context Camera (MCC), Floodlight Illuminator (FLI), and Structure light illuminator (SLI). MCC captures images illuminated at different wavelengths by FLI while topography information is obtained by synchronously operating the MCC and SLI. A radiometric calibration for such a system has not been attempted before. Here we present a novel radiometric correction process and verify the output to a mean error of 0.4% by comparing it to calibrated spectral data from the Three Axis N-sample Automated Goniometer for Evaluation Reflectance (TANAGER). We demonstrate that the radiometrically corrected data can clearly discern different features in natural rock and mineral samples. We also conclude that the same radiometric correction process can be used on Mars as the optical system is designed to autonomously compensates for the effects of the Martian environment on the instrument. Having multispectral capabilities has proven to be very valuable for extrapolating the detailed mineral and crystallographic information produced by X-ray spectroscopy from the X-ray system of PIXL.
作为美国宇航局火星2020任务的一部分,毅力号火星车上搭载的行星x射线岩石化学仪器(PIXL)拥有首个利用主动光源直接在行星表面生成多光谱数据的相机系统。PIXL使用光学基准系统(OFS)中的三个不同组件收集多光谱数据:微背景相机(MCC),泛光灯照明器(FLI)和结构光照明器(SLI)。MCC捕获FLI在不同波长照射下的图像,同时通过MCC和SLI同步操作获得地形信息。以前从未尝试过对这种系统进行辐射校准。在这里,我们提出了一种新的辐射校正过程,并通过将其与三轴n -样本自动测角仪(TANAGER)的校准光谱数据进行比较,验证了输出的平均误差为0.4%。结果表明,经辐射校正后的数据可以清晰地识别天然岩石和矿物样品的不同特征。我们还得出结论,同样的辐射校正过程可以在火星上使用,因为光学系统被设计为自动补偿火星环境对仪器的影响。具有多光谱的能力已被证明是非常有价值的,可以从PIXL的x射线系统中推断出x射线光谱产生的详细矿物和晶体学信息。
{"title":"A Radiometric Correction Method and Performance Characteristics for PIXL’s Multispectral Analysis Using LEDs","authors":"J. Henneke, D. Klevang, Y. Liu, J. Jørgensen, T. Denver, M. Rice, S. VanBommel, C. Toldbo, J. Hurowitz, M. Tice, N. Tosca, J. Johnson, A. Winhold, A. Allwood, J. Bell","doi":"10.1007/s11214-023-01014-5","DOIUrl":"https://doi.org/10.1007/s11214-023-01014-5","url":null,"abstract":"Abstract The Planetary Instrument for X-ray Lithochemistry (PIXL) onboard the Perseverance rover, part of NASA’s Mars 2020 mission, has the first camera system that utilizes active light sources to generate multispectral data directly on a planetary surface. PIXL collects the multispectral data using three different components in the Optical Fiducial System (OFS): Micro Context Camera (MCC), Floodlight Illuminator (FLI), and Structure light illuminator (SLI). MCC captures images illuminated at different wavelengths by FLI while topography information is obtained by synchronously operating the MCC and SLI. A radiometric calibration for such a system has not been attempted before. Here we present a novel radiometric correction process and verify the output to a mean error of 0.4% by comparing it to calibrated spectral data from the Three Axis N-sample Automated Goniometer for Evaluation Reflectance (TANAGER). We demonstrate that the radiometrically corrected data can clearly discern different features in natural rock and mineral samples. We also conclude that the same radiometric correction process can be used on Mars as the optical system is designed to autonomously compensates for the effects of the Martian environment on the instrument. Having multispectral capabilities has proven to be very valuable for extrapolating the detailed mineral and crystallographic information produced by X-ray spectroscopy from the X-ray system of PIXL.","PeriodicalId":21902,"journal":{"name":"Space Science Reviews","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135267045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lunar Gravitational-Wave Detection 月球引力波探测
2区 物理与天体物理 Q1 Earth and Planetary Sciences Pub Date : 2023-10-20 DOI: 10.1007/s11214-023-01015-4
Marica Branchesi, Maurizio Falanga, Jan Harms, Karan Jani, Stavros Katsanevas, Philippe Lognonné, Francesca Badaracco, Luigi Cacciapuoti, Enrico Cappellaro, Simone Dell’Agnello, Sébastien de Raucourt, Alessandro Frigeri, Domenico Giardini, Oliver Jennrich, Taichi Kawamura, Valeriya Korol, Martin Landrø, Josipa Majstorović, Piyush Marmat, Paolo Mazzali, Marco Muccino, Ferdinando Patat, Elena Pian, Tsvi Piran, Severine Rosat, Sheila Rowan, Simon Stähler, Jacopo Tissino
Abstract A new era of lunar exploration has begun bringing immense opportunities for science as well. It has been proposed to deploy a new generation of observatories on the lunar surface for deep studies of our Universe. This includes radio antennas, which would be protected on the far side of the Moon from terrestrial radio interference, and gravitational-wave (GW) detectors, which would profit from the extremely low level of seismic disturbances on the Moon. In recent years, novel concepts have been proposed for lunar GW detectors based on long-baseline laser interferometry or on compact sensors measuring the lunar surface vibrations caused by GWs. In this article, we review the concepts and science opportunities for such instruments on the Moon. In addition to promising breakthrough discoveries in astrophysics and cosmology, lunar GW detectors would also be formidable probes of the lunar internal structure and improve our understanding of the lunar geophysical environment.
月球探测的新时代也开始为科学带来巨大的机遇。有人提议在月球表面部署新一代天文台,以深入研究我们的宇宙。这包括无线电天线,它将被保护在月球的远端免受地面无线电干扰,以及引力波探测器,它将从月球上极低水平的地震干扰中获益。近年来,人们提出了基于长基线激光干涉测量或紧凑传感器测量GW引起的月球表面振动的月球GW探测器的新概念。在这篇文章中,我们回顾了在月球上使用这种仪器的概念和科学机会。月球GW探测器除了有望在天体物理学和宇宙学方面取得突破性发现外,还将成为研究月球内部结构的强大探测器,并提高我们对月球地球物理环境的了解。
{"title":"Lunar Gravitational-Wave Detection","authors":"Marica Branchesi, Maurizio Falanga, Jan Harms, Karan Jani, Stavros Katsanevas, Philippe Lognonné, Francesca Badaracco, Luigi Cacciapuoti, Enrico Cappellaro, Simone Dell’Agnello, Sébastien de Raucourt, Alessandro Frigeri, Domenico Giardini, Oliver Jennrich, Taichi Kawamura, Valeriya Korol, Martin Landrø, Josipa Majstorović, Piyush Marmat, Paolo Mazzali, Marco Muccino, Ferdinando Patat, Elena Pian, Tsvi Piran, Severine Rosat, Sheila Rowan, Simon Stähler, Jacopo Tissino","doi":"10.1007/s11214-023-01015-4","DOIUrl":"https://doi.org/10.1007/s11214-023-01015-4","url":null,"abstract":"Abstract A new era of lunar exploration has begun bringing immense opportunities for science as well. It has been proposed to deploy a new generation of observatories on the lunar surface for deep studies of our Universe. This includes radio antennas, which would be protected on the far side of the Moon from terrestrial radio interference, and gravitational-wave (GW) detectors, which would profit from the extremely low level of seismic disturbances on the Moon. In recent years, novel concepts have been proposed for lunar GW detectors based on long-baseline laser interferometry or on compact sensors measuring the lunar surface vibrations caused by GWs. In this article, we review the concepts and science opportunities for such instruments on the Moon. In addition to promising breakthrough discoveries in astrophysics and cosmology, lunar GW detectors would also be formidable probes of the lunar internal structure and improve our understanding of the lunar geophysical environment.","PeriodicalId":21902,"journal":{"name":"Space Science Reviews","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135616057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Foresail-2: Space Physics Mission in a Challenging Environment 前翼-2:挑战性环境下的空间物理任务
2区 物理与天体物理 Q1 Earth and Planetary Sciences Pub Date : 2023-10-19 DOI: 10.1007/s11214-023-01012-7
Marius Anger, Petri Niemelä, Kiril Cheremetiev, Bruce Clayhills, Anton Fetzer, Ville Lundén, Markus Hiltunen, Tomi Kärkkäinen, M. Mayank, Lucile Turc, Adnane Osmane, Minna Palmroth, Emilia Kilpua, Philipp Oleynik, Rami Vainio, Pasi Virtanen, Petri Toivanen, Pekka Janhunen, David Fischer, Guillaume Le Bonhomme, Andris Slavinskis, Jaan Praks
Abstract Earth’s radiation belts are extremely important for space weather because they can store and accelerate particles to relativistic energies, which can have a potential impact on satellite functionality, communications, and navigation systems. The FORESAIL consortium wants to measure these high-energy particle fluxes to understand the dynamics of the radiation belts with its satellite mission Foresail-2. The mission aims to measure magnetic ultra low frequency waves and the plasma environment in the magnetosphere around Earth. The captured data will help to improve our understanding of space weather, and in particular the dynamics of Earth’s radiation belts during periods of large disturbances inside the magnetosphere. A mission design analysis and several trade-off studies are conducted to find the requirements for the science payloads and spacecraft avionics design. Deducted from these requirements, four different payloads are proposed to gather science data in a highly elliptical orbit such as a geostationary transfer orbit. The precision magnetometer uses flux-gate technology to measure magnetic waves from 1 mHz to 10 Hz. The spin scanning particle telescope is built around a detector stack to measure electron spectra in the range of 30 keV to 10 MeV. Additionally, this mission serves as a technology demonstrator for the Coulomb drag experiment which proposes a new kind of electric solar wind sail utilising the Coulomb drag force imposed onto a 300 m long tether. The fourth payload investigates multilayer radiation shielding and single event effects. All payloads will be supported by a newly developed 6U platform using mostly commercial off-the-shelf components. Its proposed avionics face several unique design requirements rising from the payloads and the preferred highly elliptical orbit for this mission.
地球的辐射带对空间天气极其重要,因为它们可以储存和加速粒子到相对论能量,这可能对卫星功能、通信和导航系统产生潜在影响。FORESAIL联盟希望通过其卫星任务FORESAIL -2来测量这些高能粒子通量,以了解辐射带的动力学。该任务旨在测量地球周围磁层中的磁性超低频波和等离子体环境。捕获的数据将有助于提高我们对空间天气的理解,特别是在磁层内部大扰动期间地球辐射带的动力学。通过任务设计分析和若干权衡研究,找出科学有效载荷和航天器航电设计的要求。扣除这些要求,提出了四种不同的有效载荷在高椭圆轨道(如地球静止转移轨道)上收集科学数据。精密磁强计使用磁通门技术测量从1兆赫到10赫兹的电磁波。自旋扫描粒子望远镜是围绕一个探测器堆栈建立的,用于测量30 keV到10 MeV范围内的电子能谱。此外,该任务还作为库仑阻力实验的技术演示,该实验提出了一种新型的电动太阳风帆,利用施加在300米长的系绳上的库仑阻力。第四个有效载荷研究多层辐射屏蔽和单事件效应。所有有效载荷将由一个新开发的6U平台支持,该平台使用大部分商用现成组件。它提出的航空电子设备面临着几个独特的设计要求,这些要求来自于有效载荷和该任务首选的高椭圆轨道。
{"title":"Foresail-2: Space Physics Mission in a Challenging Environment","authors":"Marius Anger, Petri Niemelä, Kiril Cheremetiev, Bruce Clayhills, Anton Fetzer, Ville Lundén, Markus Hiltunen, Tomi Kärkkäinen, M. Mayank, Lucile Turc, Adnane Osmane, Minna Palmroth, Emilia Kilpua, Philipp Oleynik, Rami Vainio, Pasi Virtanen, Petri Toivanen, Pekka Janhunen, David Fischer, Guillaume Le Bonhomme, Andris Slavinskis, Jaan Praks","doi":"10.1007/s11214-023-01012-7","DOIUrl":"https://doi.org/10.1007/s11214-023-01012-7","url":null,"abstract":"Abstract Earth’s radiation belts are extremely important for space weather because they can store and accelerate particles to relativistic energies, which can have a potential impact on satellite functionality, communications, and navigation systems. The FORESAIL consortium wants to measure these high-energy particle fluxes to understand the dynamics of the radiation belts with its satellite mission Foresail-2. The mission aims to measure magnetic ultra low frequency waves and the plasma environment in the magnetosphere around Earth. The captured data will help to improve our understanding of space weather, and in particular the dynamics of Earth’s radiation belts during periods of large disturbances inside the magnetosphere. A mission design analysis and several trade-off studies are conducted to find the requirements for the science payloads and spacecraft avionics design. Deducted from these requirements, four different payloads are proposed to gather science data in a highly elliptical orbit such as a geostationary transfer orbit. The precision magnetometer uses flux-gate technology to measure magnetic waves from 1 mHz to 10 Hz. The spin scanning particle telescope is built around a detector stack to measure electron spectra in the range of 30 keV to 10 MeV. Additionally, this mission serves as a technology demonstrator for the Coulomb drag experiment which proposes a new kind of electric solar wind sail utilising the Coulomb drag force imposed onto a 300 m long tether. The fourth payload investigates multilayer radiation shielding and single event effects. All payloads will be supported by a newly developed 6U platform using mostly commercial off-the-shelf components. Its proposed avionics face several unique design requirements rising from the payloads and the preferred highly elliptical orbit for this mission.","PeriodicalId":21902,"journal":{"name":"Space Science Reviews","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135666815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Solar Cycle Observations 太阳周期观测
2区 物理与天体物理 Q1 Earth and Planetary Sciences Pub Date : 2023-10-17 DOI: 10.1007/s11214-023-01008-3
Aimee Norton, Rachel Howe, Lisa Upton, Ilya Usoskin
Abstract We describe the defining observations of the solar cycle that provide constraints for the dynamo processes operating within the Sun. Specifically, we report on the following topics: historical sunspot numbers and revisions; active region (AR) flux ranges and lifetimes; bipolar magnetic region tilt angles; Hale and Joy’s law; the impact of rogue ARs on cycle progression and the amplitude of the following cycle; the spatio-temporal emergence of ARs that creates the butterfly diagram; polar fields; large-scale flows including zonal, meridional, and AR in-flows; short-term cycle variability; and helioseismic results including mode parameter changes.
摘要:我们描述了太阳周期的定义观测,为太阳内部的发电机过程提供了约束。具体而言,我们报告以下主题:历史太阳黑子数量和修订;有源区(AR)通量范围和寿命;双极磁区倾斜角;黑尔和乔伊定律;流氓ar对周期进程和下一个周期振幅的影响;创造蝴蝶图的ar的时空出现;极地领域;大规模流动,包括纬向、经向和AR流入;短期周期变异性;和日震结果包括模式参数的变化。
{"title":"Solar Cycle Observations","authors":"Aimee Norton, Rachel Howe, Lisa Upton, Ilya Usoskin","doi":"10.1007/s11214-023-01008-3","DOIUrl":"https://doi.org/10.1007/s11214-023-01008-3","url":null,"abstract":"Abstract We describe the defining observations of the solar cycle that provide constraints for the dynamo processes operating within the Sun. Specifically, we report on the following topics: historical sunspot numbers and revisions; active region (AR) flux ranges and lifetimes; bipolar magnetic region tilt angles; Hale and Joy’s law; the impact of rogue ARs on cycle progression and the amplitude of the following cycle; the spatio-temporal emergence of ARs that creates the butterfly diagram; polar fields; large-scale flows including zonal, meridional, and AR in-flows; short-term cycle variability; and helioseismic results including mode parameter changes.","PeriodicalId":21902,"journal":{"name":"Space Science Reviews","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136032848","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Understanding Active Region Origins and Emergence on the Sun and Other Cool Stars 了解活动区的起源和太阳和其他冷恒星的出现
2区 物理与天体物理 Q1 Earth and Planetary Sciences Pub Date : 2023-10-17 DOI: 10.1007/s11214-023-01006-5
Maria A. Weber, Hannah Schunker, Laurène Jouve, Emre Işık
Abstract The emergence of active regions on the Sun is an integral feature of the solar dynamo mechanism. However, details about the generation of active-region-scale magnetism and the journey of this magnetic flux from the interior to the photosphere are still in question. Shifting paradigms are now developing for the source depth of the Sun’s large-scale magnetism, the organization of this magnetism into fibril flux tubes, and the role of convection in shaping active-region observables. Here we review the landscape of flux emergence theories and simulations, highlight the role flux emergence plays in the global dynamo process, and make connections between flux emergence on the Sun and other cool stars. As longer-term and higher fidelity observations of both solar active regions and their associated flows are amassed, it is now possible to place new constraints on models of emerging flux. We discuss the outcomes of statistical studies which provide observational evidence that flux emergence may be a more passive process (at least in the upper convection zone); dominated to a greater extent by the influence of convection and to a lesser extent by buoyancy and the Coriolis force acting on rising magnetic flux tubes than previously thought. We also discuss how the relationship between stellar rotation, fractional convection zone depth, and magnetic activity on other stars can help us better understand the flux emergence processes. Looking forward, we identify open questions regarding magnetic flux emergence that we anticipate can be addressed in the next decade with further observations and simulations.
太阳活动区域的出现是太阳发电机机制的一个不可分割的特征。然而,关于活跃的区域尺度磁场的产生和这种磁通量从内部到光球的旅程的细节仍然是一个问题。对于太阳大尺度磁场的源深度,这种磁场在纤维通量管中的组织,以及对流在形成活动区域可观测值中的作用,现在正在发展转变的范式。在此,我们回顾了通量涌现理论和模拟的发展概况,强调了通量涌现在全球发电机过程中所起的作用,并将太阳上的通量涌现与其他冷恒星联系起来。随着对太阳活动区及其相关流动的长期和高保真度观测的积累,现在有可能对新出现的通量模型施加新的限制。我们讨论了统计研究的结果,这些结果提供了观测证据,表明通量出现可能是一个更被动的过程(至少在上层对流区);在很大程度上受对流的影响,而在较小程度上受浮力和作用在上升的磁通管上的科里奥利力的影响,这比以前认为的要大。我们还讨论了恒星旋转、分数对流区深度和其他恒星的磁活动之间的关系如何帮助我们更好地理解通量的产生过程。展望未来,我们确定了关于磁通量出现的开放问题,我们预计可以在未来十年通过进一步的观察和模拟来解决这些问题。
{"title":"Understanding Active Region Origins and Emergence on the Sun and Other Cool Stars","authors":"Maria A. Weber, Hannah Schunker, Laurène Jouve, Emre Işık","doi":"10.1007/s11214-023-01006-5","DOIUrl":"https://doi.org/10.1007/s11214-023-01006-5","url":null,"abstract":"Abstract The emergence of active regions on the Sun is an integral feature of the solar dynamo mechanism. However, details about the generation of active-region-scale magnetism and the journey of this magnetic flux from the interior to the photosphere are still in question. Shifting paradigms are now developing for the source depth of the Sun’s large-scale magnetism, the organization of this magnetism into fibril flux tubes, and the role of convection in shaping active-region observables. Here we review the landscape of flux emergence theories and simulations, highlight the role flux emergence plays in the global dynamo process, and make connections between flux emergence on the Sun and other cool stars. As longer-term and higher fidelity observations of both solar active regions and their associated flows are amassed, it is now possible to place new constraints on models of emerging flux. We discuss the outcomes of statistical studies which provide observational evidence that flux emergence may be a more passive process (at least in the upper convection zone); dominated to a greater extent by the influence of convection and to a lesser extent by buoyancy and the Coriolis force acting on rising magnetic flux tubes than previously thought. We also discuss how the relationship between stellar rotation, fractional convection zone depth, and magnetic activity on other stars can help us better understand the flux emergence processes. Looking forward, we identify open questions regarding magnetic flux emergence that we anticipate can be addressed in the next decade with further observations and simulations.","PeriodicalId":21902,"journal":{"name":"Space Science Reviews","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135943958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Space Science Reviews
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1