Salt stress, intensified by climate change, is a significant threat to rice production, a vital staple for over half the world's population. This makes addressing salt stress in rice cultivation a pressing issue. This study investigates the role of PNSB as a biostimulant in enhancing salinity tolerance of salt-sensitive rice seedlings, addressing existing gaps in knowledge on physiological and biochemical impacts under saline stress. We inoculated salt-sensitive rice seedlings with PNSB under 80 mmol NaCl stress in a controlled environment. After a 5-day treatment, we conducted biochemical and physiological analyses. Salinity stress induced oxidative stress in salt-sensitive rice seedlings. However, application of 5-ALA-producing PNSB mitigated stress, elevated 5-ALA in shoots by 23%, roots by 190.5%, and chlorophyll content by 105.0%. PNSB treatment also reduced superoxide radicals (O2•-) and H2O2 by 26.7% and 38.7%, respectively, related to increased activity of the antioxidant enzymes, SOD (142.9%) and APX (41.8%). This led to lower electrolyte leakage (25.2%) and MDA (17.4%), indicating reduced ROS. Additionally, proline and soluble sugar content decreased by 29.2% and 72.5%, respectively. PNSB treatment also reduced sodium to potassium ion content in both shoots (31.2%) and roots (27.4%) of salt-stressed rice seedlings. These findings suggest that PNSB may facilitate nutrient solubilization and ion balance, thereby mitigating the adverse effects of salinity, with potential implications for sustainable agricultural practices to improve crop yield in saline environments. Future research should focus on elucidating the specific biochemical pathways involved in PNSB-mediated stress tolerance and exploring their application across diverse crop species and varying stress conditions.
{"title":"Mitigation of salinity stress in salt-sensitive rice seedlings via phytohormone synthesis, antioxidant defence enhancement, and ion balance regulation induced by 5-aminolevulinic acid-producing purple non-sulfur bacteria.","authors":"L S Sundar, J-Y Wu, Y-K Tu, H-W Chen, Y-Y Chao","doi":"10.1111/plb.13773","DOIUrl":"https://doi.org/10.1111/plb.13773","url":null,"abstract":"<p><p>Salt stress, intensified by climate change, is a significant threat to rice production, a vital staple for over half the world's population. This makes addressing salt stress in rice cultivation a pressing issue. This study investigates the role of PNSB as a biostimulant in enhancing salinity tolerance of salt-sensitive rice seedlings, addressing existing gaps in knowledge on physiological and biochemical impacts under saline stress. We inoculated salt-sensitive rice seedlings with PNSB under 80 mmol NaCl stress in a controlled environment. After a 5-day treatment, we conducted biochemical and physiological analyses. Salinity stress induced oxidative stress in salt-sensitive rice seedlings. However, application of 5-ALA-producing PNSB mitigated stress, elevated 5-ALA in shoots by 23%, roots by 190.5%, and chlorophyll content by 105.0%. PNSB treatment also reduced superoxide radicals (O<sub>2</sub> <sup>•-</sup>) and H<sub>2</sub>O<sub>2</sub> by 26.7% and 38.7%, respectively, related to increased activity of the antioxidant enzymes, SOD (142.9%) and APX (41.8%). This led to lower electrolyte leakage (25.2%) and MDA (17.4%), indicating reduced ROS. Additionally, proline and soluble sugar content decreased by 29.2% and 72.5%, respectively. PNSB treatment also reduced sodium to potassium ion content in both shoots (31.2%) and roots (27.4%) of salt-stressed rice seedlings. These findings suggest that PNSB may facilitate nutrient solubilization and ion balance, thereby mitigating the adverse effects of salinity, with potential implications for sustainable agricultural practices to improve crop yield in saline environments. Future research should focus on elucidating the specific biochemical pathways involved in PNSB-mediated stress tolerance and exploring their application across diverse crop species and varying stress conditions.</p>","PeriodicalId":220,"journal":{"name":"Plant Biology","volume":" ","pages":""},"PeriodicalIF":4.2,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143078087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In recent decades, the concept of memory has gained significant attention in plant ecophysiology research. When memory is expressed during germination, it is referred to as 'seed hydration memory'. Although numerous metrics relate to different aspects of germination, the literature lacks a method for quantifying seed hydration memory. This study aimed to develop a Germination Memory Index (GMI); a mathematical tool designed to quantify seed memory. The GMI enables comparisons of different native or cultivated species germinating under various conditions following discontinuous hydration. We tested the GMI using data from an experiment that evaluated germination of Cereus jamacaru seeds subjected to water deficit after undergoing hydration and dehydration cycles (HD cycles). The index is calculated as the arithmetic mean of gains, if any, in germination capacity, expressed as germinability, that is time to reach 50% germination, mean germination rate, uniformity of germination, synchrony and germination uncertainty, obtained from discontinuous hydration of the seeds. The memory ranges from 0 ≤ GMI ≤1. Gains are observed when HD cycles enhance germination capacity, germination rate and synchrony while reducing time to reach 50% germination, uniformity and uncertainty compared to their reference values. The absence of memory occurs when GMI ≤0, indicating that the germination process is favourable without undergoing HD cycles. When germination only occurs after discontinuous hydration, GMI = 1. Using the GMI, we can accurately measure gains in germinative behaviour provided by HD cycles, as this index reflects changes not only in germination capacity but also in germination time, speed, uniformity, synchrony and uncertainty.
{"title":"Development of a novel multivariate germination index to quantify seed hydration memory.","authors":"A T Lima, T S Almeida, D G de Santana, M V Meiado","doi":"10.1111/plb.13766","DOIUrl":"https://doi.org/10.1111/plb.13766","url":null,"abstract":"<p><p>In recent decades, the concept of memory has gained significant attention in plant ecophysiology research. When memory is expressed during germination, it is referred to as 'seed hydration memory'. Although numerous metrics relate to different aspects of germination, the literature lacks a method for quantifying seed hydration memory. This study aimed to develop a Germination Memory Index (GMI); a mathematical tool designed to quantify seed memory. The GMI enables comparisons of different native or cultivated species germinating under various conditions following discontinuous hydration. We tested the GMI using data from an experiment that evaluated germination of Cereus jamacaru seeds subjected to water deficit after undergoing hydration and dehydration cycles (HD cycles). The index is calculated as the arithmetic mean of gains, if any, in germination capacity, expressed as germinability, that is time to reach 50% germination, mean germination rate, uniformity of germination, synchrony and germination uncertainty, obtained from discontinuous hydration of the seeds. The memory ranges from 0 ≤ GMI ≤1. Gains are observed when HD cycles enhance germination capacity, germination rate and synchrony while reducing time to reach 50% germination, uniformity and uncertainty compared to their reference values. The absence of memory occurs when GMI ≤0, indicating that the germination process is favourable without undergoing HD cycles. When germination only occurs after discontinuous hydration, GMI = 1. Using the GMI, we can accurately measure gains in germinative behaviour provided by HD cycles, as this index reflects changes not only in germination capacity but also in germination time, speed, uniformity, synchrony and uncertainty.</p>","PeriodicalId":220,"journal":{"name":"Plant Biology","volume":" ","pages":""},"PeriodicalIF":4.2,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143078084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}