Pub Date : 2002-05-19DOI: 10.1109/QELS.2002.1031323
Liu, Zhang, Young, Dexheimer, Nelson
Summary form only given. Amorphous semiconductors are of interest for both their technological applications and the underlying physics of the unusual properties that result from the departure from crystalline order. Amorphous silicon in particular has become the prototype material for understanding the electronic properties of disordered systems. Previous time-resolved studies of photoexcited carriers in this and related materials have revealed complex carrier dynamics and have shown that, at moderately high carrier densities, the time-resolved response is dominated by bimolecular recombination on picosecond time scales. However, important questions remain about the detailed mechanisms of the carrier dynamics, and especially the initial energy relaxation processes. In this work, we have carried out systematic studies of amorphous silicon and silicon-germanium alloys as a function of excitation density, temperature, and material composition. The high time resolution of the measurements has allowed us to directly address the initial relaxation dynamics.
{"title":"Ultrafast carrier thermalization dynamics in amorphous semiconductor materials","authors":"Liu, Zhang, Young, Dexheimer, Nelson","doi":"10.1109/QELS.2002.1031323","DOIUrl":"https://doi.org/10.1109/QELS.2002.1031323","url":null,"abstract":"Summary form only given. Amorphous semiconductors are of interest for both their technological applications and the underlying physics of the unusual properties that result from the departure from crystalline order. Amorphous silicon in particular has become the prototype material for understanding the electronic properties of disordered systems. Previous time-resolved studies of photoexcited carriers in this and related materials have revealed complex carrier dynamics and have shown that, at moderately high carrier densities, the time-resolved response is dominated by bimolecular recombination on picosecond time scales. However, important questions remain about the detailed mechanisms of the carrier dynamics, and especially the initial energy relaxation processes. In this work, we have carried out systematic studies of amorphous silicon and silicon-germanium alloys as a function of excitation density, temperature, and material composition. The high time resolution of the measurements has allowed us to directly address the initial relaxation dynamics.","PeriodicalId":21999,"journal":{"name":"Summaries of Papers Presented at the Quantum Electronics and Laser Science Conference","volume":"3 1","pages":"209"},"PeriodicalIF":0.0,"publicationDate":"2002-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91395804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2001-05-11DOI: 10.1109/QELS.2001.962164
H. Saito, Masahito Ueda
Summary form only given. Bose-Einstein condensation (BEC) of trapped atomic vapor has been realized in several atomic species. The static and dynamical properties of BEC crucially depend on the sign of the interatomic interaction. When the interaction is attractive, BEC in a spatially uniform 3D system is unstable to collapse into a denser phase. In a spatially confined system, however, the zero-point energy serves as a kinetic obstacle against collapse, allowing metastable BEC to be formed if the number of BEC atoms is below a certain critical number. Above the critical number of atoms, BEC collapses. The BEC with attractive interactions, therefore, has been restricted to a small number of atoms (/spl sim/1000) and the number has not been controllable.
{"title":"Collapsing dynamics of trapped Bose-Einstein condensates with attractive interactions","authors":"H. Saito, Masahito Ueda","doi":"10.1109/QELS.2001.962164","DOIUrl":"https://doi.org/10.1109/QELS.2001.962164","url":null,"abstract":"Summary form only given. Bose-Einstein condensation (BEC) of trapped atomic vapor has been realized in several atomic species. The static and dynamical properties of BEC crucially depend on the sign of the interatomic interaction. When the interaction is attractive, BEC in a spatially uniform 3D system is unstable to collapse into a denser phase. In a spatially confined system, however, the zero-point energy serves as a kinetic obstacle against collapse, allowing metastable BEC to be formed if the number of BEC atoms is below a certain critical number. Above the critical number of atoms, BEC collapses. The BEC with attractive interactions, therefore, has been restricted to a small number of atoms (/spl sim/1000) and the number has not been controllable.","PeriodicalId":21999,"journal":{"name":"Summaries of Papers Presented at the Quantum Electronics and Laser Science Conference","volume":"52 1","pages":"237-238"},"PeriodicalIF":0.0,"publicationDate":"2001-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91397639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2001-05-11DOI: 10.1109/QELS.2001.961848
U. Woggon, M. Artemyev, H. Jaschinski, A. Pack, R. Wannemacher
Summary form only given. We present the concept of a hollow microsphere to realize an efficient coupling between 3D-confined cavity modes and quantized electronic states of semiconductor quantum dots. We demonstrate both experimentally and theoretically that photons emitted from semiconductor nanocrystals placed inside a thin surface shell of a high-quality spherical microcavity efficiently couple to distinct, spectrally well separated high-Q whispering gallery modes (WGM) while cavity modes of higher radial quantum numbers n>1 are suppressed. The observed cavity modes are in the red-orange spectral range and exhibit a cavity finesse Q up to 4000 at T=300 K (Q is defined here as the ratio between resonance energy and linewidth of a cavity mode). The electrodynamic coupling of a radiative dipole to the WGM mode of a dielectric sphere has been investigated as a function of position and orientation of the dipole within the sphere by using the multiple multipole theory.
{"title":"Photons confined in 3D-microcavities doped with quantum dots","authors":"U. Woggon, M. Artemyev, H. Jaschinski, A. Pack, R. Wannemacher","doi":"10.1109/QELS.2001.961848","DOIUrl":"https://doi.org/10.1109/QELS.2001.961848","url":null,"abstract":"Summary form only given. We present the concept of a hollow microsphere to realize an efficient coupling between 3D-confined cavity modes and quantized electronic states of semiconductor quantum dots. We demonstrate both experimentally and theoretically that photons emitted from semiconductor nanocrystals placed inside a thin surface shell of a high-quality spherical microcavity efficiently couple to distinct, spectrally well separated high-Q whispering gallery modes (WGM) while cavity modes of higher radial quantum numbers n>1 are suppressed. The observed cavity modes are in the red-orange spectral range and exhibit a cavity finesse Q up to 4000 at T=300 K (Q is defined here as the ratio between resonance energy and linewidth of a cavity mode). The electrodynamic coupling of a radiative dipole to the WGM mode of a dielectric sphere has been investigated as a function of position and orientation of the dipole within the sphere by using the multiple multipole theory.","PeriodicalId":21999,"journal":{"name":"Summaries of Papers Presented at the Quantum Electronics and Laser Science Conference","volume":"4 1","pages":"57-58"},"PeriodicalIF":0.0,"publicationDate":"2001-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91396876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2001-05-11DOI: 10.1109/QELS.2001.961990
G. Stegeman, R. Schiek, H. Fang, R. Malendevich
Summary form only given. In self-focusing media a plane wave of infinite extent breaks-up into a periodic array of individual intensity maxima. This has been reported in bulk quadratic and photorefractive media, but not in slab waveguides for which analytical theories exist. Modulational instability (MI) leading to periodic structures has been demonstrated for SHG in LiNbO/sub 3/ slab waveguides, in excellent agreement with theory. Furthermore, by seeding the periodic patterns, the MI gain coefficients were measured, and again good agreement with theory.
{"title":"Periodic spatial instabilities of high intensity beams in nonlinear waveguides","authors":"G. Stegeman, R. Schiek, H. Fang, R. Malendevich","doi":"10.1109/QELS.2001.961990","DOIUrl":"https://doi.org/10.1109/QELS.2001.961990","url":null,"abstract":"Summary form only given. In self-focusing media a plane wave of infinite extent breaks-up into a periodic array of individual intensity maxima. This has been reported in bulk quadratic and photorefractive media, but not in slab waveguides for which analytical theories exist. Modulational instability (MI) leading to periodic structures has been demonstrated for SHG in LiNbO/sub 3/ slab waveguides, in excellent agreement with theory. Furthermore, by seeding the periodic patterns, the MI gain coefficients were measured, and again good agreement with theory.","PeriodicalId":21999,"journal":{"name":"Summaries of Papers Presented at the Quantum Electronics and Laser Science Conference","volume":"1 1","pages":"154-155"},"PeriodicalIF":0.0,"publicationDate":"2001-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91396614","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2001-05-11DOI: 10.1109/QELS.2001.961905
M. Yan, E. Rickey, Yifu Zhu
Summary form only given. A coupling laser can create electromagnetically induced transparency (EIT) in an absorbing medium such that linear absorption of a weak probe laser at the line center is suppressed by quantum interference. The quantum interference may be modified by adding a pump laser coupled to a separate state, which leads to enhanced third-order nonlinearities in the atomic system. Large nonlinear probe absorption at the EIT center is controlled by the pump laser and may be used to realize absorptive photon switching as proposed by Harris and Yamamoto. We report an experimental study of enhanced third-order nonlinear absorption and absorptive photon switching in /sup 87/Rb atoms cooled and confined in a magneto-optical trap.
{"title":"Absorptive photon switching by quantum interference","authors":"M. Yan, E. Rickey, Yifu Zhu","doi":"10.1109/QELS.2001.961905","DOIUrl":"https://doi.org/10.1109/QELS.2001.961905","url":null,"abstract":"Summary form only given. A coupling laser can create electromagnetically induced transparency (EIT) in an absorbing medium such that linear absorption of a weak probe laser at the line center is suppressed by quantum interference. The quantum interference may be modified by adding a pump laser coupled to a separate state, which leads to enhanced third-order nonlinearities in the atomic system. Large nonlinear probe absorption at the EIT center is controlled by the pump laser and may be used to realize absorptive photon switching as proposed by Harris and Yamamoto. We report an experimental study of enhanced third-order nonlinear absorption and absorptive photon switching in /sup 87/Rb atoms cooled and confined in a magneto-optical trap.","PeriodicalId":21999,"journal":{"name":"Summaries of Papers Presented at the Quantum Electronics and Laser Science Conference","volume":"30 1","pages":"97"},"PeriodicalIF":0.0,"publicationDate":"2001-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91395994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2001-05-11DOI: 10.1109/QELS.2001.962013
V. Thorsmølle, R. Averitt, M. Maley, A. Taylor, L. Bulaevskii, C. Helm
Summary form only given. The c-axis Josephson plasma resonance (JPR) in highly anisotropic layered cuprate superconductors originates from the interlayer tunneling of Cooper pairs. The JPR, /spl omega//sub pc/=c//spl lambda//sub c//spl radic/(/spl epsi//sub /spl infin///sup c/) is directly related to the London penetration depth along the c-axis, /spl lambda//sub c/, and is thus a fundamental probe of the superconducting state and an excellent tool to study these highly anisotropic systems. /spl epsi//sub /spl infin///sup c/ is the high frequency dielectric constant along the c-axis. For T/spl Lt/T/sub c/, the temperature dependence of /spl lambda//sub c/ is related to the symmetry of the order parameter. For T close to T. the appearance of the JPR probes the onset of interlayer phase coherence. Furthermore, the JPR spectral width is a measure of the quasiparticle scattering rate. In a magnetic field, the JPR probes the correlation of pancake vortices along the c-axis and is a tool to study the B-T phase diagram. The JPR of high-T/sub c/ superconductors with extreme anisotropy such as the bismuth, thallium, and mercury based high-T/sub c/ superconductors lies in the far-infrared and is thus amenable to study using terahertz time-domain spectroscopy (THz-TDS). We have measured the JPR in Tl/sub 2/Ba/sub 2/CaCu/sub 2/O/sub 8/ superconducting thin films employing THz-TDS in transmission.
{"title":"Josephson plasma resonance observed in Tl/sub 2/Ba/sub 2/CaCu/sub 2/O/sub 8/ superconducting thin films using terahertz time-domain spectroscopy","authors":"V. Thorsmølle, R. Averitt, M. Maley, A. Taylor, L. Bulaevskii, C. Helm","doi":"10.1109/QELS.2001.962013","DOIUrl":"https://doi.org/10.1109/QELS.2001.962013","url":null,"abstract":"Summary form only given. The c-axis Josephson plasma resonance (JPR) in highly anisotropic layered cuprate superconductors originates from the interlayer tunneling of Cooper pairs. The JPR, /spl omega//sub pc/=c//spl lambda//sub c//spl radic/(/spl epsi//sub /spl infin///sup c/) is directly related to the London penetration depth along the c-axis, /spl lambda//sub c/, and is thus a fundamental probe of the superconducting state and an excellent tool to study these highly anisotropic systems. /spl epsi//sub /spl infin///sup c/ is the high frequency dielectric constant along the c-axis. For T/spl Lt/T/sub c/, the temperature dependence of /spl lambda//sub c/ is related to the symmetry of the order parameter. For T close to T. the appearance of the JPR probes the onset of interlayer phase coherence. Furthermore, the JPR spectral width is a measure of the quasiparticle scattering rate. In a magnetic field, the JPR probes the correlation of pancake vortices along the c-axis and is a tool to study the B-T phase diagram. The JPR of high-T/sub c/ superconductors with extreme anisotropy such as the bismuth, thallium, and mercury based high-T/sub c/ superconductors lies in the far-infrared and is thus amenable to study using terahertz time-domain spectroscopy (THz-TDS). We have measured the JPR in Tl/sub 2/Ba/sub 2/CaCu/sub 2/O/sub 8/ superconducting thin films employing THz-TDS in transmission.","PeriodicalId":21999,"journal":{"name":"Summaries of Papers Presented at the Quantum Electronics and Laser Science Conference","volume":"8 1","pages":"165"},"PeriodicalIF":0.0,"publicationDate":"2001-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91397640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2001-05-11DOI: 10.1109/QELS.2001.962152
E. Blansett, D. McAlister, M. Raymer
Summary form only given. The polarization properties of vertical cavity surface emitting lasers (VCSEL) originate in the change of electron total angular momentum J/sub z/ projected along the vertical axis for transitions from the conduction to the valence band. For quantum wells, J/sub z/=/spl plusmn/1/2 for the conduction band, and J/sub z/=/spl plusmn/3/2 for the heavy hole valence band, the highest energy valence band in unstrained quantum wells. The dipole allowed transitions are between J/sub z/=-1/2 and J/sub z/=-3/2 producing right circularly polarized light and between J/sub z/=+1/2 and J/sub z/=+3/2 producing left circularly polarized light. In CW, electrically pumped VCSELs, polarization states and fluctuations are well described by a model based on these transitions (San Miguel et al, 1995). We are investigating the polarization properties of VCSELs optically pumped with ultrashort pulses (<1 ps) which allows us to control the relative population of the angular momentum states and monitor the development of the intensity, noise, and correlations of the polarized-modes as a function of time.
只提供摘要形式。垂直腔面发射激光器(VCSEL)的极化特性源于电子总角动量J/sub z/沿垂直轴投影的变化,从导带跃迁到价带。对于量子阱,J/sub z/=/spl plusmn/1/2为导带,J/sub z/=/spl plusmn/3/2为重空穴价带,即非应变量子阱中最高能价带。偶极子允许跃迁在J/sub z/=-1/2和J/sub z/=-3/2之间产生右圆偏振光,在J/sub z/=+1/2和J/sub z/=+3/2之间产生左圆偏振光。在连续波中,电泵浦vcsel,极化状态和波动可以用基于这些跃迁的模型很好地描述(San Miguel et al, 1995)。我们正在研究超短脉冲(<1 ps)光泵浦VCSELs的偏振特性,这使我们能够控制角动量状态的相对数量,并监测偏振模式的强度、噪声和相关性随时间的发展。
{"title":"Ultrafast field-polarization dynamics in an optically pumped semiconductor microcavity laser","authors":"E. Blansett, D. McAlister, M. Raymer","doi":"10.1109/QELS.2001.962152","DOIUrl":"https://doi.org/10.1109/QELS.2001.962152","url":null,"abstract":"Summary form only given. The polarization properties of vertical cavity surface emitting lasers (VCSEL) originate in the change of electron total angular momentum J/sub z/ projected along the vertical axis for transitions from the conduction to the valence band. For quantum wells, J/sub z/=/spl plusmn/1/2 for the conduction band, and J/sub z/=/spl plusmn/3/2 for the heavy hole valence band, the highest energy valence band in unstrained quantum wells. The dipole allowed transitions are between J/sub z/=-1/2 and J/sub z/=-3/2 producing right circularly polarized light and between J/sub z/=+1/2 and J/sub z/=+3/2 producing left circularly polarized light. In CW, electrically pumped VCSELs, polarization states and fluctuations are well described by a model based on these transitions (San Miguel et al, 1995). We are investigating the polarization properties of VCSELs optically pumped with ultrashort pulses (<1 ps) which allows us to control the relative population of the angular momentum states and monitor the development of the intensity, noise, and correlations of the polarized-modes as a function of time.","PeriodicalId":21999,"journal":{"name":"Summaries of Papers Presented at the Quantum Electronics and Laser Science Conference","volume":"13 1","pages":"234-235"},"PeriodicalIF":0.0,"publicationDate":"2001-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91397649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2001-05-06DOI: 10.1109/QELS.2001.962224
A. Bernstein, T. S. Luk, T. Nelson, J. Diels, S. M. Cameron
Summary form only given. It has been shown in 3 + 1 dimensional Kerr-nonlinearity self-focusing models, that group velocity dispersion is responsible for the temporal pulse-splitting of ultrashort pulses during propagation. Previous experiments have demonstrated pulse splitting due to the Kerr nonlinearity for short pulse propagation in bulks or gaseous media. However, studies in gaseous media are often in a focused geometry, or use pressurized gaseous media. This experiment elucidates the relationship between pulse splitting and spot-size change and does not use any optic to initiate self-focusing. We find pulse splitting occurs at a distance merely 0.7/spl times/ the diffraction length and occurs before spatial collapse to a filament. In addition, multiple pulse splitting is also observed. Peak fluence information from the beam-profile is monitored, indicating nonlinear loss mechanisms. We believe this is the first data on multiple pulse-splitting events in air.
{"title":"Observation of multiple pulse-splitting of ultrashort pulses in air","authors":"A. Bernstein, T. S. Luk, T. Nelson, J. Diels, S. M. Cameron","doi":"10.1109/QELS.2001.962224","DOIUrl":"https://doi.org/10.1109/QELS.2001.962224","url":null,"abstract":"Summary form only given. It has been shown in 3 + 1 dimensional Kerr-nonlinearity self-focusing models, that group velocity dispersion is responsible for the temporal pulse-splitting of ultrashort pulses during propagation. Previous experiments have demonstrated pulse splitting due to the Kerr nonlinearity for short pulse propagation in bulks or gaseous media. However, studies in gaseous media are often in a focused geometry, or use pressurized gaseous media. This experiment elucidates the relationship between pulse splitting and spot-size change and does not use any optic to initiate self-focusing. We find pulse splitting occurs at a distance merely 0.7/spl times/ the diffraction length and occurs before spatial collapse to a filament. In addition, multiple pulse splitting is also observed. Peak fluence information from the beam-profile is monitored, indicating nonlinear loss mechanisms. We believe this is the first data on multiple pulse-splitting events in air.","PeriodicalId":21999,"journal":{"name":"Summaries of Papers Presented at the Quantum Electronics and Laser Science Conference","volume":"6 1","pages":"262-263"},"PeriodicalIF":0.0,"publicationDate":"2001-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91396793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2000-05-12DOI: 10.1103/PHYSREVA.61.051401
T. Loftus, J. Bochinski, R. Shivitz, T. Mossberg
Summary form only given. Magneto-optic trapping of Yb is facilitated by use of a strong transition of the 555.6 nm (6s/sup 2/)/sup 1/S/sub 0/-(6s6p)/sup 3/P/sub 1/ inter-combination line. This line is not radiatively closed, however, and some the decay channels terminate in metastable states, resulting in magneto-optic trapping (MOT) lifetimes that depend on the fraction of atoms in the upper level of the cooling transition. We describe a quantitative study of trap lifetime versus trapping beam power that complements earlier predictions and qualitative experimental results. Our work constitutes the first use of MOT loss rates to measure an excited-state radiative branching ratio.
{"title":"Power dependent loss from a ytterbium magneto-optic trap","authors":"T. Loftus, J. Bochinski, R. Shivitz, T. Mossberg","doi":"10.1103/PHYSREVA.61.051401","DOIUrl":"https://doi.org/10.1103/PHYSREVA.61.051401","url":null,"abstract":"Summary form only given. Magneto-optic trapping of Yb is facilitated by use of a strong transition of the 555.6 nm (6s/sup 2/)/sup 1/S/sub 0/-(6s6p)/sup 3/P/sub 1/ inter-combination line. This line is not radiatively closed, however, and some the decay channels terminate in metastable states, resulting in magneto-optic trapping (MOT) lifetimes that depend on the fraction of atoms in the upper level of the cooling transition. We describe a quantitative study of trap lifetime versus trapping beam power that complements earlier predictions and qualitative experimental results. Our work constitutes the first use of MOT loss rates to measure an excited-state radiative branching ratio.","PeriodicalId":21999,"journal":{"name":"Summaries of Papers Presented at the Quantum Electronics and Laser Science Conference","volume":"71 1","pages":"203-204"},"PeriodicalIF":0.0,"publicationDate":"2000-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91396001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 1996-06-07DOI: 10.1088/1355-5111/8/4/005
S. L. Mielke, J. Gripp, L. Orozco
Summary form only given. The two peaks of the vacuum Rabi splitting behave like simple harmonic oscillators for very weak excitation. The transmission spectrum of a cavity filled with a collection of two-level atoms shows this doublet and, for sufficiently high intensities, its evolution into a single peak. As the excitation increases anharmonicity grows in the oscillators to a point where frequency hysteresis appears in the transmission spectrum. The saturation of the transition of the two-level atoms is responsible for the nonlinearity that causes the anharmonicity. This work investigates the transition from the doublet into the singlet. We include the possibility of a detuning between the atomic and cavity resonances.
{"title":"Evolution of the vacuum Rabi peaks in a many-atom system","authors":"S. L. Mielke, J. Gripp, L. Orozco","doi":"10.1088/1355-5111/8/4/005","DOIUrl":"https://doi.org/10.1088/1355-5111/8/4/005","url":null,"abstract":"Summary form only given. The two peaks of the vacuum Rabi splitting behave like simple harmonic oscillators for very weak excitation. The transmission spectrum of a cavity filled with a collection of two-level atoms shows this doublet and, for sufficiently high intensities, its evolution into a single peak. As the excitation increases anharmonicity grows in the oscillators to a point where frequency hysteresis appears in the transmission spectrum. The saturation of the transition of the two-level atoms is responsible for the nonlinearity that causes the anharmonicity. This work investigates the transition from the doublet into the singlet. We include the possibility of a detuning between the atomic and cavity resonances.","PeriodicalId":21999,"journal":{"name":"Summaries of Papers Presented at the Quantum Electronics and Laser Science Conference","volume":"175 1","pages":"150-151"},"PeriodicalIF":0.0,"publicationDate":"1996-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82548703","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}