首页 > 最新文献

Space Science Reviews最新文献

英文 中文
Apollo Next Generation Sample Analysis (ANGSA): an Apollo Participating Scientist Program to Prepare the Lunar Sample Community for Artemis. 阿波罗下一代样品分析(ANGSA):阿波罗参与科学家计划,为阿耳特弥斯计划准备月球样品群。
IF 9.1 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-01-01 Epub Date: 2024-08-20 DOI: 10.1007/s11214-024-01094-x
C K Shearer, F M McCubbin, S Eckley, S B Simon, A Meshik, F McDonald, H H Schmitt, R A Zeigler, J Gross, J Mitchell, C Krysher, R V Morris, R Parai, B L Jolliff, J J Gillis-Davis, K H Joy, S K Bell, P G Lucey, L Sun, Z D Sharp, C Dukes, A Sehlke, A Mosie, J Allton, C Amick, J I Simon, T M Erickson, J J Barnes, M D Dyar, K Burgess, N Petro, D Moriarty, N M Curran, J E Elsila, R A Colina-Ruiz, T Kroll, D Sokaras, H A Ishii, J P Bradley, D Sears, B Cohen, O Pravdivseva, M S Thompson, C R Neal, R Hana, R Ketcham, K Welten

As a first step in preparing for the return of samples from the Moon by the Artemis Program, NASA initiated the Apollo Next Generation Sample Analysis Program (ANGSA). ANGSA was designed to function as a low-cost sample return mission and involved the curation and analysis of samples previously returned by the Apollo 17 mission that remained unopened or stored under unique conditions for 50 years. These samples include the lower portion of a double drive tube previously sealed on the lunar surface, the upper portion of that drive tube that had remained unopened, and a variety of Apollo 17 samples that had remained stored at -27 °C for approximately 50 years. ANGSA constitutes the first preliminary examination phase of a lunar "sample return mission" in over 50 years. It also mimics that same phase of an Artemis surface exploration mission, its design included placing samples within the context of local and regional geology through new orbital observations collected since Apollo and additional new "boots-on-the-ground" observations, data synthesis, and interpretations provided by Apollo 17 astronaut Harrison Schmitt. ANGSA used new curation techniques to prepare, document, and allocate these new lunar samples, developed new tools to open and extract gases from their containers, and applied new analytical instrumentation previously unavailable during the Apollo Program to reveal new information about these samples. Most of the 90 scientists, engineers, and curators involved in this mission were not alive during the Apollo Program, and it had been 30 years since the last Apollo core sample was processed in the Apollo curation facility at NASA JSC. There are many firsts associated with ANGSA that have direct relevance to Artemis. ANGSA is the first to open a core sample previously sealed on the surface of the Moon, the first to extract and analyze lunar gases collected in situ, the first to examine a core that penetrated a lunar landslide deposit, and the first to process pristine Apollo samples in a glovebox at -20 °C. All the ANGSA activities have helped to prepare the Artemis generation for what is to come. The timing of this program, the composition of the team, and the preservation of unopened Apollo samples facilitated this generational handoff from Apollo to Artemis that sets up Artemis and the lunar sample science community for additional successes.

作为准备阿耳特弥斯计划从月球返回样品的第一步,美国航天局启动了阿波罗下一代样品分析计划(ANGSA)。阿波罗下一代样本分析计划的目的是作为一项低成本的样本返回任务,对阿波罗 17 号任务以前返回的样本进行整理和分析,这些样本在 50 年的时间里一直未被打开或储存在独特的条件下。这些样本包括先前密封在月球表面的双驱动管的下部、该驱动管一直未打开的上部,以及在零下 27 ℃ 保存了约 50 年的各种阿波罗 17 号样本。ANGSA 是 50 多年来月球 "样本返回任务 "的第一个初步检查阶段。它还模仿了阿耳特弥斯地面探测任务的同一阶段,其设计包括通过自阿波罗以来收集的新的轨道观测数据以及阿波罗 17 号宇航员哈里森-施密特提供的额外的新的 "实地 "观测数据、数据综合和解释,将样本置于当地和区域地质的背景下。ANGSA 使用新的保存技术来准备、记录和分配这些新的月球样本,开发了新的工具来打开和提取容器中的气体,并应用了以前在阿波罗计划中无法使用的新的分析仪器来揭示这些样本的新信息。参与此次任务的 90 名科学家、工程师和馆员中的大多数人在阿波罗计划期间都不在世,而在美国宇航局联合空间中心的阿波罗馆藏设施中处理最后一个阿波罗核心样本距今已有 30 年之久。ANGSA 有许多与阿耳特弥斯直接相关的 "第一"。ANGSA 是第一个打开以前封存在月球表面的岩心样品的机构,是第一个提取和分析在原地收集的月球气体的机构,是第一个检查穿透月球滑坡沉积物的岩心的机构,也是第一个在零下 20 ℃ 的手套箱中处理原始阿波罗样品的机构。ANGSA的所有活动都有助于阿耳特弥斯一代为未来做好准备。该计划的时间安排、团队的组成以及未打开的阿波罗样本的保存,促进了从阿波罗到阿耳特弥斯的代际交接,为阿耳特弥斯和月球样本科学界取得更多成功奠定了基础。
{"title":"Apollo Next Generation Sample Analysis (ANGSA): an Apollo Participating Scientist Program to Prepare the Lunar Sample Community for Artemis.","authors":"C K Shearer, F M McCubbin, S Eckley, S B Simon, A Meshik, F McDonald, H H Schmitt, R A Zeigler, J Gross, J Mitchell, C Krysher, R V Morris, R Parai, B L Jolliff, J J Gillis-Davis, K H Joy, S K Bell, P G Lucey, L Sun, Z D Sharp, C Dukes, A Sehlke, A Mosie, J Allton, C Amick, J I Simon, T M Erickson, J J Barnes, M D Dyar, K Burgess, N Petro, D Moriarty, N M Curran, J E Elsila, R A Colina-Ruiz, T Kroll, D Sokaras, H A Ishii, J P Bradley, D Sears, B Cohen, O Pravdivseva, M S Thompson, C R Neal, R Hana, R Ketcham, K Welten","doi":"10.1007/s11214-024-01094-x","DOIUrl":"10.1007/s11214-024-01094-x","url":null,"abstract":"<p><p>As a first step in preparing for the return of samples from the Moon by the Artemis Program, NASA initiated the Apollo Next Generation Sample Analysis Program (ANGSA). ANGSA was designed to function as a low-cost sample return mission and involved the curation and analysis of samples previously returned by the Apollo 17 mission that remained unopened or stored under unique conditions for 50 years. These samples include the lower portion of a double drive tube previously sealed on the lunar surface, the upper portion of that drive tube that had remained unopened, and a variety of Apollo 17 samples that had remained stored at -27 °C for approximately 50 years. ANGSA constitutes the first preliminary examination phase of a lunar \"sample return mission\" in over 50 years. It also mimics that same phase of an Artemis surface exploration mission, its design included placing samples within the context of local and regional geology through new orbital observations collected since Apollo and additional new \"boots-on-the-ground\" observations, data synthesis, and interpretations provided by Apollo 17 astronaut Harrison Schmitt. ANGSA used new curation techniques to prepare, document, and allocate these new lunar samples, developed new tools to open and extract gases from their containers, and applied new analytical instrumentation previously unavailable during the Apollo Program to reveal new information about these samples. Most of the 90 scientists, engineers, and curators involved in this mission were not alive during the Apollo Program, and it had been 30 years since the last Apollo core sample was processed in the Apollo curation facility at NASA JSC. There are many firsts associated with ANGSA that have direct relevance to Artemis. ANGSA is the first to open a core sample previously sealed on the surface of the Moon, the first to extract and analyze lunar gases collected <i>in situ</i>, the first to examine a core that penetrated a lunar landslide deposit, and the first to process pristine Apollo samples in a glovebox at -20 °C. All the ANGSA activities have helped to prepare the Artemis generation for what is to come. The timing of this program, the composition of the team, and the preservation of unopened Apollo samples facilitated this generational handoff from Apollo to Artemis that sets up Artemis and the lunar sample science community for additional successes.</p>","PeriodicalId":21902,"journal":{"name":"Space Science Reviews","volume":null,"pages":null},"PeriodicalIF":9.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11335912/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142037012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Lucy Thermal Emission Spectrometer (L'TES) Instrument. 露西热发射光谱仪(L'TES)仪器。
IF 10.3 2区 物理与天体物理 Q1 Earth and Planetary Sciences Pub Date : 2024-01-01 Epub Date: 2023-12-19 DOI: 10.1007/s11214-023-01029-y
P R Christensen, V E Hamilton, G L Mehall, S Anwar, H Bowles, S Chase, Z Farkas, T Fisher, A Holmes, I Kubik, I Lazbin, W O'Donnell, C Ortiz, D Pelham, S Rogers, K Shamordola, T Tourville, R Woodward

The Lucy Thermal Emission Spectrometer (L'TES) will provide remote measurements of the thermophysical properties of the Trojan asteroids studied by the Lucy mission. L'TES is build-to-print hardware copy of the OTES instrument flown on OSIRIS-REx. It is a Fourier Transform spectrometer covering the spectral range 5.71-100 μm (1750-100 cm-1) with spectral sampling intervals of 8.64, 17.3, and 34.6 cm-1 and a 7.3-mrad field of view. The L'TES telescope is a 15.2-cm diameter Cassegrain telescope that feeds a flat-plate Michelson moving mirror mounted on a linear voice-coil motor assembly to a single uncooled deuterated l-alanine doped triglycine sulfate (DLATGS) pyroelectric detector. A significant firmware change from OTES is the ability to acquire interferograms of different length and spectral resolution with acquisition times of 0.5, 1, and 2 seconds. A single ∼0.851 μm laser diode is used in a metrology interferometer to provide precise moving mirror control and IR sampling at 772 Hz. The beamsplitter is a 38-mm diameter, 1-mm thick chemical vapor deposited diamond with an antireflection microstructure to minimize surface reflection. An internal calibration cone blackbody target, together with observations of space, provides radiometric calibration. The radiometric precision in a single spectrum is ≤2.2 × 10-8 W cm-2 sr-1 /cm-1 between 300 and 1350 cm-1. The absolute temperature error is <2 K for scene temperatures >75 K. The overall L'TES envelope size is 37.6 × 29.0 × 30.4 cm, and the mass is 6.47 kg. The power consumption is 12.6 W average. L'TES was developed by Arizona State University with AZ Space Technologies developing the electronics. L'TES was integrated, tested, and radiometrically calibrated on the Arizona State University campus in Tempe, AZ. Initial data from space have verified the instrument's radiometric and spatial performance.

露西热辐射光谱仪(L'TES)将对露西任务所研究的特洛伊小行星的热物理特性进行远程测量。L'TES 是 OSIRIS-REx 上的 OTES 仪器的复制硬件。它是一个傅立叶变换光谱仪,光谱范围为 5.71-100 μm(1750-100 cm-1),光谱采样间隔为 8.64、17.3 和 34.6 cm-1,视场为 7.3-mrad。L'TES 望远镜是一架直径为 15.2 厘米的卡塞格伦望远镜,它将一个安装在线性音圈电机组件上的平板迈克尔逊移动镜馈送给一个单一的非制冷氘化丙氨酸掺杂硫酸甘氨酸(DLATGS)热释电探测器。与 OTES 相比,固件的一个重大变化是能够获取不同长度和光谱分辨率的干涉图,获取时间分别为 0.5 秒、1 秒和 2 秒。计量干涉仪使用单个 0.851 μm 激光二极管提供精确的移动镜控制和 772 Hz 的红外采样。分光镜是直径 38 毫米、厚 1 毫米的化学气相沉积金刚石,具有抗反射微结构,可最大限度地减少表面反射。内部校准锥黑体目标与空间观测一起提供辐射校准。在 300 和 1350 cm-1 之间,单个光谱的辐射测量精度≤2.2 × 10-8 W cm-2 sr-1 /cm-1。L'TES 的整体尺寸为 37.6 × 29.0 × 30.4 厘米,质量为 6.47 千克。平均功耗为 12.6 瓦。L'TES 由亚利桑那州立大学开发,AZ 空间技术公司负责开发电子设备。L'TES 在亚利桑那州坦佩的亚利桑那州立大学校园内进行了集成、测试和辐射校准。来自太空的初步数据验证了该仪器的辐射和空间性能。
{"title":"The Lucy Thermal Emission Spectrometer (L'TES) Instrument.","authors":"P R Christensen, V E Hamilton, G L Mehall, S Anwar, H Bowles, S Chase, Z Farkas, T Fisher, A Holmes, I Kubik, I Lazbin, W O'Donnell, C Ortiz, D Pelham, S Rogers, K Shamordola, T Tourville, R Woodward","doi":"10.1007/s11214-023-01029-y","DOIUrl":"10.1007/s11214-023-01029-y","url":null,"abstract":"<p><p>The Lucy Thermal Emission Spectrometer (L'TES) will provide remote measurements of the thermophysical properties of the Trojan asteroids studied by the Lucy mission. L'TES is build-to-print hardware copy of the OTES instrument flown on OSIRIS-REx. It is a Fourier Transform spectrometer covering the spectral range 5.71-100 μm (1750-100 cm<sup>-1</sup>) with spectral sampling intervals of 8.64, 17.3, and 34.6 cm<sup>-1</sup> and a 7.3-mrad field of view. The L'TES telescope is a 15.2-cm diameter Cassegrain telescope that feeds a flat-plate Michelson moving mirror mounted on a linear voice-coil motor assembly to a single uncooled deuterated l-alanine doped triglycine sulfate (DLATGS) pyroelectric detector. A significant firmware change from OTES is the ability to acquire interferograms of different length and spectral resolution with acquisition times of 0.5, 1, and 2 seconds. A single ∼0.851 μm laser diode is used in a metrology interferometer to provide precise moving mirror control and IR sampling at 772 Hz. The beamsplitter is a 38-mm diameter, 1-mm thick chemical vapor deposited diamond with an antireflection microstructure to minimize surface reflection. An internal calibration cone blackbody target, together with observations of space, provides radiometric calibration. The radiometric precision in a single spectrum is ≤2.2 × 10<sup>-8</sup> W cm<sup>-2</sup> sr<sup>-1</sup> /cm<sup>-1</sup> between 300 and 1350 cm<sup>-1</sup>. The absolute temperature error is <2 K for scene temperatures >75 K. The overall L'TES envelope size is 37.6 × 29.0 × 30.4 cm, and the mass is 6.47 kg. The power consumption is 12.6 W average. L'TES was developed by Arizona State University with AZ Space Technologies developing the electronics. L'TES was integrated, tested, and radiometrically calibrated on the Arizona State University campus in Tempe, AZ. Initial data from space have verified the instrument's radiometric and spatial performance.</p>","PeriodicalId":21902,"journal":{"name":"Space Science Reviews","volume":null,"pages":null},"PeriodicalIF":10.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10730683/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138831556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Radar for Europa Assessment and Sounding: Ocean to Near-Surface (REASON). 欧罗巴评估和探测雷达:从海洋到近地表(REASON)。
IF 9.1 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-01-01 Epub Date: 2024-06-27 DOI: 10.1007/s11214-024-01072-3
Donald D Blankenship, Alina Moussessian, Elaine Chapin, Duncan A Young, G Wesley Patterson, Jeffrey J Plaut, Adam P Freedman, Dustin M Schroeder, Cyril Grima, Gregor Steinbrügge, Krista M Soderlund, Trina Ray, Thomas G Richter, Laura Jones-Wilson, Natalie S Wolfenbarger, Kirk M Scanlan, Christopher Gerekos, Kristian Chan, Ilgin Seker, Mark S Haynes, Amy C Barr Mlinar, Lorenzo Bruzzone, Bruce A Campbell, Lynn M Carter, Charles Elachi, Yonggyu Gim, Alain Hérique, Hauke Hussmann, Wlodek Kofman, William S Kurth, Marco Mastrogiuseppe, William B McKinnon, Jeffrey M Moore, Francis Nimmo, Carol Paty, Dirk Plettemeier, Britney E Schmidt, Mikhail Y Zolotov, Paul M Schenk, Simon Collins, Harry Figueroa, Mark Fischman, Eric Tardiff, Andy Berkun, Mimi Paller, James P Hoffman, Andy Kurum, Gregory A Sadowy, Kevin B Wheeler, Emmanuel Decrossas, Yasser Hussein, Curtis Jin, Frank Boldissar, Neil Chamberlain, Brenda Hernandez, Elham Maghsoudi, Jonathan Mihaly, Shana Worel, Vik Singh, Kyung Pak, Jordan Tanabe, Robert Johnson, Mohammad Ashtijou, Tafesse Alemu, Michael Burke, Brian Custodero, Michael C Tope, David Hawkins, Kim Aaron, Gregory T Delory, Paul S Turin, Donald L Kirchner, Karthik Srinivasan, Julie Xie, Brad Ortloff, Ian Tan, Tim Noh, Duane Clark, Vu Duong, Shivani Joshi, Jeng Lee, Elvis Merida, Ruzbeh Akbar, Xueyang Duan, Ines Fenni, Mauricio Sanchez-Barbetty, Chaitali Parashare, Duane C Howard, Julie Newman, Marvin G Cruz, Neil J Barabas, Ahmadreza Amirahmadi, Brendon Palmer, Rohit S Gawande, Grace Milroy, Rick Roberti, Frank E Leader, Richard D West, Jan Martin, Vijay Venkatesh, Virgil Adumitroaie, Christine Rains, Cuong Quach, Jordi E Turner, Colleen M O'Shea, Scott D Kempf, Gregory Ng, Dillon P Buhl, Timothy J Urban

The Radar for Europa Assessment and Sounding: Ocean to Near-surface (REASON) is a dual-frequency ice-penetrating radar (9 and 60 MHz) onboard the Europa Clipper mission. REASON is designed to probe Europa from exosphere to subsurface ocean, contributing the third dimension to observations of this enigmatic world. The hypotheses REASON will test are that (1) the ice shell of Europa hosts liquid water, (2) the ice shell overlies an ocean and is subject to tidal flexing, and (3) the exosphere, near-surface, ice shell, and ocean participate in material exchange essential to the habitability of this moon. REASON will investigate processes governing this material exchange by characterizing the distribution of putative non-ice material (e.g., brines, salts) in the subsurface, searching for an ice-ocean interface, characterizing the ice shell's global structure, and constraining the amplitude of Europa's radial tidal deformations. REASON will accomplish these science objectives using a combination of radar measurement techniques including altimetry, reflectometry, sounding, interferometry, plasma characterization, and ranging. Building on a rich heritage from Earth, the moon, and Mars, REASON will be the first ice-penetrating radar to explore the outer solar system. Because these radars are untested for the icy worlds in the outer solar system, a novel approach to measurement quality assessment was developed to represent uncertainties in key properties of Europa that affect REASON performance and ensure robustness across a range of plausible parameters suggested for the icy moon. REASON will shed light on a never-before-seen dimension of Europa and - in concert with other instruments on Europa Clipper - help to investigate whether Europa is a habitable world.

欧罗巴评估和探测雷达:欧罗巴评估和探测雷达:从海洋到近地表(REASON)是欧罗巴快帆飞行任务上的双频冰穿透雷达(9 和 60 兆赫)。REASON旨在探测欧罗巴从大气层外到地表下海洋的情况,为观测这个神秘世界提供第三个维度。REASON将测试的假设是:(1)欧罗巴的冰壳承载着液态水;(2)冰壳覆盖在海洋之上,并受到潮汐的挠曲;(3)外大气层、近地表、冰壳和海洋参与了对该卫星的宜居性至关重要的物质交换。REASON将通过确定地表下假定非冰物质(如盐水、盐类)的分布特征、寻找冰-海洋界面、确定冰壳的整体结构特征以及限制欧罗巴径向潮汐变形的幅度,来研究这种物质交换的过程。REASON将综合利用测高、反射测量、探测、干涉测量、等离子体特征描述和测距等雷达测量技术来实现这些科学目标。在地球、月球和火星的丰富遗产的基础上,REASON 将成为第一个探索外太阳系的冰穿透雷达。由于这些雷达尚未在外太阳系的冰雪世界中进行过测试,因此开发了一种新颖的测量质量评估方法,以表示影响REASON性能的木卫二关键特性的不确定性,并确保在为冰卫星建议的一系列可信参数范围内的稳健性。REASON将揭示木卫二从未见过的层面,并与木卫二快船上的其他仪器一起,帮助调查木卫二是否是一个宜居的世界。
{"title":"Radar for Europa Assessment and Sounding: Ocean to Near-Surface (REASON).","authors":"Donald D Blankenship, Alina Moussessian, Elaine Chapin, Duncan A Young, G Wesley Patterson, Jeffrey J Plaut, Adam P Freedman, Dustin M Schroeder, Cyril Grima, Gregor Steinbrügge, Krista M Soderlund, Trina Ray, Thomas G Richter, Laura Jones-Wilson, Natalie S Wolfenbarger, Kirk M Scanlan, Christopher Gerekos, Kristian Chan, Ilgin Seker, Mark S Haynes, Amy C Barr Mlinar, Lorenzo Bruzzone, Bruce A Campbell, Lynn M Carter, Charles Elachi, Yonggyu Gim, Alain Hérique, Hauke Hussmann, Wlodek Kofman, William S Kurth, Marco Mastrogiuseppe, William B McKinnon, Jeffrey M Moore, Francis Nimmo, Carol Paty, Dirk Plettemeier, Britney E Schmidt, Mikhail Y Zolotov, Paul M Schenk, Simon Collins, Harry Figueroa, Mark Fischman, Eric Tardiff, Andy Berkun, Mimi Paller, James P Hoffman, Andy Kurum, Gregory A Sadowy, Kevin B Wheeler, Emmanuel Decrossas, Yasser Hussein, Curtis Jin, Frank Boldissar, Neil Chamberlain, Brenda Hernandez, Elham Maghsoudi, Jonathan Mihaly, Shana Worel, Vik Singh, Kyung Pak, Jordan Tanabe, Robert Johnson, Mohammad Ashtijou, Tafesse Alemu, Michael Burke, Brian Custodero, Michael C Tope, David Hawkins, Kim Aaron, Gregory T Delory, Paul S Turin, Donald L Kirchner, Karthik Srinivasan, Julie Xie, Brad Ortloff, Ian Tan, Tim Noh, Duane Clark, Vu Duong, Shivani Joshi, Jeng Lee, Elvis Merida, Ruzbeh Akbar, Xueyang Duan, Ines Fenni, Mauricio Sanchez-Barbetty, Chaitali Parashare, Duane C Howard, Julie Newman, Marvin G Cruz, Neil J Barabas, Ahmadreza Amirahmadi, Brendon Palmer, Rohit S Gawande, Grace Milroy, Rick Roberti, Frank E Leader, Richard D West, Jan Martin, Vijay Venkatesh, Virgil Adumitroaie, Christine Rains, Cuong Quach, Jordi E Turner, Colleen M O'Shea, Scott D Kempf, Gregory Ng, Dillon P Buhl, Timothy J Urban","doi":"10.1007/s11214-024-01072-3","DOIUrl":"10.1007/s11214-024-01072-3","url":null,"abstract":"<p><p>The Radar for Europa Assessment and Sounding: Ocean to Near-surface (REASON) is a dual-frequency ice-penetrating radar (9 and 60 MHz) onboard the Europa Clipper mission. REASON is designed to probe Europa from exosphere to subsurface ocean, contributing the third dimension to observations of this enigmatic world. The hypotheses REASON will test are that (1) the ice shell of Europa hosts liquid water, (2) the ice shell overlies an ocean and is subject to tidal flexing, and (3) the exosphere, near-surface, ice shell, and ocean participate in material exchange essential to the habitability of this moon. REASON will investigate processes governing this material exchange by characterizing the distribution of putative non-ice material (e.g., brines, salts) in the subsurface, searching for an ice-ocean interface, characterizing the ice shell's global structure, and constraining the amplitude of Europa's radial tidal deformations. REASON will accomplish these science objectives using a combination of radar measurement techniques including <i>altimetry</i>, <i>reflectometry</i>, <i>sounding</i>, <i>interferometry</i>, <i>plasma characterization</i>, and <i>ranging</i>. Building on a rich heritage from Earth, the moon, and Mars, REASON will be the first ice-penetrating radar to explore the outer solar system. Because these radars are untested for the icy worlds in the outer solar system, a novel approach to measurement quality assessment was developed to represent uncertainties in key properties of Europa that affect REASON performance and ensure robustness across a range of plausible parameters suggested for the icy moon. REASON will shed light on a never-before-seen dimension of Europa and - in concert with other instruments on Europa Clipper - help to investigate whether Europa is a habitable world.</p>","PeriodicalId":21902,"journal":{"name":"Space Science Reviews","volume":null,"pages":null},"PeriodicalIF":9.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11211191/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141470729","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Astronomical Observations in Support of Planetary Entry-Probes to the Outer Planets. 支持外行星进入探测器的天文观测。
IF 10.3 2区 物理与天体物理 Q1 Earth and Planetary Sciences Pub Date : 2024-01-01 Epub Date: 2024-06-11 DOI: 10.1007/s11214-024-01080-3
Bonnie J Buratti, Glenn S Orton, Michael T Roman, Thomas Momary, James M Bauer

A team of Earth-based astronomical observers supporting a giant planet entry-probe event substantially enhances the scientific return of the mission. An observers' team provides spatial and temporal context, additional spectral coverage and resolution, viewing geometries that are not available from the probe or the main spacecraft, tracking, supporting data in case of a failure, calibration benchmarks, and additional opportunities for education and outreach. The capabilities of the support program can be extended by utilizing archived data. The existence of a standing group of observers facilitates the path towards acquiring Director's Discretionary Time at major telescopes, if, for example, the probe's entry date moves. The benefits of a team convened for a probe release provides enhanced scientific return throughout the mission. Finally, the types of observations and the organization of the teams described in this paper could serve as a model for flight projects in general.

由地球天文观测员组成的小组为巨行星进入探测活动提供支持,可大大提高飞行任务的科学回报。观测员小组可提供空间和时间背景、额外的光谱覆盖范围和分辨率、探测器或主航天器无法提供的观测几何图形、跟踪、故障情况下的支持数据、校准基准以及更多的教育和宣传机会。利用存档数据可以扩展支持计划的能力。如果探测器的进入日期发生变化,一个常设观测员小组的存在将有助于在主要望远镜上获得 "主任自由支配时间"。在整个任务期间,一个为探测器释放而召集的小组可以带来更多的科学回报。最后,本文所述的观测类型和团队组织方式可以作为一般飞行项目的范例。
{"title":"Astronomical Observations in Support of Planetary Entry-Probes to the Outer Planets.","authors":"Bonnie J Buratti, Glenn S Orton, Michael T Roman, Thomas Momary, James M Bauer","doi":"10.1007/s11214-024-01080-3","DOIUrl":"10.1007/s11214-024-01080-3","url":null,"abstract":"<p><p>A team of Earth-based astronomical observers supporting a giant planet entry-probe event substantially enhances the scientific return of the mission. An observers' team provides spatial and temporal context, additional spectral coverage and resolution, viewing geometries that are not available from the probe or the main spacecraft, tracking, supporting data in case of a failure, calibration benchmarks, and additional opportunities for education and outreach. The capabilities of the support program can be extended by utilizing archived data. The existence of a standing group of observers facilitates the path towards acquiring Director's Discretionary Time at major telescopes, if, for example, the probe's entry date moves. The benefits of a team convened for a probe release provides enhanced scientific return throughout the mission. Finally, the types of observations and the organization of the teams described in this paper could serve as a model for flight projects in general.</p>","PeriodicalId":21902,"journal":{"name":"Space Science Reviews","volume":null,"pages":null},"PeriodicalIF":10.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11166823/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141318305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Comet Interceptor Mission. 彗星拦截器任务
IF 10.3 2区 物理与天体物理 Q1 Earth and Planetary Sciences Pub Date : 2024-01-01 Epub Date: 2024-01-24 DOI: 10.1007/s11214-023-01035-0
Geraint H Jones, Colin Snodgrass, Cecilia Tubiana, Michael Küppers, Hideyo Kawakita, Luisa M Lara, Jessica Agarwal, Nicolas André, Nicholas Attree, Uli Auster, Stefano Bagnulo, Michele Bannister, Arnaud Beth, Neil Bowles, Andrew Coates, Luigi Colangeli, Carlos Corral van Damme, Vania Da Deppo, Johan De Keyser, Vincenzo Della Corte, Niklas Edberg, Mohamed Ramy El-Maarry, Sara Faggi, Marco Fulle, Ryu Funase, Marina Galand, Charlotte Goetz, Olivier Groussin, Aurélie Guilbert-Lepoutre, Pierre Henri, Satoshi Kasahara, Akos Kereszturi, Mark Kidger, Matthew Knight, Rosita Kokotanekova, Ivana Kolmasova, Konrad Kossacki, Ekkehard Kührt, Yuna Kwon, Fiorangela La Forgia, Anny-Chantal Levasseur-Regourd, Manuela Lippi, Andrea Longobardo, Raphael Marschall, Marek Morawski, Olga Muñoz, Antti Näsilä, Hans Nilsson, Cyrielle Opitom, Mihkel Pajusalu, Antoine Pommerol, Lubomir Prech, Nicola Rando, Francesco Ratti, Hanna Rothkaehl, Alessandra Rotundi, Martin Rubin, Naoya Sakatani, Joan Pau Sánchez, Cyril Simon Wedlund, Anamarija Stankov, Nicolas Thomas, Imre Toth, Geronimo Villanueva, Jean-Baptiste Vincent, Martin Volwerk, Peter Wurz, Arno Wielders, Kazuo Yoshioka, Konrad Aleksiejuk, Fernando Alvarez, Carine Amoros, Shahid Aslam, Barbara Atamaniuk, Jędrzej Baran, Tomasz Barciński, Thomas Beck, Thomas Behnke, Martin Berglund, Ivano Bertini, Marcin Bieda, Piotr Binczyk, Martin-Diego Busch, Andrei Cacovean, Maria Teresa Capria, Chris Carr, José María Castro Marín, Matteo Ceriotti, Paolo Chioetto, Agata Chuchra-Konrad, Lorenzo Cocola, Fabrice Colin, Chiaki Crews, Victoria Cripps, Emanuele Cupido, Alberto Dassatti, Björn J R Davidsson, Thierry De Roche, Jan Deca, Simone Del Togno, Frederik Dhooghe, Kerri Donaldson Hanna, Anders Eriksson, Andrey Fedorov, Estela Fernández-Valenzuela, Stefano Ferretti, Johan Floriot, Fabio Frassetto, Jesper Fredriksson, Philippe Garnier, Dorota Gaweł, Vincent Génot, Thomas Gerber, Karl-Heinz Glassmeier, Mikael Granvik, Benjamin Grison, Herbert Gunell, Tedjani Hachemi, Christian Hagen, Rajkumar Hajra, Yuki Harada, Johann Hasiba, Nico Haslebacher, Miguel Luis Herranz De La Revilla, Daniel Hestroffer, Tilak Hewagama, Carrie Holt, Stubbe Hviid, Iaroslav Iakubivskyi, Laura Inno, Patrick Irwin, Stavro Ivanovski, Jiri Jansky, Irmgard Jernej, Harald Jeszenszky, Jaime Jimenéz, Laurent Jorda, Mihkel Kama, Shingo Kameda, Michael S P Kelley, Kamil Klepacki, Tomáš Kohout, Hirotsugu Kojima, Tomasz Kowalski, Masaki Kuwabara, Michal Ladno, Gunter Laky, Helmut Lammer, Radek Lan, Benoit Lavraud, Monica Lazzarin, Olivier Le Duff, Qiu-Mei Lee, Cezary Lesniak, Zoe Lewis, Zhong-Yi Lin, Tim Lister, Stephen Lowry, Werner Magnes, Johannes Markkanen, Ignacio Martinez Navajas, Zita Martins, Ayako Matsuoka, Barbara Matyjasiak, Christian Mazelle, Elena Mazzotta Epifani, Mirko Meier, Harald Michaelis, Marco Micheli, Alessandra Migliorini, Aude-Lyse Millet, Fernando Moreno, Stefano Mottola, Bruno Moutounaick, Karri Muinonen, Daniel R Müller, Go Murakami, Naofumi Murata, Kamil Myszka, Shintaro Nakajima, Zoltan Nemeth, Artiom Nikolajev, Simone Nordera, Dan Ohlsson, Aire Olesk, Harald Ottacher, Naoya Ozaki, Christophe Oziol, Manish Patel, Aditya Savio Paul, Antti Penttilä, Claudio Pernechele, Joakim Peterson, Enrico Petraglio, Alice Maria Piccirillo, Ferdinand Plaschke, Szymon Polak, Frank Postberg, Herman Proosa, Silvia Protopapa, Walter Puccio, Sylvain Ranvier, Sean Raymond, Ingo Richter, Martin Rieder, Roberto Rigamonti, Irene Ruiz Rodriguez, Ondrej Santolik, Takahiro Sasaki, Rolf Schrödter, Katherine Shirley, Andris Slavinskis, Balint Sodor, Jan Soucek, Peter Stephenson, Linus Stöckli, Paweł Szewczyk, Gabor Troznai, Ludek Uhlir, Naoto Usami, Aris Valavanoglou, Jakub Vaverka, Wei Wang, Xiao-Dong Wang, Gaëtan Wattieaux, Martin Wieser, Sebastian Wolf, Hajime Yano, Ichiro Yoshikawa, Vladimir Zakharov, Tomasz Zawistowski, Paola Zuppella, Giovanna Rinaldi, Hantao Ji

Here we describe the novel, multi-point Comet Interceptor mission. It is dedicated to the exploration of a little-processed long-period comet, possibly entering the inner Solar System for the first time, or to encounter an interstellar object originating at another star. The objectives of the mission are to address the following questions: What are the surface composition, shape, morphology, and structure of the target object? What is the composition of the gas and dust in the coma, its connection to the nucleus, and the nature of its interaction with the solar wind? The mission was proposed to the European Space Agency in 2018, and formally adopted by the agency in June 2022, for launch in 2029 together with the Ariel mission. Comet Interceptor will take advantage of the opportunity presented by ESA's F-Class call for fast, flexible, low-cost missions to which it was proposed. The call required a launch to a halo orbit around the Sun-Earth L2 point. The mission can take advantage of this placement to wait for the discovery of a suitable comet reachable with its minimum ΔV capability of 600 ms-1. Comet Interceptor will be unique in encountering and studying, at a nominal closest approach distance of 1000 km, a comet that represents a near-pristine sample of material from the formation of the Solar System. It will also add a capability that no previous cometary mission has had, which is to deploy two sub-probes - B1, provided by the Japanese space agency, JAXA, and B2 - that will follow different trajectories through the coma. While the main probe passes at a nominal 1000 km distance, probes B1 and B2 will follow different chords through the coma at distances of 850 km and 400 km, respectively. The result will be unique, simultaneous, spatially resolved information of the 3-dimensional properties of the target comet and its interaction with the space environment. We present the mission's science background leading to these objectives, as well as an overview of the scientific instruments, mission design, and schedule.

在这里,我们介绍一下新颖的多点彗星拦截器任务。它致力于探索一颗经过少量处理的长周期彗星,这颗彗星可能是首次进入太阳系内部,也可能是遭遇一颗源自另一颗恒星的星际天体。这次任务的目标是解决以下问题:目标天体的表面成分、形状、形态和结构如何?彗星中气体和尘埃的成分、与星核的联系以及与太阳风相互作用的性质如何?该任务于 2018 年向欧洲航天局提出,2022 年 6 月正式获得该局通过,将于 2029 年与阿里尔任务一起发射。彗星拦截者 "将利用欧空局 "F-Class "快速、灵活、低成本飞行任务征集活动提供的机会。该呼吁要求发射到围绕太阳-地球 L2 点的光环轨道。该任务可以利用这一位置等待发现一颗合适的彗星,其最小ΔV 能力为 600 ms-1。彗星拦截者的独特之处在于,它能在标称的最近接近距离 1000 公里处遇到一颗彗星并对其进行研究,这颗彗星代表了太阳系形成过程中近乎原始的物质样本。它还将增加一项以往任何彗星飞行任务都不具备的能力,即部署两个子探测器--由日本宇宙航空研究开发机构提供的 B1 和 B2--它们将沿着不同的轨道穿过彗星。当主探测器以标称的 1000 千米距离通过时,探测器 B1 和 B2 将分别以 850 千米和 400 千米的距离沿着不同的弦穿过彗星。其结果将是对目标彗星的三维特性及其与空间环境的相互作用提供独特的、同步的、空间分辨率高的信息。我们将介绍实现这些目标的飞行任务科学背景,以及科学仪器、飞行任务设计和时间表的概况。
{"title":"The Comet Interceptor Mission.","authors":"Geraint H Jones, Colin Snodgrass, Cecilia Tubiana, Michael Küppers, Hideyo Kawakita, Luisa M Lara, Jessica Agarwal, Nicolas André, Nicholas Attree, Uli Auster, Stefano Bagnulo, Michele Bannister, Arnaud Beth, Neil Bowles, Andrew Coates, Luigi Colangeli, Carlos Corral van Damme, Vania Da Deppo, Johan De Keyser, Vincenzo Della Corte, Niklas Edberg, Mohamed Ramy El-Maarry, Sara Faggi, Marco Fulle, Ryu Funase, Marina Galand, Charlotte Goetz, Olivier Groussin, Aurélie Guilbert-Lepoutre, Pierre Henri, Satoshi Kasahara, Akos Kereszturi, Mark Kidger, Matthew Knight, Rosita Kokotanekova, Ivana Kolmasova, Konrad Kossacki, Ekkehard Kührt, Yuna Kwon, Fiorangela La Forgia, Anny-Chantal Levasseur-Regourd, Manuela Lippi, Andrea Longobardo, Raphael Marschall, Marek Morawski, Olga Muñoz, Antti Näsilä, Hans Nilsson, Cyrielle Opitom, Mihkel Pajusalu, Antoine Pommerol, Lubomir Prech, Nicola Rando, Francesco Ratti, Hanna Rothkaehl, Alessandra Rotundi, Martin Rubin, Naoya Sakatani, Joan Pau Sánchez, Cyril Simon Wedlund, Anamarija Stankov, Nicolas Thomas, Imre Toth, Geronimo Villanueva, Jean-Baptiste Vincent, Martin Volwerk, Peter Wurz, Arno Wielders, Kazuo Yoshioka, Konrad Aleksiejuk, Fernando Alvarez, Carine Amoros, Shahid Aslam, Barbara Atamaniuk, Jędrzej Baran, Tomasz Barciński, Thomas Beck, Thomas Behnke, Martin Berglund, Ivano Bertini, Marcin Bieda, Piotr Binczyk, Martin-Diego Busch, Andrei Cacovean, Maria Teresa Capria, Chris Carr, José María Castro Marín, Matteo Ceriotti, Paolo Chioetto, Agata Chuchra-Konrad, Lorenzo Cocola, Fabrice Colin, Chiaki Crews, Victoria Cripps, Emanuele Cupido, Alberto Dassatti, Björn J R Davidsson, Thierry De Roche, Jan Deca, Simone Del Togno, Frederik Dhooghe, Kerri Donaldson Hanna, Anders Eriksson, Andrey Fedorov, Estela Fernández-Valenzuela, Stefano Ferretti, Johan Floriot, Fabio Frassetto, Jesper Fredriksson, Philippe Garnier, Dorota Gaweł, Vincent Génot, Thomas Gerber, Karl-Heinz Glassmeier, Mikael Granvik, Benjamin Grison, Herbert Gunell, Tedjani Hachemi, Christian Hagen, Rajkumar Hajra, Yuki Harada, Johann Hasiba, Nico Haslebacher, Miguel Luis Herranz De La Revilla, Daniel Hestroffer, Tilak Hewagama, Carrie Holt, Stubbe Hviid, Iaroslav Iakubivskyi, Laura Inno, Patrick Irwin, Stavro Ivanovski, Jiri Jansky, Irmgard Jernej, Harald Jeszenszky, Jaime Jimenéz, Laurent Jorda, Mihkel Kama, Shingo Kameda, Michael S P Kelley, Kamil Klepacki, Tomáš Kohout, Hirotsugu Kojima, Tomasz Kowalski, Masaki Kuwabara, Michal Ladno, Gunter Laky, Helmut Lammer, Radek Lan, Benoit Lavraud, Monica Lazzarin, Olivier Le Duff, Qiu-Mei Lee, Cezary Lesniak, Zoe Lewis, Zhong-Yi Lin, Tim Lister, Stephen Lowry, Werner Magnes, Johannes Markkanen, Ignacio Martinez Navajas, Zita Martins, Ayako Matsuoka, Barbara Matyjasiak, Christian Mazelle, Elena Mazzotta Epifani, Mirko Meier, Harald Michaelis, Marco Micheli, Alessandra Migliorini, Aude-Lyse Millet, Fernando Moreno, Stefano Mottola, Bruno Moutounaick, Karri Muinonen, Daniel R Müller, Go Murakami, Naofumi Murata, Kamil Myszka, Shintaro Nakajima, Zoltan Nemeth, Artiom Nikolajev, Simone Nordera, Dan Ohlsson, Aire Olesk, Harald Ottacher, Naoya Ozaki, Christophe Oziol, Manish Patel, Aditya Savio Paul, Antti Penttilä, Claudio Pernechele, Joakim Peterson, Enrico Petraglio, Alice Maria Piccirillo, Ferdinand Plaschke, Szymon Polak, Frank Postberg, Herman Proosa, Silvia Protopapa, Walter Puccio, Sylvain Ranvier, Sean Raymond, Ingo Richter, Martin Rieder, Roberto Rigamonti, Irene Ruiz Rodriguez, Ondrej Santolik, Takahiro Sasaki, Rolf Schrödter, Katherine Shirley, Andris Slavinskis, Balint Sodor, Jan Soucek, Peter Stephenson, Linus Stöckli, Paweł Szewczyk, Gabor Troznai, Ludek Uhlir, Naoto Usami, Aris Valavanoglou, Jakub Vaverka, Wei Wang, Xiao-Dong Wang, Gaëtan Wattieaux, Martin Wieser, Sebastian Wolf, Hajime Yano, Ichiro Yoshikawa, Vladimir Zakharov, Tomasz Zawistowski, Paola Zuppella, Giovanna Rinaldi, Hantao Ji","doi":"10.1007/s11214-023-01035-0","DOIUrl":"10.1007/s11214-023-01035-0","url":null,"abstract":"<p><p>Here we describe the novel, multi-point Comet Interceptor mission. It is dedicated to the exploration of a little-processed long-period comet, possibly entering the inner Solar System for the first time, or to encounter an interstellar object originating at another star. The objectives of the mission are to address the following questions: What are the surface composition, shape, morphology, and structure of the target object? What is the composition of the gas and dust in the coma, its connection to the nucleus, and the nature of its interaction with the solar wind? The mission was proposed to the European Space Agency in 2018, and formally adopted by the agency in June 2022, for launch in 2029 together with the Ariel mission. Comet Interceptor will take advantage of the opportunity presented by ESA's F-Class call for fast, flexible, low-cost missions to which it was proposed. The call required a launch to a halo orbit around the Sun-Earth L2 point. The mission can take advantage of this placement to wait for the discovery of a suitable comet reachable with its minimum <math><mi>Δ</mi></math>V capability of <math><mn>600</mn><msup><mtext> ms</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup></math>. Comet Interceptor will be unique in encountering and studying, at a nominal closest approach distance of 1000 km, a comet that represents a near-pristine sample of material from the formation of the Solar System. It will also add a capability that no previous cometary mission has had, which is to deploy two sub-probes - B1, provided by the Japanese space agency, JAXA, and B2 - that will follow different trajectories through the coma. While the main probe passes at a nominal 1000 km distance, probes B1 and B2 will follow different chords through the coma at distances of 850 km and 400 km, respectively. The result will be unique, simultaneous, spatially resolved information of the 3-dimensional properties of the target comet and its interaction with the space environment. We present the mission's science background leading to these objectives, as well as an overview of the scientific instruments, mission design, and schedule.</p>","PeriodicalId":21902,"journal":{"name":"Space Science Reviews","volume":null,"pages":null},"PeriodicalIF":10.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10808369/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139571374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiple Probe Measurements at Uranus Motivated by Spatial Variability. 由空间变异性引发的天王星多重探测测量。
IF 10.3 2区 物理与天体物理 Q1 Earth and Planetary Sciences Pub Date : 2024-01-01 Epub Date: 2024-02-09 DOI: 10.1007/s11214-024-01050-9
Michael H Wong, Naomi Rowe-Gurney, Stephen Markham, Kunio M Sayanagi

A major motivation for multiple atmospheric probe measurements at Uranus is the understanding of dynamic processes that create and maintain spatial variation in thermal structure, composition, and horizontal winds. But origin questions-regarding the planet's formation and evolution, and conditions in the protoplanetary disk-are also major science drivers for multiprobe exploration. Spatial variation in thermal structure reveals how the atmosphere transports heat from the interior, and measuring compositional variability in the atmosphere is key to ultimately gaining an understanding of the bulk abundances of several heavy elements. We review the current knowledge of spatial variability in Uranus' atmosphere, and we outline how multiple probe exploration would advance our understanding of this variability. The other giant planets are discussed, both to connect multiprobe exploration of those atmospheres to open questions at Uranus, and to demonstrate how multiprobe exploration of Uranus itself is motivated by lessons learned about the spatial variation at Jupiter, Saturn, and Neptune. We outline the measurements of highest value from miniature secondary probes (which would complement more detailed investigation by a larger flagship probe), and present the path toward overcoming current challenges and uncertainties in areas including mission design, cost, trajectory, instrument maturity, power, and timeline.

在天王星进行多种大气探测测量的一个主要动机是了解产生和维持热结构、成分和水平风的空间变化的动态过程。但起源问题--关于行星的形成和演化以及原行星盘的状况--也是多探测器探测的主要科学动力。热结构的空间变化揭示了大气如何从内部传递热量,而测量大气中的成分变化是最终了解几种重元素的大量丰度的关键。我们回顾了目前对天王星大气层空间变异性的了解,并概述了多探测器探测将如何推进我们对这种变异性的了解。我们还讨论了其他巨行星,以便将对这些大气层的多探测器探测与天王星的公开问题联系起来,并说明天王星本身的多探测器探测是如何从木星、土星和海王星的空间变化中吸取经验教训的。我们概述了微型次级探测器所进行的最有价值的测量(这些测量将补充大型旗舰探测器所进行的更详细的调查),并介绍了在任务设计、成本、轨迹、仪器成熟度、功率和时间表等方面克服当前挑战和不确定性的途径。
{"title":"Multiple Probe Measurements at Uranus Motivated by Spatial Variability.","authors":"Michael H Wong, Naomi Rowe-Gurney, Stephen Markham, Kunio M Sayanagi","doi":"10.1007/s11214-024-01050-9","DOIUrl":"10.1007/s11214-024-01050-9","url":null,"abstract":"<p><p>A major motivation for multiple atmospheric probe measurements at Uranus is the understanding of dynamic processes that create and maintain spatial variation in thermal structure, composition, and horizontal winds. But origin questions-regarding the planet's formation and evolution, and conditions in the protoplanetary disk-are also major science drivers for multiprobe exploration. Spatial variation in thermal structure reveals how the atmosphere transports heat from the interior, and measuring compositional variability in the atmosphere is key to ultimately gaining an understanding of the bulk abundances of several heavy elements. We review the current knowledge of spatial variability in Uranus' atmosphere, and we outline how multiple probe exploration would advance our understanding of this variability. The other giant planets are discussed, both to connect multiprobe exploration of those atmospheres to open questions at Uranus, and to demonstrate how multiprobe exploration of Uranus itself is motivated by lessons learned about the spatial variation at Jupiter, Saturn, and Neptune. We outline the measurements of highest value from miniature secondary probes (which would complement more detailed investigation by a larger flagship probe), and present the path toward overcoming current challenges and uncertainties in areas including mission design, cost, trajectory, instrument maturity, power, and timeline.</p>","PeriodicalId":21902,"journal":{"name":"Space Science Reviews","volume":null,"pages":null},"PeriodicalIF":10.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10858001/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139724018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Mapping Imaging Spectrometer for Europa (MISE). 欧罗巴制图成像分光计(MISE)。
IF 9.1 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-01-01 Epub Date: 2024-10-09 DOI: 10.1007/s11214-024-01097-8
Diana L Blaney, Karl Hibbitts, Serina Diniega, Ashley Gerard Davies, Roger N Clark, Robert O Green, Matthew Hedman, Yves Langevin, Jonathan Lunine, Thomas B McCord, Scott Murchie, Chris Paranicas, Frank Seelos, Jason M Soderblom, Morgan L Cable, Regina Eckert, David R Thompson, Samantha K Trumbo, Carl Bruce, Sarah R Lundeen, Holly A Bender, Mark C Helmlinger, Lori B Moore, Pantazis Mouroulis, Zachary Small, Hong Tang, Byron Van Gorp, Peter W Sullivan, Shannon Zareh, Jose I Rodriquez, Ian McKinley, Daniel V Hahn, Matthew Bowers, Ramsey Hourani, Brian A Bryce, Danielle Nuding, Zachery Bailey, Alessandro Rettura, Evan D Zarate

The Mapping Imaging Spectrometer for Europa (MISE) is an infrared compositional instrument that will fly on NASA's Europa Clipper mission to the Jupiter system. MISE is designed to meet the Level-1 science requirements related to the mission's composition science objective to "understand the habitability of Europa's ocean through composition and chemistry" and to contribute to the geology science and ice shell and ocean objectives, thereby helping Europa Clipper achieve its mission goal to "explore Europa to investigate its habitability." MISE has a mass of 65 kg and uses an energy per flyby of 75.2 W-h. MISE will detect illumination from 0.8 to 5 μm with 10 nm spectral resolution, a spatial sampling of 25 m per pixel at 100 km altitude, and 300 cross-track pixels, enabling discrimination among the two principal states of water ice on Europa, identification of the main non-ice components of interest: salts, acids, and organics, and detection of trace materials as well as some thermal signatures. Furthermore, the spatial resolution and global coverage that MISE will achieve will be complemented by the higher spectral resolution of some Earth-based assets. MISE, combined with observations collected by the rest of the Europa Clipper payload, will enable significant advances in our understanding of how the large-scale structure of Europa's surface is shaped by geological processes and inform our understanding of the surface at microscale. This paper describes the planned MISE science investigations, instrument design, concept of operations, and data products.

欧罗巴制图成像分光计(MISE)是一种红外成分仪器,将搭载于美国航天局飞往木星系统的欧罗巴快帆飞行任务。MISE旨在满足与任务的成分科学目标有关的一级科学要求,即 "通过成分和化学性质了解欧罗巴海洋的宜居性",并为地质科学和冰壳与海洋目标做出贡献,从而帮助欧罗巴快船号实现其任务目标,即 "探索欧罗巴以研究其宜居性"。MISE 的质量为 65 千克,每次飞越使用的能量为 75.2 W-h。MISE 将探测 0.8 至 5 μm 的光照,光谱分辨率为 10 nm,在 100 公里高度上每个像素的空间取样为 25 m,跨轨道像素为 300 个,从而能够区分欧罗巴上水冰的两种主要状态,识别主要的非冰成分:盐、酸和有机物,并探测痕量物质和一些热特征。此外,MISE 将达到的空间分辨率和全球覆盖范围将得到一些地基资产的较高光谱分辨率的补充。MISE与Europa Clipper有效载荷其他部分收集的观测数据相结合,将使我们对Europa表面大尺度结构是如何由地质过程形成的认识取得重大进展,并为我们了解Europa表面的微观尺度提供信息。本文介绍了计划中的MISE科学调查、仪器设计、运行概念和数据产品。
{"title":"The Mapping Imaging Spectrometer for Europa (MISE).","authors":"Diana L Blaney, Karl Hibbitts, Serina Diniega, Ashley Gerard Davies, Roger N Clark, Robert O Green, Matthew Hedman, Yves Langevin, Jonathan Lunine, Thomas B McCord, Scott Murchie, Chris Paranicas, Frank Seelos, Jason M Soderblom, Morgan L Cable, Regina Eckert, David R Thompson, Samantha K Trumbo, Carl Bruce, Sarah R Lundeen, Holly A Bender, Mark C Helmlinger, Lori B Moore, Pantazis Mouroulis, Zachary Small, Hong Tang, Byron Van Gorp, Peter W Sullivan, Shannon Zareh, Jose I Rodriquez, Ian McKinley, Daniel V Hahn, Matthew Bowers, Ramsey Hourani, Brian A Bryce, Danielle Nuding, Zachery Bailey, Alessandro Rettura, Evan D Zarate","doi":"10.1007/s11214-024-01097-8","DOIUrl":"https://doi.org/10.1007/s11214-024-01097-8","url":null,"abstract":"<p><p>The Mapping Imaging Spectrometer for Europa (MISE) is an infrared compositional instrument that will fly on NASA's Europa Clipper mission to the Jupiter system. MISE is designed to meet the Level-1 science requirements related to the mission's composition science objective to \"understand the habitability of Europa's ocean through composition and chemistry\" and to contribute to the geology science and ice shell and ocean objectives, thereby helping Europa Clipper achieve its mission goal to \"explore Europa to investigate its habitability.\" MISE has a mass of 65 kg and uses an energy per flyby of 75.2 W-h. MISE will detect illumination from 0.8 to 5 μm with 10 nm spectral resolution, a spatial sampling of 25 m per pixel at 100 km altitude, and 300 cross-track pixels, enabling discrimination among the two principal states of water ice on Europa, identification of the main non-ice components of interest: salts, acids, and organics, and detection of trace materials as well as some thermal signatures. Furthermore, the spatial resolution and global coverage that MISE will achieve will be complemented by the higher spectral resolution of some Earth-based assets. MISE, combined with observations collected by the rest of the Europa Clipper payload, will enable significant advances in our understanding of how the large-scale structure of Europa's surface is shaped by geological processes and inform our understanding of the surface at microscale. This paper describes the planned MISE science investigations, instrument design, concept of operations, and data products.</p>","PeriodicalId":21902,"journal":{"name":"Space Science Reviews","volume":null,"pages":null},"PeriodicalIF":9.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11464581/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142475175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advanced Methods for Analyzing in-Situ Observations of Magnetic Reconnection. 分析现场磁性再连接观测数据的先进方法。
IF 9.1 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-01-01 Epub Date: 2024-09-02 DOI: 10.1007/s11214-024-01095-w
H Hasegawa, M R Argall, N Aunai, R Bandyopadhyay, N Bessho, I J Cohen, R E Denton, J C Dorelli, J Egedal, S A Fuselier, P Garnier, V Génot, D B Graham, K J Hwang, Y V Khotyaintsev, D B Korovinskiy, B Lavraud, Q Lenouvel, T C Li, Y-H Liu, B Michotte de Welle, T K M Nakamura, D S Payne, S M Petrinec, Y Qi, A C Rager, P H Reiff, J M Schroeder, J R Shuster, M I Sitnov, G K Stephens, M Swisdak, A M Tian, R B Torbert, K J Trattner, S Zenitani

There is ample evidence for magnetic reconnection in the solar system, but it is a nontrivial task to visualize, to determine the proper approaches and frames to study, and in turn to elucidate the physical processes at work in reconnection regions from in-situ measurements of plasma particles and electromagnetic fields. Here an overview is given of a variety of single- and multi-spacecraft data analysis techniques that are key to revealing the context of in-situ observations of magnetic reconnection in space and for detecting and analyzing the diffusion regions where ions and/or electrons are demagnetized. We focus on recent advances in the era of the Magnetospheric Multiscale mission, which has made electron-scale, multi-point measurements of magnetic reconnection in and around Earth's magnetosphere.

太阳系中存在大量磁性再连接的证据,但要使其可视化、确定适当的研究方法和框架,进而通过对等离子体粒子和电磁场的现场测量来阐明再连接区域的物理过程,却是一项非同小可的任务。本文概述了各种单航天器和多航天器数据分析技术,这些技术对于揭示空间磁重联原位观测的背景以及探测和分析离子和/或电子消磁的扩散区域至关重要。我们重点介绍磁层多尺度任务时代的最新进展,该任务对地球磁层内和周围的磁再连接进行了电子尺度的多点测量。
{"title":"Advanced Methods for Analyzing in-Situ Observations of Magnetic Reconnection.","authors":"H Hasegawa, M R Argall, N Aunai, R Bandyopadhyay, N Bessho, I J Cohen, R E Denton, J C Dorelli, J Egedal, S A Fuselier, P Garnier, V Génot, D B Graham, K J Hwang, Y V Khotyaintsev, D B Korovinskiy, B Lavraud, Q Lenouvel, T C Li, Y-H Liu, B Michotte de Welle, T K M Nakamura, D S Payne, S M Petrinec, Y Qi, A C Rager, P H Reiff, J M Schroeder, J R Shuster, M I Sitnov, G K Stephens, M Swisdak, A M Tian, R B Torbert, K J Trattner, S Zenitani","doi":"10.1007/s11214-024-01095-w","DOIUrl":"10.1007/s11214-024-01095-w","url":null,"abstract":"<p><p>There is ample evidence for magnetic reconnection in the solar system, but it is a nontrivial task to visualize, to determine the proper approaches and frames to study, and in turn to elucidate the physical processes at work in reconnection regions from in-situ measurements of plasma particles and electromagnetic fields. Here an overview is given of a variety of single- and multi-spacecraft data analysis techniques that are key to revealing the context of in-situ observations of magnetic reconnection in space and for detecting and analyzing the diffusion regions where ions and/or electrons are demagnetized. We focus on recent advances in the era of the Magnetospheric Multiscale mission, which has made electron-scale, multi-point measurements of magnetic reconnection in and around Earth's magnetosphere.</p>","PeriodicalId":21902,"journal":{"name":"Space Science Reviews","volume":null,"pages":null},"PeriodicalIF":9.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11369046/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142133806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization of the Surfaces and Near-Surface Atmospheres of Ganymede, Europa and Callisto by JUICE. 用 JUICE 分析木卫三、欧罗巴和卡利斯托表面和近表面大气的特征。
IF 9.1 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-01-01 Epub Date: 2024-08-08 DOI: 10.1007/s11214-024-01089-8
Federico Tosi, Thomas Roatsch, André Galli, Ernst Hauber, Alice Lucchetti, Philippa Molyneux, Katrin Stephan, Nicholas Achilleos, Francesca Bovolo, John Carter, Thibault Cavalié, Giuseppe Cimò, Emiliano D'Aversa, Klaus Gwinner, Paul Hartogh, Hans Huybrighs, Yves Langevin, Emmanuel Lellouch, Alessandra Migliorini, Pasquale Palumbo, Giuseppe Piccioni, Jeffrey J Plaut, Frank Postberg, François Poulet, Kurt Retherford, Ladislav Rezac, Lorenz Roth, Anezina Solomonidou, Gabriel Tobie, Paolo Tortora, Cecilia Tubiana, Roland Wagner, Eva Wirström, Peter Wurz, Francesca Zambon, Marco Zannoni, Stas Barabash, Lorenzo Bruzzone, Michele Dougherty, Randy Gladstone, Leonid I Gurvits, Hauke Hussmann, Luciano Iess, Jan-Erik Wahlund, Olivier Witasse, Claire Vallat, Rosario Lorente

We present the state of the art on the study of surfaces and tenuous atmospheres of the icy Galilean satellites Ganymede, Europa and Callisto, from past and ongoing space exploration conducted with several spacecraft to recent telescopic observations, and we show how the ESA JUICE mission plans to explore these surfaces and atmospheres in detail with its scientific payload. The surface geology of the moons is the main evidence of their evolution and reflects the internal heating provided by tidal interactions. Surface composition is the result of endogenous and exogenous processes, with the former providing valuable information about the potential composition of shallow subsurface liquid pockets, possibly connected to deeper oceans. Finally, the icy Galilean moons have tenuous atmospheres that arise from charged particle sputtering affecting their surfaces. In the case of Europa, plumes of water vapour have also been reported, whose phenomenology at present is poorly understood and requires future close exploration. In the three main sections of the article, we discuss these topics, highlighting the key scientific objectives and investigations to be achieved by JUICE. Based on a recent predicted trajectory, we also show potential coverage maps and other examples of reference measurements. The scientific discussion and observation planning presented here are the outcome of the JUICE Working Group 2 (WG2): "Surfaces and Near-surface Exospheres of the Satellites, dust and rings".

我们介绍了研究伽利略冰卫星甘耶米德、欧罗巴和卡利斯托的表面和微弱大气层的最新技术,从过去和正在进行的利用几个航天器进行的空间探索到最近的望远镜观测,我们还展示了欧空局JUICE任务计划如何利用其科学有效载荷详细探索这些表面和大气层。卫星的表面地质是其演化的主要证据,反映了潮汐相互作用所提供的内部加热。表面成分是内源和外源过程的结果,前者提供了有关浅层地下液袋潜在成分的宝贵信息,这些液袋可能与更深的海洋相连。最后,冰冷的伽利略卫星有脆弱的大气层,这是由于带电粒子溅射影响了它们的表面。就欧罗巴卫星而言,也有关于水蒸气羽流的报道,目前对其现象还知之甚少,需要在未来进行深入探索。在文章的三个主要部分,我们讨论了这些主题,强调了 JUICE 将实现的主要科学目标和调查。根据最近的预测轨迹,我们还展示了潜在的覆盖图和其他参考测量实例。这里介绍的科学讨论和观测规划是 JUICE 第 2 工作组(WG2)的成果:"卫星、尘埃和星环的表面和近表面外层"。
{"title":"Characterization of the Surfaces and Near-Surface Atmospheres of Ganymede, Europa and Callisto by JUICE.","authors":"Federico Tosi, Thomas Roatsch, André Galli, Ernst Hauber, Alice Lucchetti, Philippa Molyneux, Katrin Stephan, Nicholas Achilleos, Francesca Bovolo, John Carter, Thibault Cavalié, Giuseppe Cimò, Emiliano D'Aversa, Klaus Gwinner, Paul Hartogh, Hans Huybrighs, Yves Langevin, Emmanuel Lellouch, Alessandra Migliorini, Pasquale Palumbo, Giuseppe Piccioni, Jeffrey J Plaut, Frank Postberg, François Poulet, Kurt Retherford, Ladislav Rezac, Lorenz Roth, Anezina Solomonidou, Gabriel Tobie, Paolo Tortora, Cecilia Tubiana, Roland Wagner, Eva Wirström, Peter Wurz, Francesca Zambon, Marco Zannoni, Stas Barabash, Lorenzo Bruzzone, Michele Dougherty, Randy Gladstone, Leonid I Gurvits, Hauke Hussmann, Luciano Iess, Jan-Erik Wahlund, Olivier Witasse, Claire Vallat, Rosario Lorente","doi":"10.1007/s11214-024-01089-8","DOIUrl":"10.1007/s11214-024-01089-8","url":null,"abstract":"<p><p>We present the state of the art on the study of surfaces and tenuous atmospheres of the icy Galilean satellites Ganymede, Europa and Callisto, from past and ongoing space exploration conducted with several spacecraft to recent telescopic observations, and we show how the ESA JUICE mission plans to explore these surfaces and atmospheres in detail with its scientific payload. The surface geology of the moons is the main evidence of their evolution and reflects the internal heating provided by tidal interactions. Surface composition is the result of endogenous and exogenous processes, with the former providing valuable information about the potential composition of shallow subsurface liquid pockets, possibly connected to deeper oceans. Finally, the icy Galilean moons have tenuous atmospheres that arise from charged particle sputtering affecting their surfaces. In the case of Europa, plumes of water vapour have also been reported, whose phenomenology at present is poorly understood and requires future close exploration. In the three main sections of the article, we discuss these topics, highlighting the key scientific objectives and investigations to be achieved by JUICE. Based on a recent predicted trajectory, we also show potential coverage maps and other examples of reference measurements. The scientific discussion and observation planning presented here are the outcome of the JUICE Working Group 2 (WG2): \"<i>Surfaces and Near-surface Exospheres of the Satellites, dust and rings</i>\".</p>","PeriodicalId":21902,"journal":{"name":"Space Science Reviews","volume":null,"pages":null},"PeriodicalIF":9.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11310297/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141917449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Need for Near-Earth Multi-Spacecraft Heliospheric Measurements and an Explorer Mission to Investigate Interplanetary Structures and Transients in the Near-Earth Heliosphere. 需要进行近地多航天器日光层测量和执行探索任务,以调查行星际结构和近地日光层中的瞬态。
IF 9.1 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-01-01 Epub Date: 2024-09-20 DOI: 10.1007/s11214-024-01108-8
Noé Lugaz, Christina O Lee, Nada Al-Haddad, Robert J Lillis, Lan K Jian, David W Curtis, Antoinette B Galvin, Phyllis L Whittlesey, Ali Rahmati, Eftyhia Zesta, Mark Moldwin, Errol J Summerlin, Davin E Larson, Sasha Courtade, Richard French, Richard Hunter, Federico Covitti, Daniel Cosgrove, J D Prall, Robert C Allen, Bin Zhuang, Réka M Winslow, Camilla Scolini, Benjamin J Lynch, Rachael J Filwett, Erika Palmerio, Charles J Farrugia, Charles W Smith, Christian Möstl, Eva Weiler, Miho Janvier, Florian Regnault, Roberto Livi, Teresa Nieves-Chinchilla

Based on decades of single-spacecraft measurements near 1 au as well as data from heliospheric and planetary missions, multi-spacecraft simultaneous measurements in the inner heliosphere on separations of 0.05-0.2 au are required to close existing gaps in our knowledge of solar wind structures, transients, and energetic particles, especially coronal mass ejections (CMEs), stream interaction regions (SIRs), high speed solar wind streams (HSS), and energetic storm particle (ESP) events. The Mission to Investigate Interplanetary Structures and Transients (MIIST) is a concept for a small multi-spacecraft mission to explore the near-Earth heliosphere on these critical scales. It is designed to advance two goals: (a) to determine the spatiotemporal variations and the variability of solar wind structures, transients, and energetic particle fluxes in near-Earth interplanetary (IP) space, and (b) to advance our fundamental knowledge necessary to improve space weather forecasting from in situ data. We present the scientific rationale for this proposed mission, the science requirements, payload, implementation, and concept of mission operation that address a key gap in our knowledge of IP structures and transients within the cost, launch, and schedule limitations of the NASA Heliophysics Small Explorers program.

根据数十年来对 1 au 附近的单个航天器测量以及日光层和行星飞行任务的数据,需要对相距 0.05-0.2 au 的内日光层进行多航天器同步测量,以弥补我们对太阳风结构、瞬态和高能粒子,特别是日冕物质抛射(CME)、流交互区(SIR)、高速太阳风流(HSS)和高能风暴粒子(ESP)事件的认识上的现有差距。行星际结构和瞬变现象调查任务(MIIST)是一个小型多航天器任务概念,目的是在这些关键尺度上探索近地日光层。其目的有两个(a) 确定近地行星际(IP)空间中太阳风结构、瞬态和高能粒子通量的时空变化和可变性,以及 (b) 增进我们的基础知识,以便利用现场数据改进空间天气预报。我们介绍了这一拟议飞行任务的科学原理、科学要求、有效载荷、实施和飞行任务运行概念,在美国国家航空航天局太阳物理学小型探索者计划的成本、发射和时间表限制范围内,填补了我们对行星际空间结构和瞬态的认识方面的一个关键空白。
{"title":"The Need for Near-Earth Multi-Spacecraft Heliospheric Measurements and an Explorer Mission to Investigate Interplanetary Structures and Transients in the Near-Earth Heliosphere.","authors":"Noé Lugaz, Christina O Lee, Nada Al-Haddad, Robert J Lillis, Lan K Jian, David W Curtis, Antoinette B Galvin, Phyllis L Whittlesey, Ali Rahmati, Eftyhia Zesta, Mark Moldwin, Errol J Summerlin, Davin E Larson, Sasha Courtade, Richard French, Richard Hunter, Federico Covitti, Daniel Cosgrove, J D Prall, Robert C Allen, Bin Zhuang, Réka M Winslow, Camilla Scolini, Benjamin J Lynch, Rachael J Filwett, Erika Palmerio, Charles J Farrugia, Charles W Smith, Christian Möstl, Eva Weiler, Miho Janvier, Florian Regnault, Roberto Livi, Teresa Nieves-Chinchilla","doi":"10.1007/s11214-024-01108-8","DOIUrl":"10.1007/s11214-024-01108-8","url":null,"abstract":"<p><p>Based on decades of single-spacecraft measurements near 1 au as well as data from heliospheric and planetary missions, multi-spacecraft simultaneous measurements in the inner heliosphere on separations of 0.05-0.2 au are required to close existing gaps in our knowledge of solar wind structures, transients, and energetic particles, especially coronal mass ejections (CMEs), stream interaction regions (SIRs), high speed solar wind streams (HSS), and energetic storm particle (ESP) events. The Mission to Investigate Interplanetary Structures and Transients (MIIST) is a concept for a small multi-spacecraft mission to explore the near-Earth heliosphere on these critical scales. It is designed to advance two goals: (a) to determine the spatiotemporal variations and the variability of solar wind structures, transients, and energetic particle fluxes in near-Earth interplanetary (IP) space, and (b) to advance our fundamental knowledge necessary to improve space weather forecasting from <i>in situ</i> data. We present the scientific rationale for this proposed mission, the science requirements, payload, implementation, and concept of mission operation that address a key gap in our knowledge of IP structures and transients within the cost, launch, and schedule limitations of the NASA Heliophysics Small Explorers program.</p>","PeriodicalId":21902,"journal":{"name":"Space Science Reviews","volume":null,"pages":null},"PeriodicalIF":9.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11415466/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142295964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Space Science Reviews
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1