Pub Date : 2024-07-14DOI: 10.1088/1361-6668/ad44e1
Rutian Huang, Yunfan Shi, Jianshe Liu and Wei Chen
A broadband on-chip multistage quantum amplifier (MQA) for reading out multiple superconducting qubits is proposed. The bandwidth of quantum amplifier is enhanced by concatenating amplifiers with modular nonreciprocal elements, which are superconducting isolators and circulators based on tunable inductor bridge. The circuit model of MQA is built and simulated. The variation of bandwidth, gain and gain-bandwidth product (GBP) of MQA with the number of stages and bandpass of the constitutive amplifiers are simulated. It is revealed that the bandwidth can be as large as ∼3.2 GHz with a gain of 20 dB at 4–8 GHz frequency range. For a 4-stage MQA composed of four quantum amplifiers with 20 dB gain and 0.3 GHz BW-pass, the bandwidth is 2.14 GHz at 20 dB gain, which is quite cost-efficient. Due to its non-reciprocity, MQA can effectively prevent signals from reflecting to quantum processors. In addition, MQA breaks the limitation of GBP and is easy to integrate with superconducting circuits. The MQA would play a crucial role in the high-fidelity readout of multiple qubits in large-scale superconducting quantum computers.
{"title":"Theoretical proposal for a broadband on-chip multistage quantum amplifier","authors":"Rutian Huang, Yunfan Shi, Jianshe Liu and Wei Chen","doi":"10.1088/1361-6668/ad44e1","DOIUrl":"https://doi.org/10.1088/1361-6668/ad44e1","url":null,"abstract":"A broadband on-chip multistage quantum amplifier (MQA) for reading out multiple superconducting qubits is proposed. The bandwidth of quantum amplifier is enhanced by concatenating amplifiers with modular nonreciprocal elements, which are superconducting isolators and circulators based on tunable inductor bridge. The circuit model of MQA is built and simulated. The variation of bandwidth, gain and gain-bandwidth product (GBP) of MQA with the number of stages and bandpass of the constitutive amplifiers are simulated. It is revealed that the bandwidth can be as large as ∼3.2 GHz with a gain of 20 dB at 4–8 GHz frequency range. For a 4-stage MQA composed of four quantum amplifiers with 20 dB gain and 0.3 GHz BW-pass, the bandwidth is 2.14 GHz at 20 dB gain, which is quite cost-efficient. Due to its non-reciprocity, MQA can effectively prevent signals from reflecting to quantum processors. In addition, MQA breaks the limitation of GBP and is easy to integrate with superconducting circuits. The MQA would play a crucial role in the high-fidelity readout of multiple qubits in large-scale superconducting quantum computers.","PeriodicalId":21985,"journal":{"name":"Superconductor Science and Technology","volume":"46 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141720999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-11DOI: 10.1088/1361-6668/ad5c08
Richard T Ibekwe, Nicolò Riva, Dennis G Whyte, Vanessa J Sanchez and Zachary S Hartwig
High-temperature superconductor (HTS) cables and magnets are enabling a range of high-current and high-field applications, including compact fusion devices aiming to achieve net energy. Defects in HTS pose manufacturing, cost, and operational challenges. A rigorous understanding and predictive capability for defect-induced behavior at relevant scale has not been established. To address this shortcoming, we have developed a cable-level defect characterization experimental platform coupled to high-fidelity computational modeling. The cable ( 438 A at 77.4 K, self-field) comprises a non-twisted 70 cm-long copper former containing a soldered stack of five rare-earth barium copper oxide (REBCO) tapes (each with = 115.7 A/4 mm-w at 77.4 K, self-field), which can contain a variety of induced defects. Spatially-resolved electric fields are measured with a high-density voltage tap array and absolute current distribution with six custom-wound embedded Rogowski coils. 3D circuit modeling uses nodal analysis and self-consistently accounts for the magnetic field dependence of critical current. The model successfully predicts the experimentally measured spatial and operating current dependencies of electric field and current distribution with no defects, one defect, and two defects, validating the defect characterization platform as a tool for improving the design, cost, fabrication, and operation of REBCO cables.
高温超导体(HTS)电缆和磁体正在实现一系列大电流和高磁场应用,包括旨在实现净能量的紧凑型聚变装置。HTS 中的缺陷给制造、成本和运行带来了挑战。目前尚未建立起对相关规模的缺陷诱发行为的严格理解和预测能力。为了弥补这一不足,我们开发了一个电缆级缺陷表征实验平台,并结合了高保真计算建模。电缆(在 77.4 K 时为 438 A,自场)由一个 70 厘米长的非扭曲铜片组成,内含五条稀土氧化钡铜(REBCO)带的焊接堆叠(在 77.4 K 时,每条带 = 115.7 A/4 mm-w,自场),其中可能包含各种诱导缺陷。利用高密度电压抽头阵列测量空间分辨电场,利用六个定制绕制的嵌入式罗戈夫斯基线圈测量绝对电流分布。三维电路建模采用节点分析法,并自洽地考虑了临界电流的磁场依赖性。该模型成功预测了无缺陷、一个缺陷和两个缺陷时电场和电流分布的实验测量空间和工作电流依赖性,验证了缺陷表征平台作为改进 REBCO 电缆设计、成本、制造和运行的工具的有效性。
{"title":"A platform to study defect-induced behavior in high-temperature superconductor cables","authors":"Richard T Ibekwe, Nicolò Riva, Dennis G Whyte, Vanessa J Sanchez and Zachary S Hartwig","doi":"10.1088/1361-6668/ad5c08","DOIUrl":"https://doi.org/10.1088/1361-6668/ad5c08","url":null,"abstract":"High-temperature superconductor (HTS) cables and magnets are enabling a range of high-current and high-field applications, including compact fusion devices aiming to achieve net energy. Defects in HTS pose manufacturing, cost, and operational challenges. A rigorous understanding and predictive capability for defect-induced behavior at relevant scale has not been established. To address this shortcoming, we have developed a cable-level defect characterization experimental platform coupled to high-fidelity computational modeling. The cable ( 438 A at 77.4 K, self-field) comprises a non-twisted 70 cm-long copper former containing a soldered stack of five rare-earth barium copper oxide (REBCO) tapes (each with = 115.7 A/4 mm-w at 77.4 K, self-field), which can contain a variety of induced defects. Spatially-resolved electric fields are measured with a high-density voltage tap array and absolute current distribution with six custom-wound embedded Rogowski coils. 3D circuit modeling uses nodal analysis and self-consistently accounts for the magnetic field dependence of critical current. The model successfully predicts the experimentally measured spatial and operating current dependencies of electric field and current distribution with no defects, one defect, and two defects, validating the defect characterization platform as a tool for improving the design, cost, fabrication, and operation of REBCO cables.","PeriodicalId":21985,"journal":{"name":"Superconductor Science and Technology","volume":"31 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141613691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-11DOI: 10.1088/1361-6668/ad6216
M. Marchevsky, S. Prestemon
Superconducting magnets of future fusion reactors are expected to rely on composite high-temperature superconductor (HTS) cable conductors. In presently used HTS cables, current sharing between components is limited due to poorly defined contact resistances between superconducting tapes or by design. The interplay between contact and termination resistances is the defining factor for power dissipation in these cables and ultimately defines their safe operational margins. However, the current distribution between components along the composite conductor and inside its terminations is a priori unknown, and presently, no means are available to actively tune current flow distribution in real-time to improve margins of quench protection. Also, the lack of ability to electrically probe individual components makes it impossible to identify conductor damage locations within the cable. In this work, we address both problems by introducing active current control of current distribution between components using cryogenically operated metal-oxide-semiconductor-field-effect transistors (MOSFETs). We demonstrate through simulation and experiments how real-time current controls can help to drastically reduce heat dissipation in a developing hot spot in a two-conductor model system and help identify critical current degradation of individual cable components. Prospects of other potential uses of MOSFET devices for improved voltage detection, AC loss-driven active quench protection, and remnant magnetization reduction in HTS magnets are also discussed.
{"title":"Quench protection for high-temperature superconductor cables using active control of current distribution","authors":"M. Marchevsky, S. Prestemon","doi":"10.1088/1361-6668/ad6216","DOIUrl":"https://doi.org/10.1088/1361-6668/ad6216","url":null,"abstract":"\u0000 Superconducting magnets of future fusion reactors are expected to rely on composite high-temperature superconductor (HTS) cable conductors. In presently used HTS cables, current sharing between components is limited due to poorly defined contact resistances between superconducting tapes or by design. The interplay between contact and termination resistances is the defining factor for power dissipation in these cables and ultimately defines their safe operational margins. However, the current distribution between components along the composite conductor and inside its terminations is a priori unknown, and presently, no means are available to actively tune current flow distribution in real-time to improve margins of quench protection. Also, the lack of ability to electrically probe individual components makes it impossible to identify conductor damage locations within the cable. In this work, we address both problems by introducing active current control of current distribution between components using cryogenically operated metal-oxide-semiconductor-field-effect transistors (MOSFETs). We demonstrate through simulation and experiments how real-time current controls can help to drastically reduce heat dissipation in a developing hot spot in a two-conductor model system and help identify critical current degradation of individual cable components. Prospects of other potential uses of MOSFET devices for improved voltage detection, AC loss-driven active quench protection, and remnant magnetization reduction in HTS magnets are also discussed.","PeriodicalId":21985,"journal":{"name":"Superconductor Science and Technology","volume":"127 12","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141656816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-09DOI: 10.1088/1361-6668/ad5b25
Paul Nicaise, Jie Hu, Christine Chaumont, Piercarlo Bonifacio, Michel Piat, Hervé Geoffray, Faouzi Boussaha
We report on the experimental investigation of optical coupling for superconducting microresonators known as microwave kinetic inductance detectors (MKIDs) in the visible and near-infrared bands. MKIDs are photon-counting, time and energy-resolving detectors that still suffer from a poor quantum efficiency. To improve this efficiency, we propose to add a superconducting reflective layer below the absorbing part of the detector separated by a transparent Al2O3 layer with a quarter-wavelength thickness optimized around a single wavelength λ = 405 nm. We have first fabricated samples patterned from stoichiometric TiN (