首页 > 最新文献

Space Science Reviews最新文献

英文 中文
Interstellar Mapping And Acceleration Probe: The NASA IMAP Mission. 星际测绘和加速探测器:美国宇航局IMAP任务。
IF 7.4 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2025-01-01 Epub Date: 2025-10-30 DOI: 10.1007/s11214-025-01224-z
D J McComas, E R Christian, N A Schwadron, M Gkioulidou, F Allegrini, D N Baker, M Bzowski, G Clark, C M S Cohen, I Cohen, C Collura, M J Cully, S Dalla, M I Desai, A Driesman, D Eng, N J Fox, H O Funsten, S A Fuselier, A Galli, J Giacalone, J Hahn, K P Hegarty, T Horbury, M Horanyi, L M Kistler, M A Kubiak, S Kubota, S Livi, N Lugaz, C O Lee, J Luhmann, W Matthaeus, D G Mitchell, J G Mitchell, E Moebius, S Pope, E Provornikova, J S Rankin, D B Reisenfeld, C Reno, J D Richardson, C T Russell, M M Shaw-Lecerf, J Scherrer, R M Skoug, M M Shen, H E Spence, Z Sternovsky, M Strumik, J R Szalay, M Tapley, M Tokumaru, D L Turner, S Weidner, J Westlake, P Wurz, G P Zank

NASA's Interstellar Mapping and Acceleration Probe (IMAP) mission provides extensive and well-coordinated new observations of the inner and outer heliosphere and scientific closure on two of the most important topics in Heliophysics: 1) the acceleration of charged particles and 2) the interaction of the solar wind with the local interstellar medium. These topics are intimately coupled because particles accelerated in the inner heliosphere propagate outward through the solar wind and mediate its interaction with the very local interstellar medium (VLISM). The IMAP mission is designed to address these topics, provide extensive new real-time measurements critical to Space Weather observations and predictions, and much more. IMAP's ten instruments are mounted on a simple, spinning spacecraft that orbits about the first Sun-Earth Lagrange point, L1, and repoints its Sun-facing solar arrays and spin axis toward the Sun each day. The instruments provide complete and synergistic observations that examine particle energization processes at 1 au while simultaneously probing the global heliospheric interaction with the VLISM. The 1 au in-situ observations include solar wind electrons and ions from solar wind through suprathermal energies, pickup and energetic ions, as well as the interplanetary magnetic field. IMAP provides Energetic Neutral Atom (ENA) global imaging of the outer heliosphere via ENAs from tens of eV up through hundreds of keV, as well as observations of interstellar neutral atoms traversing the heliosphere. IMAP also directly measures interstellar dust that enters the heliosphere and the solar-wind-modulated ultraviolet glow. This paper provides the mission overview for the full IMAP mission, acts as a roadmap to the other papers in this IMAP collection and provides the citable reference for the overall IMAP mission going forward.

Supplementary information: The online version contains supplementary material available at 10.1007/s11214-025-01224-z.

NASA的星际测绘和加速探测器(IMAP)任务提供了广泛和协调良好的内外日球层的新观测,并对太阳物理学中两个最重要的主题进行了科学的总结:1)带电粒子的加速和2)太阳风与当地星际介质的相互作用。这些主题是紧密耦合的,因为在内日球层加速的粒子通过太阳风向外传播,并调解其与非常局部星际介质(VLISM)的相互作用。IMAP任务旨在解决这些问题,为空间天气观测和预测提供广泛的新的实时测量,以及更多。IMAP的10台仪器安装在一个简单的旋转航天器上,该航天器围绕第一个太阳-地球拉格朗日点L1运行,并且每天将面向太阳的太阳能电池阵列和自转轴重新指向太阳。这些仪器提供了完整的和协同的观测,可以检查1au的粒子能量过程,同时探测与VLISM的全球日球层相互作用。1 au的现场观测包括太阳风电子和离子从太阳风通过超热能,拾取和高能离子,以及行星际磁场。IMAP提供了高能中性原子(ENA)外日球层的全球成像,通过ENAs从数十eV到数百keV,以及星际中性原子穿越日球层的观测。IMAP还直接测量进入日球层的星际尘埃和太阳风调制的紫外线。本文提供了完整IMAP任务的任务概述,作为该IMAP集合中其他论文的路线图,并为整个IMAP任务提供了可引用的参考。补充信息:在线版本包含补充资料,提供地址为10.1007/s11214-025-01224-z。
{"title":"Interstellar Mapping And Acceleration Probe: The NASA IMAP Mission.","authors":"D J McComas, E R Christian, N A Schwadron, M Gkioulidou, F Allegrini, D N Baker, M Bzowski, G Clark, C M S Cohen, I Cohen, C Collura, M J Cully, S Dalla, M I Desai, A Driesman, D Eng, N J Fox, H O Funsten, S A Fuselier, A Galli, J Giacalone, J Hahn, K P Hegarty, T Horbury, M Horanyi, L M Kistler, M A Kubiak, S Kubota, S Livi, N Lugaz, C O Lee, J Luhmann, W Matthaeus, D G Mitchell, J G Mitchell, E Moebius, S Pope, E Provornikova, J S Rankin, D B Reisenfeld, C Reno, J D Richardson, C T Russell, M M Shaw-Lecerf, J Scherrer, R M Skoug, M M Shen, H E Spence, Z Sternovsky, M Strumik, J R Szalay, M Tapley, M Tokumaru, D L Turner, S Weidner, J Westlake, P Wurz, G P Zank","doi":"10.1007/s11214-025-01224-z","DOIUrl":"10.1007/s11214-025-01224-z","url":null,"abstract":"<p><p>NASA's Interstellar Mapping and Acceleration Probe (IMAP) mission provides extensive and well-coordinated new observations of the inner and outer heliosphere and scientific closure on two of the most important topics in Heliophysics: 1) the acceleration of charged particles and 2) the interaction of the solar wind with the local interstellar medium. These topics are intimately coupled because particles accelerated in the inner heliosphere propagate outward through the solar wind and mediate its interaction with the very local interstellar medium (VLISM). The IMAP mission is designed to address these topics, provide extensive new real-time measurements critical to Space Weather observations and predictions, and much more. IMAP's ten instruments are mounted on a simple, spinning spacecraft that orbits about the first Sun-Earth Lagrange point, L1, and repoints its Sun-facing solar arrays and spin axis toward the Sun each day. The instruments provide complete and synergistic observations that examine particle energization processes at 1 au while simultaneously probing the global heliospheric interaction with the VLISM. The 1 au in-situ observations include solar wind electrons and ions from solar wind through suprathermal energies, pickup and energetic ions, as well as the interplanetary magnetic field. IMAP provides Energetic Neutral Atom (ENA) global imaging of the outer heliosphere via ENAs from tens of eV up through hundreds of keV, as well as observations of interstellar neutral atoms traversing the heliosphere. IMAP also directly measures interstellar dust that enters the heliosphere and the solar-wind-modulated ultraviolet glow. This paper provides the mission overview for the full IMAP mission, acts as a roadmap to the other papers in this IMAP collection and provides the citable reference for the overall IMAP mission going forward.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11214-025-01224-z.</p>","PeriodicalId":21902,"journal":{"name":"Space Science Reviews","volume":"221 8","pages":"100"},"PeriodicalIF":7.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12575477/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145432134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Understanding the Formation of Saturn's Regular Moons in the Context of Giant Planet Moons Formation Scenarios. 在巨行星卫星形成的背景下理解土星规则卫星的形成。
IF 9.1 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2025-01-01 Epub Date: 2025-03-20 DOI: 10.1007/s11214-025-01156-8
Michel Blanc, Aurélien Crida, Yuhito Shibaike, Sebastien Charnoz, Maryame El Moutamid, Paul Estrada, Olivier Mousis, Julien Salmon, Antoine Schneeberger, Pierre Vernazza

This article explores the different formation scenarios of the Kronian moons system in the context of a highly dissipative Saturn, with the objective of identifying the most likely of these scenarios. First, we review the diversity of objects - moons and rings - orbiting solar system giant planets, and the diversity of their architectures, which formation scenarios must reproduce. We then identify in this broader context the specific features of the Saturn system, such as the particularly large spectrum of its moon masses, the uniqueness of Titan and the presence of both dense and tenuous rings, before discussing the applicability of the different giant planet moon formation scenarios to the Saturn case. We discuss each of the most relevant scenarios and their respective merits. Finally, we tentatively propose a "favorite" scenario and we identify the key observations to be made by future space missions and/or Earth-based telescopic observations to validate this scenario or possibly alternative ones.

本文探讨了在高度耗散的土星背景下,Kronian卫星系统的不同形成场景,目的是确定这些场景中最有可能的。首先,我们回顾了围绕太阳系巨行星运行的物体(卫星和环)的多样性,以及它们结构的多样性,它们的形成场景必须重现。然后,我们在这个更广泛的背景下确定了土星系统的具体特征,例如其卫星质量的特别大的光谱,土卫六的独特性以及密集和脆弱环的存在,然后讨论了不同巨行星卫星形成场景对土星情况的适用性。我们将讨论每个最相关的场景及其各自的优点。最后,我们试探性地提出了一个“最喜欢的”情景,并确定了未来太空任务和/或地球望远镜观测的关键观测结果,以验证这一情景或可能的替代方案。
{"title":"Understanding the Formation of Saturn's Regular Moons in the Context of Giant Planet Moons Formation Scenarios.","authors":"Michel Blanc, Aurélien Crida, Yuhito Shibaike, Sebastien Charnoz, Maryame El Moutamid, Paul Estrada, Olivier Mousis, Julien Salmon, Antoine Schneeberger, Pierre Vernazza","doi":"10.1007/s11214-025-01156-8","DOIUrl":"10.1007/s11214-025-01156-8","url":null,"abstract":"<p><p>This article explores the different formation scenarios of the Kronian moons system in the context of a highly dissipative Saturn, with the objective of identifying the most likely of these scenarios. First, we review the diversity of objects - moons and rings - orbiting solar system giant planets, and the diversity of their architectures, which formation scenarios must reproduce. We then identify in this broader context the specific features of the Saturn system, such as the particularly large spectrum of its moon masses, the uniqueness of Titan and the presence of both dense and tenuous rings, before discussing the applicability of the different giant planet moon formation scenarios to the Saturn case. We discuss each of the most relevant scenarios and their respective merits. Finally, we tentatively propose a \"favorite\" scenario and we identify the key observations to be made by future space missions and/or Earth-based telescopic observations to validate this scenario or possibly alternative ones.</p>","PeriodicalId":21902,"journal":{"name":"Space Science Reviews","volume":"221 3","pages":"35"},"PeriodicalIF":9.1,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11925992/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143693353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Tandem Reconnection and Cusp Electrodynamics Reconnaissance Satellites (TRACERS) Mission Design. 串联重联和尖端电动力学侦察卫星(TRACERS)任务设计。
IF 7.4 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2025-01-01 Epub Date: 2025-06-27 DOI: 10.1007/s11214-025-01185-3
S M Petrinec, C A Kletzing, D M Miles, S A Fuselier, I W Christopher, D Crawford, S Omar, S R Bounds, J W Bonnell, J S Halekas, G B Hospodarsky, R J Strangeway, Y Lin, K J Trattner, J W Labelle, M Øieroset, O Santolik, J Moen, K Oksavik, T K Yeoman, I H Cairns, D Mark

The detailed study of the global characteristics of collisionless magnetic reconnection that occurs at the magnetopause will be greatly enhanced by observations of plasma fluxes and fields within the low-altitude cusp region, as sampled by two spacecraft orbiting in tandem. The NASA Tandem Reconnection and Cusp Electrodynamics Reconnaissance Satellites (TRACERS) mission, a Heliophysics Small Explorer (SMEX) mission, will provide the necessary observations to enable significant progress to be made on understanding magnetic reconnection, especially in terms of its temporal versus spatial characteristics. This paper provides an overview of the TRACERS mission design and the trade studies conducted for the optimization of this design.

对发生在磁层顶的无碰撞磁重联的全球特征的详细研究将通过对低空尖端区域内等离子体通量和场的观测得到极大的加强,这些观测是由两个航天器串联轨道采样的。NASA串联重联和尖端电动力学侦察卫星(TRACERS)任务是一项太阳物理小型探测器(SMEX)任务,它将提供必要的观测,使人们能够在理解磁重联方面取得重大进展,特别是在其时空特征方面。本文概述了TRACERS任务设计以及为优化该设计而进行的贸易研究。
{"title":"The Tandem Reconnection and Cusp Electrodynamics Reconnaissance Satellites (TRACERS) Mission Design.","authors":"S M Petrinec, C A Kletzing, D M Miles, S A Fuselier, I W Christopher, D Crawford, S Omar, S R Bounds, J W Bonnell, J S Halekas, G B Hospodarsky, R J Strangeway, Y Lin, K J Trattner, J W Labelle, M Øieroset, O Santolik, J Moen, K Oksavik, T K Yeoman, I H Cairns, D Mark","doi":"10.1007/s11214-025-01185-3","DOIUrl":"10.1007/s11214-025-01185-3","url":null,"abstract":"<p><p>The detailed study of the global characteristics of collisionless magnetic reconnection that occurs at the magnetopause will be greatly enhanced by observations of plasma fluxes and fields within the low-altitude cusp region, as sampled by two spacecraft orbiting in tandem. The NASA Tandem Reconnection and Cusp Electrodynamics Reconnaissance Satellites (TRACERS) mission, a Heliophysics Small Explorer (SMEX) mission, will provide the necessary observations to enable significant progress to be made on understanding magnetic reconnection, especially in terms of its temporal versus spatial characteristics. This paper provides an overview of the TRACERS mission design and the trade studies conducted for the optimization of this design.</p>","PeriodicalId":21902,"journal":{"name":"Space Science Reviews","volume":"221 5","pages":"60"},"PeriodicalIF":7.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12204924/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144529527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
GLObal Solar Wind Structure (GLOWS). 全球太阳风结构(发光)。
IF 7.4 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2025-01-01 Epub Date: 2025-11-05 DOI: 10.1007/s11214-025-01233-y
Maciej Bzowski, Roman Wawrzaszek, Marek Strumik, Jȩdrzej Baran, Tomasz Barciński, Kamil Ber, Waldemar Bujwan, Maciej Daukszo, Kamil Jasiński, Grzegorz Juchnikowski, Przemyslaw Kazmierczak, Izabela Kowalska-Leszczyńska, Tomasz Kowalski, Marzena Kubiak, Jakub Ma̧dry, Aleksandra Mirońska, Karol Mostowy, Piotr Orleański, Czesław Porowski, Jakub Półtorak, Tomasz Rajkowski, Joanna Rothkaehl, Tomasz Rudnicki, Aliaksandra Shmyk, Adam Sikorski, Michał Turek, Marek Winkler, Katarzyna Wojciechowska, Tomasz Zawistowski, Hans J Fahr, Uwe Nass, Piotr Osica, Karolina Wielgos, Alexander Gottwald, Hendrik Kaser, Mark Krzyzagorski, Marek Antoniak, Marcin Drobik, Grzegorz Gajoch, Tomasz Martyniak, Rafał Żogała, Andrzej Bartnik, Henryk Fiedorowicz, Tomasz Fok, Mateusz Majszyk, Przemysław Wachulak, Martyna Wardzińska, Łukasz Wȩgrzyński, Robert Kosturek, Carlos Urdiales, Mark Tapley, Susan Pope, Daniel B Reisenfeld, Matina Gkioulidou, Nathan A Schwadron, Eric R Christian, David J McComas

Information on the evolution of latitudinal profiles of the solar wind speed and density is one of the important elements needed to understand global observations of heliospheric neutral and charged particle populations performed by NASA's integrated heliospheric observatory Interstellar Mapping and Acceleration Probe (IMAP). This information is provided by the GLObal solar Wind Structure (GLOWS) experiment. GLOWS is a single-pixel Lyman- α photometer that observes the heliospheric backscatter glow emitted by interstellar neutral (ISN) H inside the heliosphere, illuminated by the solar Lyman- α emission. GLOWS features a specially designed optical entrance system with a baffle, collimator, and interference filter; a channeltron-based photon event detector; a digital processing unit (DPU) with custom-designed software that registers photon events and assembles lightcurves; a front-end electronics block that interfaces the detector and DPU; and the necessary power and voltage distribution system. Due to charge-exchange between ISN H and the solar wind, the helioglow bears imprints of the solar wind structure. Analysis of lightcurves observed daily along Sun-centered circles with a 75° radius in the sky yields profiles of intensities of the charge exchange reaction, which are decomposed into solar wind speed and density profiles at a Carrington period cadence. With them, it is possible to infer the shape of the heliosphere and its variation during the solar cycle and to determine the attenuation through re-ionization of energetic neutral atom fluxes between the ENA creation sites in the inner heliosheath and the IMAP ENA detectors.

太阳风速度和密度的纬向剖面的演变信息是理解由NASA的集成日球层天文台星际测绘和加速探测器(IMAP)进行的日球层中性粒子和带电粒子种群的全球观测所需的重要元素之一。这些信息是由全球太阳风结构(GLOWS)实验提供的。GLOWS是一台单像素Lyman- α光度计,用于观测由太阳Lyman- α辐射照射的日球层内星际中性(ISN) H发射的日球层后向散射光。GLOWS的特点是一个专门设计的光学入口系统,有挡板、准直器和干涉滤光片;基于通道的光子事件探测器;带有定制软件的数字处理单元(DPU),用于记录光子事件并组装光曲线;前端电子模块,用于连接探测器和DPU;并有必要的配电系统和电压。由于ISN H和太阳风之间的电荷交换,日光辉光带有太阳风结构的印记。对每天沿天空中半径为75°的太阳中心圆观测的光曲线进行分析,得出电荷交换反应强度的剖面,并将其分解为卡灵顿周期节奏下的太阳风速度和密度剖面。有了它们,就有可能推断日球层的形状及其在太阳活动周期中的变化,并通过再电离确定内日鞘ENA产生点和IMAP ENA探测器之间的高能中性原子通量的衰减。
{"title":"GLObal Solar Wind Structure (GLOWS).","authors":"Maciej Bzowski, Roman Wawrzaszek, Marek Strumik, Jȩdrzej Baran, Tomasz Barciński, Kamil Ber, Waldemar Bujwan, Maciej Daukszo, Kamil Jasiński, Grzegorz Juchnikowski, Przemyslaw Kazmierczak, Izabela Kowalska-Leszczyńska, Tomasz Kowalski, Marzena Kubiak, Jakub Ma̧dry, Aleksandra Mirońska, Karol Mostowy, Piotr Orleański, Czesław Porowski, Jakub Półtorak, Tomasz Rajkowski, Joanna Rothkaehl, Tomasz Rudnicki, Aliaksandra Shmyk, Adam Sikorski, Michał Turek, Marek Winkler, Katarzyna Wojciechowska, Tomasz Zawistowski, Hans J Fahr, Uwe Nass, Piotr Osica, Karolina Wielgos, Alexander Gottwald, Hendrik Kaser, Mark Krzyzagorski, Marek Antoniak, Marcin Drobik, Grzegorz Gajoch, Tomasz Martyniak, Rafał Żogała, Andrzej Bartnik, Henryk Fiedorowicz, Tomasz Fok, Mateusz Majszyk, Przemysław Wachulak, Martyna Wardzińska, Łukasz Wȩgrzyński, Robert Kosturek, Carlos Urdiales, Mark Tapley, Susan Pope, Daniel B Reisenfeld, Matina Gkioulidou, Nathan A Schwadron, Eric R Christian, David J McComas","doi":"10.1007/s11214-025-01233-y","DOIUrl":"10.1007/s11214-025-01233-y","url":null,"abstract":"<p><p>Information on the evolution of latitudinal profiles of the solar wind speed and density is one of the important elements needed to understand global observations of heliospheric neutral and charged particle populations performed by NASA's integrated heliospheric observatory Interstellar Mapping and Acceleration Probe (IMAP). This information is provided by the GLObal solar Wind Structure (GLOWS) experiment. GLOWS is a single-pixel Lyman- <math><mi>α</mi></math> photometer that observes the heliospheric backscatter glow emitted by interstellar neutral (ISN) H inside the heliosphere, illuminated by the solar Lyman- <math><mi>α</mi></math> emission. GLOWS features a specially designed optical entrance system with a baffle, collimator, and interference filter; a channeltron-based photon event detector; a digital processing unit (DPU) with custom-designed software that registers photon events and assembles lightcurves; a front-end electronics block that interfaces the detector and DPU; and the necessary power and voltage distribution system. Due to charge-exchange between ISN H and the solar wind, the helioglow bears imprints of the solar wind structure. Analysis of lightcurves observed daily along Sun-centered circles with a 75° radius in the sky yields profiles of intensities of the charge exchange reaction, which are decomposed into solar wind speed and density profiles at a Carrington period cadence. With them, it is possible to infer the shape of the heliosphere and its variation during the solar cycle and to determine the attenuation through re-ionization of energetic neutral atom fluxes between the ENA creation sites in the inner heliosheath and the IMAP ENA detectors.</p>","PeriodicalId":21902,"journal":{"name":"Space Science Reviews","volume":"221 8","pages":"105"},"PeriodicalIF":7.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12589363/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145482937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Analyzer for Cusp Ions (ACI) on the TRACERS Mission. TRACERS任务中的尖端离子分析仪(ACI)。
IF 9.1 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2025-01-01 Epub Date: 2025-03-13 DOI: 10.1007/s11214-025-01154-w
Stephen A Fuselier, Matthew A Freeman, Craig A Kletzing, Sean R Christopherson, Michael J Covello, Daniel De Luna, Raymond L Doty, Colin G Elder, Judith D Furman, Jonathan Gasser, Don E George, Roman G Gomez, Guy A Grubbs, Kristie Llera, David M Miles, Joey Mukherjee, Kristian B Persson, Steven M Petrinec, Dinesh K V Radhakrishnan, Christopher L Ramirez, Ashley S Reisig, Charline Rodriguez, Courtney A Rouse, David A Ruggles, Shawn D Schwarz, Jonathan R Sekula, Linda J Shipp, Justyna M Sokół, Kylie M Sullivan, Karlheinz J Trattner, Sarah K Vines

The Analyzers for Cusp Ions (ACIs) on the TRACERS mission measure ion velocity distribution functions in the magnetospheric cusp from two closely spaced spacecraft in low Earth orbit. The precipitating and upflowing ion measurements contribute to the overarching goal of the TRACERS mission and are key to all three science objectives of the mission. ACI is a toroidal top-hat electrostatic analyzer on a spinning platform that provides full angular coverage with instantaneous 22.5° × ∼6° angular resolution for a single energy step. ACI has an ion energy range from ∼8 eV/e to 20,000 eV/e covered in 47 logarithmic-spaced energy steps with fractional energy resolution of ∼10%. It provides reasonably high cadence (312 ms) measurements of the ion energy-pitch angle distribution with good sensitivity and energy resolution, enabling detection of cusp boundaries and characterization of cusp ion steps.

TRACERS任务上的尖端离子分析仪(ACIs)测量来自近地轨道上两个紧密间隔的航天器的磁层尖端的离子速度分布函数。沉淀和上升离子的测量有助于TRACERS任务的总体目标,是任务的所有三个科学目标的关键。ACI是一种旋转平台上的环形顶帽静电分析仪,可为单个能量步提供全角度覆盖,瞬时22.5°× ~ 6°角分辨率。ACI的离子能量范围从~ 8 eV/e到20,000 eV/e,包含47个对数间隔的能量阶跃,分数能量分辨率为~ 10%。它提供了相当高的节奏(312 ms)的离子能量-俯角分布测量,具有良好的灵敏度和能量分辨率,可以检测尖端边界和表征尖端离子步骤。
{"title":"The Analyzer for Cusp Ions (ACI) on the TRACERS Mission.","authors":"Stephen A Fuselier, Matthew A Freeman, Craig A Kletzing, Sean R Christopherson, Michael J Covello, Daniel De Luna, Raymond L Doty, Colin G Elder, Judith D Furman, Jonathan Gasser, Don E George, Roman G Gomez, Guy A Grubbs, Kristie Llera, David M Miles, Joey Mukherjee, Kristian B Persson, Steven M Petrinec, Dinesh K V Radhakrishnan, Christopher L Ramirez, Ashley S Reisig, Charline Rodriguez, Courtney A Rouse, David A Ruggles, Shawn D Schwarz, Jonathan R Sekula, Linda J Shipp, Justyna M Sokół, Kylie M Sullivan, Karlheinz J Trattner, Sarah K Vines","doi":"10.1007/s11214-025-01154-w","DOIUrl":"10.1007/s11214-025-01154-w","url":null,"abstract":"<p><p>The Analyzers for Cusp Ions (ACIs) on the TRACERS mission measure ion velocity distribution functions in the magnetospheric cusp from two closely spaced spacecraft in low Earth orbit. The precipitating and upflowing ion measurements contribute to the overarching goal of the TRACERS mission and are key to all three science objectives of the mission. ACI is a toroidal top-hat electrostatic analyzer on a spinning platform that provides full angular coverage with instantaneous 22.5° × ∼6° angular resolution for a single energy step. ACI has an ion energy range from ∼8 eV/e to 20,000 eV/e covered in 47 logarithmic-spaced energy steps with fractional energy resolution of ∼10%. It provides reasonably high cadence (312 ms) measurements of the ion energy-pitch angle distribution with good sensitivity and energy resolution, enabling detection of cusp boundaries and characterization of cusp ion steps.</p>","PeriodicalId":21902,"journal":{"name":"Space Science Reviews","volume":"221 2","pages":"30"},"PeriodicalIF":9.1,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11906535/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143650873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simultaneous Occurrence of Magnetospheric Fluctuations at Different Discrete Frequencies ( f 1 - 5 mHz): A Review. 不同离散频率(f≈1 - 5mhz)磁层波动同时发生的研究进展。
IF 9.1 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2025-01-01 Epub Date: 2025-04-22 DOI: 10.1007/s11214-025-01166-6
Simone Di Matteo, Umberto Villante

In the last 30 years, many papers reported the almost simultaneous occurrence of magnetospheric fluctuations at different frequencies and latitudes (basically, in the range f ≈ 1-5 mHz; T ≈ 200-1000 s) and the possible existence and stability of sets of favorite frequencies (in particular: f 1 1.3, f 2 1.9, f 3 2.6-2.7, and f 4 3.2-3.4 mHz) has been proposed, determining controversial results. In the present paper we review these investigations focusing particular attention on several critical aspects that may have influenced the results and the comparison of these analyses (particularly, the correspondence between magnetospheric and solar wind fluctuations; the role of the short and long term variations of the solar wind and magnetospheric characteristics; the effects of the great variety of analytical methods adopted for the evaluation of power spectra and for the identification of relevant events). The results of this global analysis do not support the existence of a stable and persistent absolute set of favorite frequencies for magnetospheric oscillations; nevertheless, in the range of frequency explored by most investigations ( f ≈ 1.5-4.0 mHz), they reveal a strong predominance of cases between f ≈ 1.5-2.5 mHz, with percentages maximizing in the bin centered at f = 2.0 mHz (a feature mostly due to events occurring at f ≈ 1.9 mHz) and rapidly decreasing with increasing frequency; small evidence for an additional peak emerges at f = 3.5 mHz; these aspects are much more explicit in the geomagnetic events than in the ionospheric and magnetospheric ones. Among other processes, the impact of the "mesoscale" solar wind density structures on the magnetosphere might be related with the onset of magnetospheric fluctuations at the observed frequencies.

Supplementary information: The online version contains supplementary material available at 10.1007/s11214-025-01166-6.

近30年来,许多论文报道了磁层波动在不同频率和纬度几乎同时发生(基本上在f≈1-5 mHz范围内;T≈200-1000 s),以及最喜欢的频率集(特别是:f≈1 1.3,f≈2 1.9,f≈3 2.6-2.7和f≈4 3.2-3.4 mHz)的可能存在性和稳定性,确定了有争议的结果。在本文中,我们回顾了这些研究,特别关注可能影响结果和这些分析的比较的几个关键方面(特别是磁层和太阳风波动之间的对应关系;太阳风和磁层特征的短期和长期变化的作用;为评估功率谱和确定相关事件而采用的多种分析方法的影响。这一全球分析的结果并不支持存在一个稳定和持久的磁层振荡最佳频率的绝对集合;然而,在大多数调查所探索的频率范围内(f≈1.5-4.0 mHz),他们发现f≈1.5-2.5 mHz之间的病例具有很强的优势,在f = 2.0 mHz中心的箱子中百分比最大(这一特征主要是由于事件发生在f≈1.9 mHz),并随着频率的增加而迅速下降;在f = 3.5 mHz处出现了一个附加峰的小证据;这些方面在地磁事件中比在电离层和磁层事件中更为明显。在其他过程中,“中尺度”太阳风密度结构对磁层的影响可能与观测频率上磁层波动的开始有关。补充信息:在线版本包含补充资料,下载地址:10.1007/s11214-025-01166-6。
{"title":"<ArticleTitle xmlns:ns0=\"http://www.w3.org/1998/Math/MathML\">Simultaneous Occurrence of Magnetospheric Fluctuations at Different Discrete Frequencies ( <ns0:math><ns0:mi>f</ns0:mi> <ns0:mo>≈</ns0:mo></ns0:math> 1 - 5 mHz): A Review.","authors":"Simone Di Matteo, Umberto Villante","doi":"10.1007/s11214-025-01166-6","DOIUrl":"10.1007/s11214-025-01166-6","url":null,"abstract":"<p><p>In the last 30 years, many papers reported the almost simultaneous occurrence of magnetospheric fluctuations at different frequencies and latitudes (basically, in the range <math><mi>f</mi></math> ≈ 1-5 mHz; <math><mi>T</mi></math> ≈ 200-1000 s) and the possible existence and stability of sets of favorite frequencies (in particular: <math><mi>f</mi></math> <math><mmultiscripts><mo>≈</mo> <mprescripts></mprescripts> <mn>1</mn> <none></none></mmultiscripts> </math> 1.3, <math><mi>f</mi></math> <math><mmultiscripts><mo>≈</mo> <mprescripts></mprescripts> <mn>2</mn> <none></none></mmultiscripts> </math> 1.9, <math><mi>f</mi></math> <math><mmultiscripts><mo>≈</mo> <mprescripts></mprescripts> <mn>3</mn> <none></none></mmultiscripts> </math> 2.6-2.7, and <math><mi>f</mi></math> <math><mmultiscripts><mo>≈</mo> <mprescripts></mprescripts> <mn>4</mn> <none></none></mmultiscripts> </math> 3.2-3.4 mHz) has been proposed, determining controversial results. In the present paper we review these investigations focusing particular attention on several critical aspects that may have influenced the results and the comparison of these analyses (particularly, the correspondence between magnetospheric and solar wind fluctuations; the role of the short and long term variations of the solar wind and magnetospheric characteristics; the effects of the great variety of analytical methods adopted for the evaluation of power spectra and for the identification of relevant events). The results of this global analysis do not support the existence of a stable and persistent <i>absolute</i> set of favorite frequencies for magnetospheric oscillations; nevertheless, in the range of frequency explored by most investigations ( <math><mi>f</mi></math> ≈ 1.5-4.0 mHz), they reveal a strong predominance of cases between <math><mi>f</mi></math> ≈ 1.5-2.5 mHz, with percentages maximizing in the bin centered at <math><mi>f</mi></math> = 2.0 mHz (a feature mostly due to events occurring at <math><mi>f</mi></math> ≈ 1.9 mHz) and rapidly decreasing with increasing frequency; small evidence for an additional peak emerges at <math><mi>f</mi></math> = 3.5 mHz; these aspects are much more explicit in the geomagnetic events than in the ionospheric and magnetospheric ones. Among other processes, the impact of the \"mesoscale\" solar wind density structures on the magnetosphere might be related with the onset of magnetospheric fluctuations at the observed frequencies.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11214-025-01166-6.</p>","PeriodicalId":21902,"journal":{"name":"Space Science Reviews","volume":"221 4","pages":"40"},"PeriodicalIF":9.1,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12014847/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144019643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Solar Wind Magnetosphere Ionosphere Link Explorer (SMILE): Science and Mission Overview. 太阳风磁层电离层连接探测器(SMILE):科学和任务概述。
IF 9.1 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2025-01-01 Epub Date: 2025-01-27 DOI: 10.1007/s11214-024-01126-6
Chi Wang, Graziella Branduardi-Raymont, C Philippe Escoubet, Colin Forsyth

The Solar wind Magnetosphere Ionosphere Link Explorer (SMILE) was proposed to the Chinese Academy of Science (CAS) and the European Space Agency (ESA) following a joint call for science missions issued in January 2015. SMILE was proposed by a team of European and Chinese scientists, led by two mission Co-PIs, one from China and one from Europe. SMILE was selected in June 2015, and its budget adopted by the Chinese Academy of Sciences in November 2016 and the ESA Science Programme Committee in March 2019, respectively. SMILE will investigate the connection between the Sun and the Earth using a new technique that will image the magnetopause and polar cusps: the key regions where the solar wind impinges on Earth's magnetic field. Simultaneously, SMILE will image the auroras borealis in an ultraviolet waveband, providing long-duration continuous observations of the northern polar regions. In addition, the ion and magnetic field characteristics of the magnetospheric lobes, magnetosheath and solar wind will be measured by the in-situ instrument package. Here, we present the science goals, instruments and planned orbit. In addition the Working Groups that are supporting the preparation of the mission and the coordination with other magnetospheric missions are described.

太阳风磁层电离层链路探测器(SMILE)是中国科学院和欧洲空间局在2015年1月联合发布的科学任务呼吁后提出的。SMILE是由一个由欧洲和中国科学家组成的团队提出的,由两个任务合作伙伴领导,一个来自中国,一个来自欧洲。SMILE项目于2015年6月入选,其预算分别于2016年11月和2019年3月由中国科学院和欧空局科学计划委员会通过。SMILE将使用一种新技术来研究太阳和地球之间的联系,该技术将成像磁层顶和极尖:太阳风撞击地球磁场的关键区域。同时,SMILE将在紫外波段对北极光进行成像,提供对北极地区的长时间连续观测。此外,将通过现场仪器包测量磁层叶、磁鞘和太阳风的离子和磁场特征。在这里,我们介绍了科学目标、仪器和计划轨道。此外,还介绍了支持该特派团筹备工作和与其他磁层特派团协调工作的工作组。
{"title":"Solar Wind Magnetosphere Ionosphere Link Explorer (SMILE): Science and Mission Overview.","authors":"Chi Wang, Graziella Branduardi-Raymont, C Philippe Escoubet, Colin Forsyth","doi":"10.1007/s11214-024-01126-6","DOIUrl":"10.1007/s11214-024-01126-6","url":null,"abstract":"<p><p>The Solar wind Magnetosphere Ionosphere Link Explorer (SMILE) was proposed to the Chinese Academy of Science (CAS) and the European Space Agency (ESA) following a joint call for science missions issued in January 2015. SMILE was proposed by a team of European and Chinese scientists, led by two mission Co-PIs, one from China and one from Europe. SMILE was selected in June 2015, and its budget adopted by the Chinese Academy of Sciences in November 2016 and the ESA Science Programme Committee in March 2019, respectively. SMILE will investigate the connection between the Sun and the Earth using a new technique that will image the magnetopause and polar cusps: the key regions where the solar wind impinges on Earth's magnetic field. Simultaneously, SMILE will image the auroras borealis in an ultraviolet waveband, providing long-duration continuous observations of the northern polar regions. In addition, the ion and magnetic field characteristics of the magnetospheric lobes, magnetosheath and solar wind will be measured by the in-situ instrument package. Here, we present the science goals, instruments and planned orbit. In addition the Working Groups that are supporting the preparation of the mission and the coordination with other magnetospheric missions are described.</p>","PeriodicalId":21902,"journal":{"name":"Space Science Reviews","volume":"221 1","pages":"9"},"PeriodicalIF":9.1,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11772532/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143068031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mass Supply from Io to Jupiter's Magnetosphere. 木卫一向木星磁层的大量供应。
IF 9.1 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2025-01-01 Epub Date: 2025-02-05 DOI: 10.1007/s11214-025-01137-x
Lorenz Roth, Aljona Blöcker, Katherine de Kleer, David Goldstein, Emmanuel Lellouch, Joachim Saur, Carl Schmidt, Darrell F Strobel, Chihiro Tao, Fuminori Tsuchiya, Vincent Dols, Hans Huybrighs, Alessandro Mura, Jamey R Szalay, Sarah V Badman, Imke de Pater, Anne-Cathrine Dott, Masato Kagitani, Lea Klaiber, Ryoichi Koga, Alfred S McEwen, Zachariah Milby, Kurt D Retherford, Stephan Schlegel, Nicolas Thomas, Wei-Ling Tseng, Audrey Vorburger

Since the Voyager mission flybys in 1979, we have known the moon Io to be both volcanically active and the main source of plasma in the vast magnetosphere of Jupiter. Material lost from Io forms neutral clouds, the Io plasma torus and ultimately the extended plasma sheet. This material is supplied from Io's upper atmosphere and atmospheric loss is likely driven by plasma-interaction effects with possible contributions from thermal escape and photochemistry-driven escape. Direct volcanic escape is negligible. The supply of material to maintain the plasma torus has been estimated from various methods at roughly one ton per second. Most of the time the magnetospheric plasma environment of Io is stable on timescales from days to months. Similarly, Io's atmosphere was found to have a stable average density on the dayside, although it exhibits lateral (longitudinal and latitudinal) and temporal (both diurnal and seasonal) variations. There is a potential positive feedback in the Io torus supply: collisions of torus plasma with atmospheric neutrals are probably a significant loss process, which increases with torus density. The stability of the torus environment may be maintained by limiting mechanisms of either torus supply from Io or the loss from the torus by centrifugal interchange in the middle magnetosphere. Various observations suggest that occasionally (roughly 1 to 2 detections per decade) the plasma torus undergoes major transient changes over a period of several weeks, apparently overcoming possible stabilizing mechanisms. Such events (as well as more frequent minor changes) are commonly explained by some kind of change in volcanic activity that triggers a chain of reactions which modify the plasma torus state via a net change in supply of new mass. However, it remains unknown what kind of volcanic event (if any) can trigger events in torus and magnetosphere, whether Io's atmosphere undergoes a general change before or during such events, and what processes could enable such a change in the otherwise stable torus. Alternative explanations, which are not invoking volcanic activity, have not been put forward. We review the current knowledge on Io's volcanic activity, atmosphere, and the magnetospheric neutral and plasma environment and their roles in mass transfer from Io to the plasma torus and magnetosphere. We provide an overview of the recorded events of transient changes in the torus, address several contradictions and inconsistencies, and point out gaps in our current understanding. Lastly, we provide a list of relevant terms and their definitions.

自从1979年旅行者号飞越木星以来,我们已经知道木卫一不仅火山活跃,而且是木星巨大磁层中等离子体的主要来源。从木卫一流失的物质形成了中性云、木卫一等离子体环面以及最终延伸的等离子体层。这些物质来自木卫一的上层大气,大气损失可能是由等离子体相互作用效应驱动的,可能是热逸出和光化学驱动的逸出。直接的火山喷发可以忽略不计。根据各种方法估计,维持等离子体环面的材料供应大约为每秒一吨。大多数时候,木卫一的磁层等离子体环境在几天到几个月的时间尺度上是稳定的。同样地,我们发现木卫一的大气在向日面有一个稳定的平均密度,尽管它表现出横向(纵向和纬度)和时间(日和季节)的变化。在木卫一环面供应中存在潜在的正反馈:环面等离子体与大气中性体的碰撞可能是一个重要的损失过程,随着环面密度的增加而增加。环面环境的稳定性可以通过限制环面供应或环面损失的机制来维持。各种观测表明,偶尔(大约每十年1到2次)等离子体环面在几周内经历重大的瞬态变化,显然克服了可能的稳定机制。这些事件(以及更频繁的微小变化)通常被解释为火山活动的某种变化,这种变化触发了一系列反应,通过新质量供应的净变化来改变等离子体环面状态。然而,我们仍然不知道什么样的火山事件(如果有的话)会触发环面和磁层的事件,木卫一的大气在这些事件发生之前或期间是否会发生一般性的变化,以及什么过程会使其他稳定的环面发生这种变化。目前还没有提出与火山活动无关的其他解释。本文综述了目前关于木卫一火山活动、大气、磁层中性和等离子体环境及其在木卫一向等离子体环面和磁层的质量传递中的作用的研究进展。我们概述了环面瞬态变化的记录事件,解决了几个矛盾和不一致的地方,并指出了我们目前理解中的差距。最后,我们提供了相关术语及其定义的列表。
{"title":"Mass Supply from Io to Jupiter's Magnetosphere.","authors":"Lorenz Roth, Aljona Blöcker, Katherine de Kleer, David Goldstein, Emmanuel Lellouch, Joachim Saur, Carl Schmidt, Darrell F Strobel, Chihiro Tao, Fuminori Tsuchiya, Vincent Dols, Hans Huybrighs, Alessandro Mura, Jamey R Szalay, Sarah V Badman, Imke de Pater, Anne-Cathrine Dott, Masato Kagitani, Lea Klaiber, Ryoichi Koga, Alfred S McEwen, Zachariah Milby, Kurt D Retherford, Stephan Schlegel, Nicolas Thomas, Wei-Ling Tseng, Audrey Vorburger","doi":"10.1007/s11214-025-01137-x","DOIUrl":"10.1007/s11214-025-01137-x","url":null,"abstract":"<p><p>Since the Voyager mission flybys in 1979, we have known the moon Io to be both volcanically active and the main source of plasma in the vast magnetosphere of Jupiter. Material lost from Io forms neutral clouds, the Io plasma torus and ultimately the extended plasma sheet. This material is supplied from Io's upper atmosphere and atmospheric loss is likely driven by plasma-interaction effects with possible contributions from thermal escape and photochemistry-driven escape. Direct volcanic escape is negligible. The supply of material to maintain the plasma torus has been estimated from various methods at roughly one ton per second. Most of the time the magnetospheric plasma environment of Io is stable on timescales from days to months. Similarly, Io's atmosphere was found to have a stable average density on the dayside, although it exhibits lateral (longitudinal and latitudinal) and temporal (both diurnal and seasonal) variations. There is a potential positive feedback in the Io torus supply: collisions of torus plasma with atmospheric neutrals are probably a significant loss process, which increases with torus density. The stability of the torus environment may be maintained by limiting mechanisms of either torus supply from Io or the loss from the torus by centrifugal interchange in the middle magnetosphere. Various observations suggest that occasionally (roughly 1 to 2 detections per decade) the plasma torus undergoes major transient changes over a period of several weeks, apparently overcoming possible stabilizing mechanisms. Such events (as well as more frequent minor changes) are commonly explained by some kind of change in volcanic activity that triggers a chain of reactions which modify the plasma torus state via a net change in supply of new mass. However, it remains unknown what kind of volcanic event (if any) can trigger events in torus and magnetosphere, whether Io's atmosphere undergoes a general change before or during such events, and what processes could enable such a change in the otherwise stable torus. Alternative explanations, which are not invoking volcanic activity, have not been put forward. We review the current knowledge on Io's volcanic activity, atmosphere, and the magnetospheric neutral and plasma environment and their roles in mass transfer from Io to the plasma torus and magnetosphere. We provide an overview of the recorded events of transient changes in the torus, address several contradictions and inconsistencies, and point out gaps in our current understanding. Lastly, we provide a list of relevant terms and their definitions.</p>","PeriodicalId":21902,"journal":{"name":"Space Science Reviews","volume":"221 1","pages":"13"},"PeriodicalIF":9.1,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11799133/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143383263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NASA'S Lucy Mission to Trojan Asteroids: Unraveling the History of the Outer Solar System. 美国宇航局的“露西”号特洛伊小行星任务:揭开外太阳系的历史。
IF 7.4 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2025-01-01 Epub Date: 2025-07-03 DOI: 10.1007/s11214-025-01173-7
Harold F Levison, Simone Marchi, Keith S Noll, John R Spencer, Catherine B Olkin, Thomas S Statler

Lucy is a NASA Discovery-class mission to send a highly capable and robust spacecraft to investigate primitive bodies near both the L4 and L5 Lagrange points with Jupiter; the Jupiter Trojan asteroids. This heretofore unexplored population of planetesimals from the outer planetary system holds vital clues to deciphering the history of the Solar System. Due to an unusual and fortuitous orbital configuration, Lucy will perform a comprehensive investigation that visits eight Trojans, including all the recognized taxonomic classes, a collisional family member and a near equal-mass binary. It will visit objects with diameters ranging from roughly 1 to 100 km. In particular, Lucy will perform flybys of (3548) Eurybates and its satellite Queta (L4, C-type), (15094) Polymele and its currently unnamed satellite (L4, P-type), (11351) Leucus (L4, D-type), (21900) Orus (L4, D-type), and the (617) Patroclus-Menoetius binary (L5, P-types). This diverse array of targets will supply invaluable constraints on the formation and early dynamical evolution of the giant planets. In addition, Lucy will visit two main-belt asteroids, (152830) Dinkinesh and (52246) Donaldjohanson, in order to practice its encounters. Lucy's payload suite consists of a color camera and infrared imaging spectrometer, a high resolution panchromatic imager, and a thermal infrared spectrometer. Additionally, two spacecraft subsystems will also contribute to the science investigations: the terminal tracking cameras will supplement imaging during closest approach and the telecommunication subsystem will be used to measure the mass of the Trojans. Lucy launched on October 16, 2021 and will have encounters with the Trojans from August 2027 until March 2033.

“露西”是美国国家航空航天局的“发现”级任务,它将发射一艘功能强大的航天器,调查木星L4和L5拉格朗日点附近的原始天体;木星特洛伊小行星。迄今为止,这些来自外行星系统的未被探索的星子群为破译太阳系的历史提供了重要的线索。由于一个不寻常的和偶然的轨道配置,露西将进行一次全面的调查,访问八个特洛伊,包括所有公认的分类类别,一个碰撞家族成员和一个接近等质量的双星。它将访问直径在1到100公里之间的物体。特别是,露西将执行飞掠(3548)Eurybates及其卫星Queta (L4, c型),(15094)Polymele及其目前未命名的卫星(L4, p型),(11351)Leucus (L4, d型),(21900)Orus (L4, d型),以及(617)Patroclus-Menoetius双星(L5, p型)。这种多样化的目标阵列将为巨行星的形成和早期动态演化提供宝贵的约束。此外,“露西”还将造访两颗主带小行星,(152830)Dinkinesh和(52246)Donaldjohanson,以练习与小行星的相遇。“露西”号的有效载荷套件包括一台彩色摄像机和红外成像光谱仪、一台高分辨率全色成像仪和一台热红外光谱仪。此外,两个航天器子系统也将为科学调查做出贡献:终端跟踪摄像机将在最接近时补充成像,电信子系统将用于测量特洛伊的质量。“露西”于2021年10月16日发射升空,将于2027年8月至2033年3月与特洛伊人相遇。
{"title":"NASA'S <i>Lucy</i> Mission to Trojan Asteroids: Unraveling the History of the Outer Solar System.","authors":"Harold F Levison, Simone Marchi, Keith S Noll, John R Spencer, Catherine B Olkin, Thomas S Statler","doi":"10.1007/s11214-025-01173-7","DOIUrl":"10.1007/s11214-025-01173-7","url":null,"abstract":"<p><p><i>Lucy</i> is a NASA Discovery-class mission to send a highly capable and robust spacecraft to investigate primitive bodies near both the L<sub>4</sub> and L<sub>5</sub> Lagrange points with Jupiter; the Jupiter Trojan asteroids. This heretofore unexplored population of planetesimals from the outer planetary system holds vital clues to deciphering the history of the Solar System. Due to an unusual and fortuitous orbital configuration, <i>Lucy</i> will perform a comprehensive investigation that visits eight Trojans, including all the recognized taxonomic classes, a collisional family member and a near equal-mass binary. It will visit objects with diameters ranging from roughly 1 to 100 km. In particular, <i>Lucy</i> will perform flybys of (3548) Eurybates and its satellite Queta (L<sub>4</sub>, C-type), (15094) Polymele and its currently unnamed satellite (L<sub>4</sub>, P-type), (11351) Leucus (L<sub>4</sub>, D-type), (21900) Orus (L<sub>4</sub>, D-type), and the (617) Patroclus-Menoetius binary (L<sub>5</sub>, P-types). This diverse array of targets will supply invaluable constraints on the formation and early dynamical evolution of the giant planets. In addition, <i>Lucy</i> will visit two main-belt asteroids, (152830) Dinkinesh and (52246) Donaldjohanson, in order to practice its encounters. <i>Lucy</i>'s payload suite consists of a color camera and infrared imaging spectrometer, a high resolution panchromatic imager, and a thermal infrared spectrometer. Additionally, two spacecraft subsystems will also contribute to the science investigations: the terminal tracking cameras will supplement imaging during closest approach and the telecommunication subsystem will be used to measure the mass of the Trojans. <i>Lucy</i> launched on October 16, 2021 and will have encounters with the Trojans from August 2027 until March 2033.</p>","PeriodicalId":21902,"journal":{"name":"Space Science Reviews","volume":"221 5","pages":"63"},"PeriodicalIF":7.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12226690/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144576319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Jets Downstream of Collisionless Shocks: Recent Discoveries and Challenges. 射流下游的无碰撞冲击:最近的发现和挑战。
IF 9.1 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2025-01-01 Epub Date: 2024-12-27 DOI: 10.1007/s11214-024-01129-3
Eva Krämer, Florian Koller, Jonas Suni, Adrian T LaMoury, Adrian Pöppelwerth, Georg Glebe, Tara Mohammed-Amin, Savvas Raptis, Laura Vuorinen, Stefan Weiss, Niki Xirogiannopoulou, Martin Archer, Xóchitl Blanco-Cano, Herbert Gunell, Heli Hietala, Tomas Karlsson, Ferdinand Plaschke, Luis Preisser, Owen Roberts, Cyril Simon Wedlund, Manuela Temmer, Zoltán Vörös

Plasma flows with enhanced dynamic pressure, known as magnetosheath jets, are often found downstream of collisionless shocks. As they propagate through the magnetosheath, they interact with the surrounding plasma, shaping its properties, and potentially becoming geoeffective upon reaching the magnetopause. In recent years (since 2016), new research has produced vital results that have significantly enhanced our understanding on many aspects of jets. In this review, we summarise and discuss these findings. Spacecraft and ground-based observations, as well as global and local simulations, have contributed greatly to our understanding of the causes and effects of magnetosheath jets. First, we discuss recent findings on jet occurrence and formation, including in other planetary environments. New insights into jet properties and evolution are then examined using observations and simulations. Finally, we review the impact of jets upon interaction with the magnetopause and subsequent consequences for the magnetosphere-ionosphere system. We conclude with an outlook and assessment on future challenges. This includes an overview on future space missions that may prove crucial in tackling the outstanding open questions on jets in the terrestrial magnetosheath as well as other planetary and shock environments.

具有增强的动态压力的等离子体流,被称为磁鞘射流,经常在无碰撞冲击的下游发现。当它们通过磁鞘传播时,它们与周围的等离子体相互作用,形成其特性,并可能在到达磁层顶时变得有效。近年来(自2016年以来),新的研究取得了重要成果,大大提高了我们对喷气机许多方面的理解。在这篇综述中,我们总结和讨论这些发现。宇宙飞船和地面观测,以及全球和局部模拟,对我们理解磁鞘喷流的原因和影响做出了巨大贡献。首先,我们讨论了最近关于喷流发生和形成的发现,包括在其他行星环境中。然后使用观察和模拟来检查对射流特性和演化的新见解。最后,我们回顾了喷流对磁层顶相互作用的影响以及随后对磁层-电离层系统的影响。最后,我们对未来的挑战进行了展望和评估。这包括对未来太空任务的概述,这可能对解决关于地球磁鞘以及其他行星和冲击环境中的喷气机的悬而未决的问题至关重要。
{"title":"Jets Downstream of Collisionless Shocks: Recent Discoveries and Challenges.","authors":"Eva Krämer, Florian Koller, Jonas Suni, Adrian T LaMoury, Adrian Pöppelwerth, Georg Glebe, Tara Mohammed-Amin, Savvas Raptis, Laura Vuorinen, Stefan Weiss, Niki Xirogiannopoulou, Martin Archer, Xóchitl Blanco-Cano, Herbert Gunell, Heli Hietala, Tomas Karlsson, Ferdinand Plaschke, Luis Preisser, Owen Roberts, Cyril Simon Wedlund, Manuela Temmer, Zoltán Vörös","doi":"10.1007/s11214-024-01129-3","DOIUrl":"10.1007/s11214-024-01129-3","url":null,"abstract":"<p><p>Plasma flows with enhanced dynamic pressure, known as magnetosheath jets, are often found downstream of collisionless shocks. As they propagate through the magnetosheath, they interact with the surrounding plasma, shaping its properties, and potentially becoming geoeffective upon reaching the magnetopause. In recent years (since 2016), new research has produced vital results that have significantly enhanced our understanding on many aspects of jets. In this review, we summarise and discuss these findings. Spacecraft and ground-based observations, as well as global and local simulations, have contributed greatly to our understanding of the causes and effects of magnetosheath jets. First, we discuss recent findings on jet occurrence and formation, including in other planetary environments. New insights into jet properties and evolution are then examined using observations and simulations. Finally, we review the impact of jets upon interaction with the magnetopause and subsequent consequences for the magnetosphere-ionosphere system. We conclude with an outlook and assessment on future challenges. This includes an overview on future space missions that may prove crucial in tackling the outstanding open questions on jets in the terrestrial magnetosheath as well as other planetary and shock environments.</p>","PeriodicalId":21902,"journal":{"name":"Space Science Reviews","volume":"221 1","pages":"4"},"PeriodicalIF":9.1,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11680644/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142903543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Space Science Reviews
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1