Pub Date : 2023-11-10DOI: 10.3390/soilsystems7040101
Ivan Oyege, Maruthi Sridhar Balaji Bhaskar
This review highlights the potential of vermicompost and its derived products as sustainable and eco-friendly solutions for enhancing production and pest management in grain crops. It assesses their impact comprehensively on crops such as maize, wheat, barley, rice, and pearl millet. Vermicompost improves soil quality, increases nutrient availability, boosts crop productivity, and enhances pest and disease tolerance. It acts as an organic fertilizer, enriching the soil with essential nutrients, humic acids, growth-regulating hormones, and enzymes, improving plant nutrition, photosynthesis, and overall crop quality. Furthermore, vermicompost shows promise in mitigating soil degradation and sequestering organic carbon while demonstrating the potential for pest management, including effectiveness against pests like fall armyworm (Spodoptera frugiperda). This review emphasizes the importance of integrated nutrient management and proper application strategies to maximize the benefits of vermicompost in grain crops. Factors such as the form and timing of application, efficacy against specific pests, and economic viability for different farming scales are discussed. Understanding these factors is crucial for successfully implementing and adopting vermicompost-based pest management strategies in grain crops. This review also explores the potential of vermicomposting as an eco-friendly and cost-effective solution to remediate organic contaminants, emerging contaminants, personal-care and pharmaceutical products, and microplastics. The review further identifies knowledge gaps and highlights the need for future studies to effectively utilize vermicompost and its derived products in cereal production for sustainable agriculture, contributing to global food security.
{"title":"Effects of Vermicompost on Soil and Plant Health and Promoting Sustainable Agriculture","authors":"Ivan Oyege, Maruthi Sridhar Balaji Bhaskar","doi":"10.3390/soilsystems7040101","DOIUrl":"https://doi.org/10.3390/soilsystems7040101","url":null,"abstract":"This review highlights the potential of vermicompost and its derived products as sustainable and eco-friendly solutions for enhancing production and pest management in grain crops. It assesses their impact comprehensively on crops such as maize, wheat, barley, rice, and pearl millet. Vermicompost improves soil quality, increases nutrient availability, boosts crop productivity, and enhances pest and disease tolerance. It acts as an organic fertilizer, enriching the soil with essential nutrients, humic acids, growth-regulating hormones, and enzymes, improving plant nutrition, photosynthesis, and overall crop quality. Furthermore, vermicompost shows promise in mitigating soil degradation and sequestering organic carbon while demonstrating the potential for pest management, including effectiveness against pests like fall armyworm (Spodoptera frugiperda). This review emphasizes the importance of integrated nutrient management and proper application strategies to maximize the benefits of vermicompost in grain crops. Factors such as the form and timing of application, efficacy against specific pests, and economic viability for different farming scales are discussed. Understanding these factors is crucial for successfully implementing and adopting vermicompost-based pest management strategies in grain crops. This review also explores the potential of vermicomposting as an eco-friendly and cost-effective solution to remediate organic contaminants, emerging contaminants, personal-care and pharmaceutical products, and microplastics. The review further identifies knowledge gaps and highlights the need for future studies to effectively utilize vermicompost and its derived products in cereal production for sustainable agriculture, contributing to global food security.","PeriodicalId":21908,"journal":{"name":"Soil Systems","volume":" 45","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135186299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-06DOI: 10.3390/soilsystems7040100
Andre Luiz de Freitas Espinoza, Henrique Rasera Raniro, Camille Nunes Leite, Paulo Sergio Pavinato
Sewage sludge (SS) is an organic waste that may potentially be used as a slow-release source of phosphorus (P), despite the necessity for pre-treatment and its lower P content compared to soluble mineral fertilizers. For these reasons, composted sewage sludge was used to manufacture pelletized organomineral fertilizers, by mixing it with the inorganic sources monoammonium phosphate (MAP) and AshDec® (ASD) (thermochemically incinerated SS). The fertilizers were physiochemically characterized and evaluated for their P solubilization dynamics and lability in the soil. The sources tested were as follows: organic compost of sewage sludge powder (SSC) and its pelletized form (SCP), pelletized organomineral SSC + MAP (S + MAP) and SSC + ASD (S + ASD), ASD alone, compared conventional MAP and a control (nil-P). These fertilizers were applied to columns containing 50 g of soil at the dose of 100 mg P column−1 and were leached daily with 30 mL of water or 2% citric acid for 30 days. We analyzed the leachates for pH and P content. Pelletizing process resulted in denser products and promoted more gradual P release. The organomineral S + MAP was the most water-soluble recycled source, solubilizing about 70% of the total P, while the others presented much lower solubilization (<20%). In contrast, all fertilizers showed high solubility in 2% citric acid (except for S + ASD). After leaching, soil P fractionation disclosed that the P leftover in the soil remained mostly in the labile and moderately labile pools. Composting and the ASD process produced materials with slow P solubilization, being favored in acidic soils and in plant’s rhizosphere. In turn, S + MAP resulted in a promising product with intermediate P solubility, better synchronized with crop demand, potentially increasing P-use efficiency. Our results shed light in the physico-chemical properties and on the solubilization dynamics of novel organomineral products in tropical soil conditions.
{"title":"Physico-Chemical Properties and Phosphorus Solubilization of Organomineral Fertilizers Derived from Sewage Sludge","authors":"Andre Luiz de Freitas Espinoza, Henrique Rasera Raniro, Camille Nunes Leite, Paulo Sergio Pavinato","doi":"10.3390/soilsystems7040100","DOIUrl":"https://doi.org/10.3390/soilsystems7040100","url":null,"abstract":"Sewage sludge (SS) is an organic waste that may potentially be used as a slow-release source of phosphorus (P), despite the necessity for pre-treatment and its lower P content compared to soluble mineral fertilizers. For these reasons, composted sewage sludge was used to manufacture pelletized organomineral fertilizers, by mixing it with the inorganic sources monoammonium phosphate (MAP) and AshDec® (ASD) (thermochemically incinerated SS). The fertilizers were physiochemically characterized and evaluated for their P solubilization dynamics and lability in the soil. The sources tested were as follows: organic compost of sewage sludge powder (SSC) and its pelletized form (SCP), pelletized organomineral SSC + MAP (S + MAP) and SSC + ASD (S + ASD), ASD alone, compared conventional MAP and a control (nil-P). These fertilizers were applied to columns containing 50 g of soil at the dose of 100 mg P column−1 and were leached daily with 30 mL of water or 2% citric acid for 30 days. We analyzed the leachates for pH and P content. Pelletizing process resulted in denser products and promoted more gradual P release. The organomineral S + MAP was the most water-soluble recycled source, solubilizing about 70% of the total P, while the others presented much lower solubilization (<20%). In contrast, all fertilizers showed high solubility in 2% citric acid (except for S + ASD). After leaching, soil P fractionation disclosed that the P leftover in the soil remained mostly in the labile and moderately labile pools. Composting and the ASD process produced materials with slow P solubilization, being favored in acidic soils and in plant’s rhizosphere. In turn, S + MAP resulted in a promising product with intermediate P solubility, better synchronized with crop demand, potentially increasing P-use efficiency. Our results shed light in the physico-chemical properties and on the solubilization dynamics of novel organomineral products in tropical soil conditions.","PeriodicalId":21908,"journal":{"name":"Soil Systems","volume":"149 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135679087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-01DOI: 10.3390/soilsystems7040099
Diego Rubiales
Grain and forage legumes are important sources of food and feed, key for sustainable agriculture given the environmental services they provide. However, their cultivation is hampered in the Mediterranean Basin and Near East by the widespread occurrence of the root parasitic weed crenate broomrape (Orobanche crenata). Other broomrape species such as O. minor, O. foetida, and Phelipanche aegyptica are also of local importance. As for other parasitic weeds, a number of management strategies have been proposed, but considering that temperate legumes in the area are low-input crops, these strategies are largely uneconomical or hard to achieve, leaving the use of resistant cultivars as the most desirable option. Breeding for broomrape resistance is not an easy task, but significant progress has been achieved by classical breeding and selection and will profit from recent developments in phenomics and genomics. Here, achievements and prospects in broomrape management and resistance breeding are presented and critically discussed.
谷物和草料豆类是食物和饲料的重要来源,鉴于它们提供的环境服务,对可持续农业至关重要。然而,它们在地中海盆地和近东的种植受到广泛存在的根寄生杂草圆齿帚苔(orobche crenata)的阻碍。其他雀花种类,如O. minor, O. foetida和埃及菲利潘切也在当地具有重要意义。对于其他寄生杂草,已经提出了许多管理策略,但考虑到该地区温带豆科作物是低投入作物,这些策略在很大程度上是不经济或难以实现的,因此使用抗性品种是最理想的选择。抗性育种不是一件容易的事,但经典育种和选择已经取得了重大进展,并将受益于表型组学和基因组学的最新发展。本文介绍了在锦绣菜管理和抗性育种方面取得的成就和前景,并进行了批判性的讨论。
{"title":"Managing Root Parasitic Weeds to Facilitate Legume Reintroduction into Mediterranean Rain-Fed Farming Systems","authors":"Diego Rubiales","doi":"10.3390/soilsystems7040099","DOIUrl":"https://doi.org/10.3390/soilsystems7040099","url":null,"abstract":"Grain and forage legumes are important sources of food and feed, key for sustainable agriculture given the environmental services they provide. However, their cultivation is hampered in the Mediterranean Basin and Near East by the widespread occurrence of the root parasitic weed crenate broomrape (Orobanche crenata). Other broomrape species such as O. minor, O. foetida, and Phelipanche aegyptica are also of local importance. As for other parasitic weeds, a number of management strategies have been proposed, but considering that temperate legumes in the area are low-input crops, these strategies are largely uneconomical or hard to achieve, leaving the use of resistant cultivars as the most desirable option. Breeding for broomrape resistance is not an easy task, but significant progress has been achieved by classical breeding and selection and will profit from recent developments in phenomics and genomics. Here, achievements and prospects in broomrape management and resistance breeding are presented and critically discussed.","PeriodicalId":21908,"journal":{"name":"Soil Systems","volume":"32 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135270934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-31DOI: 10.3390/soilsystems7040098
Mohamed Houssemeddine Sellami, Antonella Lavini
The growing interest in soil health and sustainable agriculture has emerged as a paramount element in addressing the multifaceted challenges facing modern agriculture [...]
对土壤健康和可持续农业日益增长的兴趣已成为解决现代农业面临的多方面挑战的首要因素[…]
{"title":"Advancements in Soil and Sustainable Agriculture","authors":"Mohamed Houssemeddine Sellami, Antonella Lavini","doi":"10.3390/soilsystems7040098","DOIUrl":"https://doi.org/10.3390/soilsystems7040098","url":null,"abstract":"The growing interest in soil health and sustainable agriculture has emerged as a paramount element in addressing the multifaceted challenges facing modern agriculture [...]","PeriodicalId":21908,"journal":{"name":"Soil Systems","volume":"70 7","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135809501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-27DOI: 10.3390/soilsystems7040097
Lilian Moraes, José Vicente Elias Bernardi, João Pedro Rodrigues de Souza, Joelma Ferreira Portela, Ludgero Cardoso Galli Vieira, Carlos José Sousa Passos, Jurandir Rodrigues de Souza, Wanderley Rodrigues Bastos, Lucas Cabrera Monteiro, Ygor Oliveira Sarmento Rodrigues, José Garrofe Dorea
In order to assess the influencing factors of the presence of mercury in a river within the Savanna biome (Cerrado), we surveyed total mercury (THg) in bottom sediment from 50 lakes along 750 km of the Middle Araguaia floodplain. The sampling sites included non-urban and urban surroundings over three distinct geomorphologies. We measured water physicochemical parameters at each site and tested statistically if land use nested within the geological formation influenced the THg concentration in bottom sediments and related water parameters. Multivariate results indicate that the interaction between geological groups and land use is statistically significant (p < 0.05). Nested ANOVA and Tukey HSD tests confirmed that the geological formation with its nested land use influences the THg, pH, DO, conductivity, and TDS (p < 0.05). THg was significantly lower in Quaternary terrains (p < 0.05) and differed significantly between non-urban and urban areas in Neoproterozoic terrains (p = 0.02). The spatial projections of the THg eigenvector on the main axes with the scoring factors of the Neoproterozoic/Paleoproterozoic terrains, and urban/non-urban, confirmed the spatial correlations. These results indicate that the association of land use and geology could be the main driver of THg in the bottom sediments of lakes from the Middle Araguaia floodplain.
{"title":"Sediment Mercury, Geomorphology and Land Use in the Middle Araguaia River Floodplain (Savanna Biome, Brazil)","authors":"Lilian Moraes, José Vicente Elias Bernardi, João Pedro Rodrigues de Souza, Joelma Ferreira Portela, Ludgero Cardoso Galli Vieira, Carlos José Sousa Passos, Jurandir Rodrigues de Souza, Wanderley Rodrigues Bastos, Lucas Cabrera Monteiro, Ygor Oliveira Sarmento Rodrigues, José Garrofe Dorea","doi":"10.3390/soilsystems7040097","DOIUrl":"https://doi.org/10.3390/soilsystems7040097","url":null,"abstract":"In order to assess the influencing factors of the presence of mercury in a river within the Savanna biome (Cerrado), we surveyed total mercury (THg) in bottom sediment from 50 lakes along 750 km of the Middle Araguaia floodplain. The sampling sites included non-urban and urban surroundings over three distinct geomorphologies. We measured water physicochemical parameters at each site and tested statistically if land use nested within the geological formation influenced the THg concentration in bottom sediments and related water parameters. Multivariate results indicate that the interaction between geological groups and land use is statistically significant (p < 0.05). Nested ANOVA and Tukey HSD tests confirmed that the geological formation with its nested land use influences the THg, pH, DO, conductivity, and TDS (p < 0.05). THg was significantly lower in Quaternary terrains (p < 0.05) and differed significantly between non-urban and urban areas in Neoproterozoic terrains (p = 0.02). The spatial projections of the THg eigenvector on the main axes with the scoring factors of the Neoproterozoic/Paleoproterozoic terrains, and urban/non-urban, confirmed the spatial correlations. These results indicate that the association of land use and geology could be the main driver of THg in the bottom sediments of lakes from the Middle Araguaia floodplain.","PeriodicalId":21908,"journal":{"name":"Soil Systems","volume":"15 9","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136235055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-26DOI: 10.3390/soilsystems7040096
Matteo Garau, Paola Castaldi, Maria Vittoria Pinna, Stefania Diquattro, Alberto Cesarani, Nicoletta P. Mangia, Sotirios Vasileiadis, Giovanni Garau
Biochar can be useful for the functional recovery of soils contaminated with potentially toxic elements (PTEs), even if its effectiveness is variable and sometimes limited, and conflicting results have been recently reported. To shed some light on this regard, softwood-derived biochar was added at 2.5 (2.5-Bio) and 5.0% w/w (5.0-Bio) rates to an acidic (pH 5.74) soil contaminated by Cd (28 mg kg−1), Pb (10,625 mg kg−1), and Zn (3407 mg kg−1). Biochar addition increased soil pH, available P and CEC, and reduced labile Cd, Pb, and Zn (e.g., by 27, 37, and 46% in 5.0-Bio vs. the unamended soil). The addition of biochar did not change the number of total heterotrophic bacteria, actinomycetes, and fungi, while it reduced the number of Pseudomonas spp. and soil microbial biomass. Dehydrogenase activity was reduced in amended soils (e.g., by ~60 and 75% in 2.5- and 5.0-Bio, respectively), while in the same soils, urease increased by 48 and 78%. Approximately 16S rRNA gene amplicon sequencing and the Biolog community-level physiological profile highlighted a significant biochar impact (especially at a 5% rate) on soil bacterial diversity. Tomato (but not triticale) yield increased in the amended soils, especially in 2.5-Bio. This biochar rate was also the most effective at reducing Cd and Pb concentrations in shoots. Overall, these results demonstrate that 2.5% (but not 5.0%) biochar can be useful to restore the soil chemical fertility of PTE-polluted soils with limited (or null) impact on soil microbial and biochemical parameters.
生物炭对于被潜在有毒元素(pte)污染的土壤的功能恢复是有用的,即使它的有效性是可变的,有时是有限的,最近报道了相互矛盾的结果。为了阐明这一点,将软木衍生的生物炭以2.5 (2.5- bio)和5.0% w/w (5.0-Bio)的速率添加到受Cd (28 mg kg - 1)、Pb (10,625 mg kg - 1)和Zn (3407 mg kg - 1)污染的酸性(pH 5.74)土壤中。添加生物炭增加了土壤pH值、有效磷和CEC,降低了不稳定的Cd、Pb和Zn(例如,与未添加生物炭的土壤相比,5.0-Bio的土壤分别降低了27%、37%和46%)。添加生物炭对土壤中异养细菌、放线菌和真菌的总数量没有影响,但减少了假单胞菌的数量和土壤微生物生物量。在改良土壤中,脱氢酶活性降低了(例如,2.5- bio和5.0-Bio分别降低了60%和75%),而在相同的土壤中,脲酶活性增加了48%和78%。大约16S rRNA基因扩增子测序和生物群落水平生理剖面强调了生物炭对土壤细菌多样性的显著影响(特别是在5%的速率下)。改良土壤中番茄(小黑麦除外)产量增加,特别是在2.5-Bio土壤中。这种生物炭速率在降低地上部Cd和Pb浓度方面也是最有效的。总体而言,这些结果表明2.5%(而不是5.0%)的生物炭可用于恢复pte污染土壤的土壤化学肥力,而对土壤微生物和生化参数的影响有限(或零)。
{"title":"Sustainable Restoration of Soil Functionality in PTE-Affected Environments: Biochar Impact on Soil Chemistry, Microbiology, Biochemistry, and Plant Growth","authors":"Matteo Garau, Paola Castaldi, Maria Vittoria Pinna, Stefania Diquattro, Alberto Cesarani, Nicoletta P. Mangia, Sotirios Vasileiadis, Giovanni Garau","doi":"10.3390/soilsystems7040096","DOIUrl":"https://doi.org/10.3390/soilsystems7040096","url":null,"abstract":"Biochar can be useful for the functional recovery of soils contaminated with potentially toxic elements (PTEs), even if its effectiveness is variable and sometimes limited, and conflicting results have been recently reported. To shed some light on this regard, softwood-derived biochar was added at 2.5 (2.5-Bio) and 5.0% w/w (5.0-Bio) rates to an acidic (pH 5.74) soil contaminated by Cd (28 mg kg−1), Pb (10,625 mg kg−1), and Zn (3407 mg kg−1). Biochar addition increased soil pH, available P and CEC, and reduced labile Cd, Pb, and Zn (e.g., by 27, 37, and 46% in 5.0-Bio vs. the unamended soil). The addition of biochar did not change the number of total heterotrophic bacteria, actinomycetes, and fungi, while it reduced the number of Pseudomonas spp. and soil microbial biomass. Dehydrogenase activity was reduced in amended soils (e.g., by ~60 and 75% in 2.5- and 5.0-Bio, respectively), while in the same soils, urease increased by 48 and 78%. Approximately 16S rRNA gene amplicon sequencing and the Biolog community-level physiological profile highlighted a significant biochar impact (especially at a 5% rate) on soil bacterial diversity. Tomato (but not triticale) yield increased in the amended soils, especially in 2.5-Bio. This biochar rate was also the most effective at reducing Cd and Pb concentrations in shoots. Overall, these results demonstrate that 2.5% (but not 5.0%) biochar can be useful to restore the soil chemical fertility of PTE-polluted soils with limited (or null) impact on soil microbial and biochemical parameters.","PeriodicalId":21908,"journal":{"name":"Soil Systems","volume":"8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134905833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-24DOI: 10.3390/soilsystems7040095
Luis Miguel Cáceres, Francisco Ruiz, Javier Bermejo, Lucía Fernández, María Luz González-Regalado, Joaquín Rodríguez Vidal, Manuel Abad, Tatiana Izquierdo, Antonio Toscano, Paula Gómez, Verónica Romero
Estuaries are excellent environments for identifying pollution episodes that have affected river basins, as their sediments are the final destination of some of the pollutants. This paper studies the geochemical evolution of five elements (As, Co, Cu, Pb, Zn) in a core extracted from the middle estuary of the Tinto River (SW Spain). The results are based on facies interpretation, ICP atomic emission spectrometry analysis, the application of a regional background to obtain the geoaccumulation index and dating. The main objective of this communication is the detection of natural or anthropogenic pollution episodes in the middle estuary of the Tinto River (SW Spain). Four pollution episodes have been detected: (1) ~5.8 cal. kyr BP, probably caused by natural acid rock drainage processes derived from the oxidation of the Iberian Pyritic Belt deposits found in its drainage basin; (2) 4.7–4.5 kyr BP, coming from the first mining activities and characterized by a significant increase in the concentrations of the five elements analyzed; (3) 1850–1960 interval, coinciding with intensive mining and characterized by increasing values of As and, to a lesser extent, Pb (intensive mining); and (4) the second half of the 20th century, with high element concentrations from mining and industrial effluents. All episodes show an increase in their geochemical classes deduced from the geoaccumulation index. This communication can serve as an example for assessing the impact of different types of pollution in estuarine environments.
{"title":"Sediments as Sentinels of Pollution Episodes in the Middle Estuary of the Tinto River (SW Spain)","authors":"Luis Miguel Cáceres, Francisco Ruiz, Javier Bermejo, Lucía Fernández, María Luz González-Regalado, Joaquín Rodríguez Vidal, Manuel Abad, Tatiana Izquierdo, Antonio Toscano, Paula Gómez, Verónica Romero","doi":"10.3390/soilsystems7040095","DOIUrl":"https://doi.org/10.3390/soilsystems7040095","url":null,"abstract":"Estuaries are excellent environments for identifying pollution episodes that have affected river basins, as their sediments are the final destination of some of the pollutants. This paper studies the geochemical evolution of five elements (As, Co, Cu, Pb, Zn) in a core extracted from the middle estuary of the Tinto River (SW Spain). The results are based on facies interpretation, ICP atomic emission spectrometry analysis, the application of a regional background to obtain the geoaccumulation index and dating. The main objective of this communication is the detection of natural or anthropogenic pollution episodes in the middle estuary of the Tinto River (SW Spain). Four pollution episodes have been detected: (1) ~5.8 cal. kyr BP, probably caused by natural acid rock drainage processes derived from the oxidation of the Iberian Pyritic Belt deposits found in its drainage basin; (2) 4.7–4.5 kyr BP, coming from the first mining activities and characterized by a significant increase in the concentrations of the five elements analyzed; (3) 1850–1960 interval, coinciding with intensive mining and characterized by increasing values of As and, to a lesser extent, Pb (intensive mining); and (4) the second half of the 20th century, with high element concentrations from mining and industrial effluents. All episodes show an increase in their geochemical classes deduced from the geoaccumulation index. This communication can serve as an example for assessing the impact of different types of pollution in estuarine environments.","PeriodicalId":21908,"journal":{"name":"Soil Systems","volume":"47 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135315880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-23DOI: 10.3390/soilsystems7040094
Tad Trimarco, Joe E. Brummer, Cassidy Buchanan, James A. Ippolito
Management-intensive Grazing (MiG) has been proposed to sustainably intensify agroecosystems through careful management of livestock rotations on pastureland. However, there is little research on the soil health impacts of transitioning from irrigated cropland to irrigated MiG pasture with continuous livestock rotation. We analyzed ten soil health indicators using the Soil Management Assessment Framework (SMAF) to identify changes in nutrient status and soil physical, biological, and chemical health five to six years after converting irrigated cropland to irrigated pastureland under MiG. Significant improvements in biological soil health indicators and significant degradation in bulk density, a physical soil health indicator, were observed. Removal of tillage and increased organic matter inputs may have led to increases in β-glucosidase, microbial biomass carbon, and potentially mineralizable nitrogen, all of which are biological indicators of soil health. Conversely, trampling by grazing cattle has led to increased bulk density and, thus, a reduction in soil physical health. Nutrient status was relatively stable, with combined manure and fertilizer inputs leading to stabilized plant-available phosphorous (P) and increased potassium (K) soil concentrations. Although mixed effects on soil health were present, overall soil health did increase, and the MiG system appeared to have greater overall soil health as compared to results generated four to five years earlier. When utilizing MiG in irrigated pastures, balancing the deleterious effects of soil compaction with grazing needs to be considered to maintain long-term soil health.
{"title":"Tracking Soil Health Changes in a Management-Intensive Grazing Agroecosystem","authors":"Tad Trimarco, Joe E. Brummer, Cassidy Buchanan, James A. Ippolito","doi":"10.3390/soilsystems7040094","DOIUrl":"https://doi.org/10.3390/soilsystems7040094","url":null,"abstract":"Management-intensive Grazing (MiG) has been proposed to sustainably intensify agroecosystems through careful management of livestock rotations on pastureland. However, there is little research on the soil health impacts of transitioning from irrigated cropland to irrigated MiG pasture with continuous livestock rotation. We analyzed ten soil health indicators using the Soil Management Assessment Framework (SMAF) to identify changes in nutrient status and soil physical, biological, and chemical health five to six years after converting irrigated cropland to irrigated pastureland under MiG. Significant improvements in biological soil health indicators and significant degradation in bulk density, a physical soil health indicator, were observed. Removal of tillage and increased organic matter inputs may have led to increases in β-glucosidase, microbial biomass carbon, and potentially mineralizable nitrogen, all of which are biological indicators of soil health. Conversely, trampling by grazing cattle has led to increased bulk density and, thus, a reduction in soil physical health. Nutrient status was relatively stable, with combined manure and fertilizer inputs leading to stabilized plant-available phosphorous (P) and increased potassium (K) soil concentrations. Although mixed effects on soil health were present, overall soil health did increase, and the MiG system appeared to have greater overall soil health as compared to results generated four to five years earlier. When utilizing MiG in irrigated pastures, balancing the deleterious effects of soil compaction with grazing needs to be considered to maintain long-term soil health.","PeriodicalId":21908,"journal":{"name":"Soil Systems","volume":"19 12","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135366444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-21DOI: 10.3390/soilsystems7040093
Jackson Freitas Brilhante de São José, Luciano Kayser Vargas, Bruno Britto Lisboa, Frederico Costa Beber Vieira, Josiléia Acordi Zanatta, Elias Frank Araujo, Cimelio Bayer
There has been limited research on the effect of eucalyptus harvest residue management on soil organic carbon (SOC) in subtropical environments. This research evaluated the effect on soil C indices of the following eucalyptus harvest residue managements: AR, with all forest remnants left on the soil; NB, where bark was removed; NBr, in which branches were removed; NR, which removed all residues; and NRs, which is same as NR but also used a shade net to prevent the litter from the new plantation from reaching the soil surface. C stocks within the soil depths of 0–20 cm and 0–100 cm increased linearly with the C input from eucalyptus harvest residues. In the layer of 0–20 cm, the lowest soil C retention rate was 0.23 Mg ha−1 year−1, in the NR treatment, while in the AR treatment, the retention rate was 0.68 Mg ha−1 year−1. In the 0–100 cm layer, the highest C retention rate was obtained in the AR (1.47 Mg ha−1 year−1). The residues showed a high humification coefficient (k1 = 0.23) and a high soil organic matter decomposition rate (k2 = 0.10). The carbon management index showed a close relationship with the C input and tree diameter at breast height.
{"title":"Soil Carbon Stock and Indices in Sandy Soil Affected by Eucalyptus Harvest Residue Management in the South of Brazil","authors":"Jackson Freitas Brilhante de São José, Luciano Kayser Vargas, Bruno Britto Lisboa, Frederico Costa Beber Vieira, Josiléia Acordi Zanatta, Elias Frank Araujo, Cimelio Bayer","doi":"10.3390/soilsystems7040093","DOIUrl":"https://doi.org/10.3390/soilsystems7040093","url":null,"abstract":"There has been limited research on the effect of eucalyptus harvest residue management on soil organic carbon (SOC) in subtropical environments. This research evaluated the effect on soil C indices of the following eucalyptus harvest residue managements: AR, with all forest remnants left on the soil; NB, where bark was removed; NBr, in which branches were removed; NR, which removed all residues; and NRs, which is same as NR but also used a shade net to prevent the litter from the new plantation from reaching the soil surface. C stocks within the soil depths of 0–20 cm and 0–100 cm increased linearly with the C input from eucalyptus harvest residues. In the layer of 0–20 cm, the lowest soil C retention rate was 0.23 Mg ha−1 year−1, in the NR treatment, while in the AR treatment, the retention rate was 0.68 Mg ha−1 year−1. In the 0–100 cm layer, the highest C retention rate was obtained in the AR (1.47 Mg ha−1 year−1). The residues showed a high humification coefficient (k1 = 0.23) and a high soil organic matter decomposition rate (k2 = 0.10). The carbon management index showed a close relationship with the C input and tree diameter at breast height.","PeriodicalId":21908,"journal":{"name":"Soil Systems","volume":"14 5","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135510734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Perfluorooctanoic acid (PFOA) is a perfluoro compound that contains an eight-carbon perfluoroalkyl chain followed by a carboxylic acid function group. The C-F bound possesses a strong bond energy of approximately 485 kJ/mol, rendering PFOA thermally and chemically stable. It has found applications in water-resistant coating and is produced either by degrading other long-chain perfluorinated carboxylic acids or fluorotelomer alcohol. PFOA is challenging to further degrade during water treatment processes, leading to its accumulation in natural systems and causing contamination. Research has been conducted to develop several methods for its removal from the water system, but only a few of these methods effectively degrade PFOA. This review compares the most common chemical degradation methods such as photochemical, electrochemical, and sonochemical methods, to the cutting-edge biodegradation method. The chemical degradation and biodegradation methods both involve the stepwise degradation of PFOA, with the latter capable of occurring both aerobically and anaerobically. However, the degradation efficiency of the biological process is lower when compared to the chemical process, and further research is needed to explore the biological degradation aspect.
{"title":"Comparison between Chemical and Biological Degradation Processes for Perfluorooctanoic Acid","authors":"Xuhan Shu, Rama Pulicharla, Pratik Kumar, Satinder Kaur Brar","doi":"10.3390/soilsystems7040091","DOIUrl":"https://doi.org/10.3390/soilsystems7040091","url":null,"abstract":"Perfluorooctanoic acid (PFOA) is a perfluoro compound that contains an eight-carbon perfluoroalkyl chain followed by a carboxylic acid function group. The C-F bound possesses a strong bond energy of approximately 485 kJ/mol, rendering PFOA thermally and chemically stable. It has found applications in water-resistant coating and is produced either by degrading other long-chain perfluorinated carboxylic acids or fluorotelomer alcohol. PFOA is challenging to further degrade during water treatment processes, leading to its accumulation in natural systems and causing contamination. Research has been conducted to develop several methods for its removal from the water system, but only a few of these methods effectively degrade PFOA. This review compares the most common chemical degradation methods such as photochemical, electrochemical, and sonochemical methods, to the cutting-edge biodegradation method. The chemical degradation and biodegradation methods both involve the stepwise degradation of PFOA, with the latter capable of occurring both aerobically and anaerobically. However, the degradation efficiency of the biological process is lower when compared to the chemical process, and further research is needed to explore the biological degradation aspect.","PeriodicalId":21908,"journal":{"name":"Soil Systems","volume":"36 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135570067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}