Pub Date : 2024-04-01Epub Date: 2024-03-06DOI: 10.1177/09622802241233770
Biyue Dai, Patrick Breheny
Cross-validation is the most common way of selecting tuning parameters in penalized regression, but its use in penalized Cox regression models has received relatively little attention in the literature. Due to its partial likelihood construction, carrying out cross-validation for Cox models is not straightforward, and there are several potential approaches for implementation. Here, we propose a new approach based on cross-validating the linear predictors of the Cox model and compare it to approaches that have been proposed elsewhere. We show that the proposed approach offers an attractive balance of performance and numerical stability, and illustrate these advantages using simulated data as well as analyzing a high-dimensional study of gene expression and survival in lung cancer patients.
{"title":"Cross-validation approaches for penalized Cox regression.","authors":"Biyue Dai, Patrick Breheny","doi":"10.1177/09622802241233770","DOIUrl":"10.1177/09622802241233770","url":null,"abstract":"<p><p>Cross-validation is the most common way of selecting tuning parameters in penalized regression, but its use in penalized Cox regression models has received relatively little attention in the literature. Due to its partial likelihood construction, carrying out cross-validation for Cox models is not straightforward, and there are several potential approaches for implementation. Here, we propose a new approach based on cross-validating the linear predictors of the Cox model and compare it to approaches that have been proposed elsewhere. We show that the proposed approach offers an attractive balance of performance and numerical stability, and illustrate these advantages using simulated data as well as analyzing a high-dimensional study of gene expression and survival in lung cancer patients.</p>","PeriodicalId":22038,"journal":{"name":"Statistical Methods in Medical Research","volume":" ","pages":"702-715"},"PeriodicalIF":2.3,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140040379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-01Epub Date: 2024-03-06DOI: 10.1177/09622802241231493
Sandrine Boulet, Moreno Ursino, Robin Michelet, Linda Bs Aulin, Charlotte Kloft, Emmanuelle Comets, Sarah Zohar
In preclinical investigations, for example, in in vitro, in vivo, and in silico studies, the pharmacokinetic, pharmacodynamic, and toxicological characteristics of a drug are evaluated before advancing to first-in-man trial. Usually, each study is analyzed independently and the human dose range does not leverage the knowledge gained from all studies. Taking into account all preclinical data through inferential procedures can be particularly interesting in obtaining a more precise and reliable starting dose and dose range. Our objective is to propose a Bayesian framework for multi-source data integration, customizable, and tailored to the specific research question. We focused on preclinical results extrapolated to humans, which allowed us to predict the quantities of interest (e.g. maximum tolerated dose, etc.) in humans. We build an approach, divided into four steps, based on a sequential parameter estimation for each study, extrapolation to human, commensurability checking between posterior distributions and final information merging to increase the precision of estimation. The new framework is evaluated via an extensive simulation study, based on a real-life example in oncology. Our approach allows us to better use all the information compared to a standard framework, reducing uncertainty in the predictions and potentially leading to a more efficient dose selection.
{"title":"Bayesian framework for multi-source data integration-Application to human extrapolation from preclinical studies.","authors":"Sandrine Boulet, Moreno Ursino, Robin Michelet, Linda Bs Aulin, Charlotte Kloft, Emmanuelle Comets, Sarah Zohar","doi":"10.1177/09622802241231493","DOIUrl":"10.1177/09622802241231493","url":null,"abstract":"<p><p>In preclinical investigations, for example, in in vitro, in vivo, and in silico studies, the pharmacokinetic, pharmacodynamic, and toxicological characteristics of a drug are evaluated before advancing to first-in-man trial. Usually, each study is analyzed independently and the human dose range does not leverage the knowledge gained from all studies. Taking into account all preclinical data through inferential procedures can be particularly interesting in obtaining a more precise and reliable starting dose and dose range. Our objective is to propose a Bayesian framework for multi-source data integration, customizable, and tailored to the specific research question. We focused on preclinical results extrapolated to humans, which allowed us to predict the quantities of interest (e.g. maximum tolerated dose, etc.) in humans. We build an approach, divided into four steps, based on a sequential parameter estimation for each study, extrapolation to human, commensurability checking between posterior distributions and final information merging to increase the precision of estimation. The new framework is evaluated via an extensive simulation study, based on a real-life example in oncology. Our approach allows us to better use all the information compared to a standard framework, reducing uncertainty in the predictions and potentially leading to a more efficient dose selection.</p>","PeriodicalId":22038,"journal":{"name":"Statistical Methods in Medical Research","volume":" ","pages":"574-588"},"PeriodicalIF":2.3,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140050371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-01Epub Date: 2024-03-01DOI: 10.1177/09622802241227945
Bang Wang, Yu Cheng, Mitchell H Gail, Jason Fine, Ruth M Pfeiffer
We compared methods to project absolute risk, the probability of experiencing the outcome of interest in a given projection interval accommodating competing risks, for a person from the target population with missing predictors. Without missing data, a perfectly calibrated model gives unbiased absolute risk estimates in a new target population, even if the predictor distribution differs from the training data. However, if predictors are missing in target population members, a reference dataset with complete data is needed to impute them and to estimate absolute risk, conditional only on the observed predictors. If the predictor distributions of the reference data and the target population differ, this approach yields biased estimates. We compared the bias and mean squared error of absolute risk predictions for seven methods that assume predictors are missing at random (MAR). Some methods imputed individual missing predictors, others imputed linear predictor combinations (risk scores). Simulations were based on real breast cancer predictor distributions and outcome data. We also analyzed a real breast cancer dataset. The largest bias for all methods resulted from different predictor distributions of the reference and target populations. No method was unbiased in this situation. Surprisingly, violating the MAR assumption did not induce severe biases. Most multiple imputation methods performed similarly and were less biased (but more variable) than a method that used a single expected risk score. Our work shows the importance of selecting predictor reference datasets similar to the target population to reduce bias of absolute risk predictions with missing risk factors.
我们对预测绝对风险的方法进行了比较,绝对风险是指目标人群中缺失预测因子的人在一定预测区间内经历相关结果的概率,其中考虑到了竞争风险。在没有缺失数据的情况下,即使预测因子的分布与训练数据不同,经过完美校准的模型也能在新的目标人群中给出无偏的绝对风险估计值。但是,如果目标人群中的预测因子缺失,则需要一个具有完整数据的参考数据集来估算这些预测因子,并仅以观测到的预测因子为条件估算绝对风险。如果参考数据和目标人群的预测因子分布不同,这种方法就会产生有偏差的估计值。我们比较了假定预测因子随机缺失(MAR)的七种方法的绝对风险预测偏差和均方误差。一些方法对单个缺失的预测因子进行了估算,另一些方法对线性预测因子组合(风险评分)进行了估算。模拟基于真实的乳腺癌预测因子分布和结果数据。我们还分析了真实的乳腺癌数据集。所有方法的最大偏差都是由于参考人群和目标人群的预测因子分布不同造成的。在这种情况下,没有一种方法是无偏的。令人惊讶的是,违反 MAR 假设并不会导致严重偏差。与使用单一预期风险评分的方法相比,大多数多重估算方法表现相似,偏差较小(但变化较大)。我们的工作表明,选择与目标人群相似的预测参考数据集对于减少缺失风险因素的绝对风险预测偏差非常重要。
{"title":"Predicting absolute risk for a person with missing risk factors.","authors":"Bang Wang, Yu Cheng, Mitchell H Gail, Jason Fine, Ruth M Pfeiffer","doi":"10.1177/09622802241227945","DOIUrl":"10.1177/09622802241227945","url":null,"abstract":"<p><p>We compared methods to project absolute risk, the probability of experiencing the outcome of interest in a given projection interval accommodating competing risks, for a person from the target population with missing predictors. Without missing data, a perfectly calibrated model gives unbiased absolute risk estimates in a new target population, even if the predictor distribution differs from the training data. However, if predictors are missing in target population members, a reference dataset with complete data is needed to impute them and to estimate absolute risk, conditional only on the observed predictors. If the predictor distributions of the reference data and the target population differ, this approach yields biased estimates. We compared the bias and mean squared error of absolute risk predictions for seven methods that assume predictors are missing at random (MAR). Some methods imputed individual missing predictors, others imputed linear predictor combinations (risk scores). Simulations were based on real breast cancer predictor distributions and outcome data. We also analyzed a real breast cancer dataset. The largest bias for all methods resulted from different predictor distributions of the reference and target populations. No method was unbiased in this situation. Surprisingly, violating the MAR assumption did not induce severe biases. Most multiple imputation methods performed similarly and were less biased (but more variable) than a method that used a single expected risk score. Our work shows the importance of selecting predictor reference datasets similar to the target population to reduce bias of absolute risk predictions with missing risk factors.</p>","PeriodicalId":22038,"journal":{"name":"Statistical Methods in Medical Research","volume":" ","pages":"557-573"},"PeriodicalIF":2.3,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139997445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-01Epub Date: 2024-03-06DOI: 10.1177/09622802241233768
Brian R Mosier, Leonidas E Bantis
The performance of individual biomarkers in discriminating between two groups, typically the healthy and the diseased, may be limited. Thus, there is interest in developing statistical methodologies for biomarker combinations with the aim of improving upon the individual discriminatory performance. There is extensive literature referring to biomarker combinations under the two-class setting. However, the corresponding literature under a three-class setting is limited. In our study, we provide parametric and nonparametric methods that allow investigators to optimally combine biomarkers that seek to discriminate between three classes by minimizing the Euclidean distance from the receiver operating characteristic surface to the perfection corner. Using this Euclidean distance as the objective function allows for estimation of the optimal combination coefficients along with the optimal cutoff values for the combined score. An advantage of the proposed methods is that they can accommodate biomarker data from all three groups simultaneously, as opposed to a pairwise analysis such as the one implied by the three-class Youden index. We illustrate that the derived true classification rates exhibit narrower confidence intervals than those derived from the Youden-based approach under a parametric, flexible parametric, and nonparametric kernel-based framework. We evaluate our approaches through extensive simulations and apply them to real data sets that refer to liver cancer patients.
{"title":"Combining multiple biomarkers linearly to minimize the Euclidean distance of the closest point on the receiver operating characteristic surface to the perfection corner in trichotomous settings.","authors":"Brian R Mosier, Leonidas E Bantis","doi":"10.1177/09622802241233768","DOIUrl":"10.1177/09622802241233768","url":null,"abstract":"<p><p>The performance of individual biomarkers in discriminating between two groups, typically the healthy and the diseased, may be limited. Thus, there is interest in developing statistical methodologies for biomarker combinations with the aim of improving upon the individual discriminatory performance. There is extensive literature referring to biomarker combinations under the two-class setting. However, the corresponding literature under a three-class setting is limited. In our study, we provide parametric and nonparametric methods that allow investigators to optimally combine biomarkers that seek to discriminate between three classes by minimizing the Euclidean distance from the receiver operating characteristic surface to the perfection corner. Using this Euclidean distance as the objective function allows for estimation of the optimal combination coefficients along with the optimal cutoff values for the combined score. An advantage of the proposed methods is that they can accommodate biomarker data from all three groups simultaneously, as opposed to a pairwise analysis such as the one implied by the three-class Youden index. We illustrate that the derived true classification rates exhibit narrower confidence intervals than those derived from the Youden-based approach under a parametric, flexible parametric, and nonparametric kernel-based framework. We evaluate our approaches through extensive simulations and apply them to real data sets that refer to liver cancer patients.</p>","PeriodicalId":22038,"journal":{"name":"Statistical Methods in Medical Research","volume":" ","pages":"647-668"},"PeriodicalIF":1.6,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11234871/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140040378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-01Epub Date: 2024-03-06DOI: 10.1177/09622802241233767
André Victor Ribeiro Amaral, Francisco Javier Rubio, Manuela Quaresma, Francisco J Rodríguez-Cortés, Paula Moraga
Relative survival represents the preferred framework for the analysis of population cancer survival data. The aim is to model the survival probability associated with cancer in the absence of information about the cause of death. Recent data linkage developments have allowed for incorporating the place of residence into the population cancer databases; however, modeling this spatial information has received little attention in the relative survival setting. We propose a flexible parametric class of spatial excess hazard models (along with inference tools), named "Relative Survival Spatial General Hazard," that allows for the inclusion of fixed and spatial effects in both time-level and hazard-level components. We illustrate the performance of the proposed model using an extensive simulation study, and provide guidelines about the interplay of sample size, censoring, and model misspecification. We present a case study using real data from colon cancer patients in England. This case study illustrates how a spatial model can be used to identify geographical areas with low cancer survival, as well as how to summarize such a model through marginal survival quantities and spatial effects.
{"title":"Extended excess hazard models for spatially dependent survival data.","authors":"André Victor Ribeiro Amaral, Francisco Javier Rubio, Manuela Quaresma, Francisco J Rodríguez-Cortés, Paula Moraga","doi":"10.1177/09622802241233767","DOIUrl":"10.1177/09622802241233767","url":null,"abstract":"<p><p>Relative survival represents the preferred framework for the analysis of population cancer survival data. The aim is to model the survival probability associated with cancer in the absence of information about the cause of death. Recent data linkage developments have allowed for incorporating the place of residence into the population cancer databases; however, modeling this spatial information has received little attention in the relative survival setting. We propose a flexible parametric class of spatial excess hazard models (along with inference tools), named \"Relative Survival Spatial General Hazard,\" that allows for the inclusion of fixed and spatial effects in both time-level and hazard-level components. We illustrate the performance of the proposed model using an extensive simulation study, and provide guidelines about the interplay of sample size, censoring, and model misspecification. We present a case study using real data from colon cancer patients in England. This case study illustrates how a spatial model can be used to identify geographical areas with low cancer survival, as well as how to summarize such a model through marginal survival quantities and spatial effects.</p>","PeriodicalId":22038,"journal":{"name":"Statistical Methods in Medical Research","volume":" ","pages":"681-701"},"PeriodicalIF":2.3,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140040380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Joint modelling of longitudinal and time-to-event data is a method that recognizes the dependency between the two data types, and combines the two outcomes into a single model, which leads to more precise estimates. These models are applicable when individuals are followed over a period of time, generally to monitor the progression of a disease or a medical condition, and also when longitudinal covariates are available. Medical cost datasets are often also available in longitudinal scenarios, but these datasets usually arise from a complex sampling design rather than simple random sampling and such complex sampling design needs to be accounted for in the statistical analysis. Ignoring the sampling mechanism can lead to misleading conclusions. This article proposes a novel approach to the joint modelling of complex data by combining survey calibration with standard joint modelling. This is achieved by incorporating a new set of equations to calibrate the sampling weights for the survival model in a joint model setting. The proposed method is applied to data on anti-dementia medication costs and mortality in people with diagnosed dementia in New Zealand.
{"title":"Weight calibration in the joint modelling of medical cost and mortality.","authors":"Seong Hoon Yoon, Alain Vandal, Claudia Rivera-Rodriguez","doi":"10.1177/09622802241236935","DOIUrl":"10.1177/09622802241236935","url":null,"abstract":"<p><p>Joint modelling of longitudinal and time-to-event data is a method that recognizes the dependency between the two data types, and combines the two outcomes into a single model, which leads to more precise estimates. These models are applicable when individuals are followed over a period of time, generally to monitor the progression of a disease or a medical condition, and also when longitudinal covariates are available. Medical cost datasets are often also available in longitudinal scenarios, but these datasets usually arise from a complex sampling design rather than simple random sampling and such complex sampling design needs to be accounted for in the statistical analysis. Ignoring the sampling mechanism can lead to misleading conclusions. This article proposes a novel approach to the joint modelling of complex data by combining survey calibration with standard joint modelling. This is achieved by incorporating a new set of equations to calibrate the sampling weights for the survival model in a joint model setting. The proposed method is applied to data on anti-dementia medication costs and mortality in people with diagnosed dementia in New Zealand.</p>","PeriodicalId":22038,"journal":{"name":"Statistical Methods in Medical Research","volume":" ","pages":"728-742"},"PeriodicalIF":2.3,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11145918/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140040381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
One of the primary objectives of a dose-finding trial for novel anti-cancer agent combination therapies, such as molecular targeted agents and immune-oncology therapies, is to identify optimal dose combinations that are tolerable and therapeutically beneficial for subjects in subsequent clinical trials. The goal differs from that of a dose-finding trial for traditional cytotoxic agents, in which the goal is to determine the maximum tolerated dose combinations. This paper proposes the new design, named 'BOIN-ETC' design, to identify optimal dose combinations based on both efficacy and toxicity outcomes using the waterfall approach. The BOIN-ETC design is model-assisted, so it is expected to be robust, and straightforward to implement in actual oncology dose-finding trials. These characteristics are quite valuable from a practical perspective. Simulation studies show that the BOIN-ETC design has advantages compared with the other approaches in the percentage of correct optimal dose combination selection and the average number of patients allocated to the optimal dose combinations across various realistic settings.
{"title":"BOIN-ETC: A Bayesian optimal interval design considering efficacy and toxicity to identify the optimal dose combinations.","authors":"Tomoyuki Kakizume, Kentaro Takeda, Masataka Taguri, Satoshi Morita","doi":"10.1177/09622802241236936","DOIUrl":"10.1177/09622802241236936","url":null,"abstract":"<p><p>One of the primary objectives of a dose-finding trial for novel anti-cancer agent combination therapies, such as molecular targeted agents and immune-oncology therapies, is to identify optimal dose combinations that are tolerable and therapeutically beneficial for subjects in subsequent clinical trials. The goal differs from that of a dose-finding trial for traditional cytotoxic agents, in which the goal is to determine the maximum tolerated dose combinations. This paper proposes the new design, named 'BOIN-ETC' design, to identify optimal dose combinations based on both efficacy and toxicity outcomes using the waterfall approach. The BOIN-ETC design is model-assisted, so it is expected to be robust, and straightforward to implement in actual oncology dose-finding trials. These characteristics are quite valuable from a practical perspective. Simulation studies show that the BOIN-ETC design has advantages compared with the other approaches in the percentage of correct optimal dose combination selection and the average number of patients allocated to the optimal dose combinations across various realistic settings.</p>","PeriodicalId":22038,"journal":{"name":"Statistical Methods in Medical Research","volume":" ","pages":"716-727"},"PeriodicalIF":2.3,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140040377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-01Epub Date: 2024-03-11DOI: 10.1177/09622802241231497
Robin Ristl, Heiko Götte, Armin Schüler, Martin Posch, Franz König
Survival time is the primary endpoint of many randomized controlled trials, and a treatment effect is typically quantified by the hazard ratio under the assumption of proportional hazards. Awareness is increasing that in many settings this assumption is a priori violated, for example, due to delayed onset of drug effect. In these cases, interpretation of the hazard ratio estimate is ambiguous and statistical inference for alternative parameters to quantify a treatment effect is warranted. We consider differences or ratios of milestone survival probabilities or quantiles, differences in restricted mean survival times, and an average hazard ratio to be of interest. Typically, more than one such parameter needs to be reported to assess possible treatment benefits, and in confirmatory trials, the according inferential procedures need to be adjusted for multiplicity. A simple Bonferroni adjustment may be too conservative because the different parameters of interest typically show considerable correlation. Hence simultaneous inference procedures that take into account the correlation are warranted. By using the counting process representation of the mentioned parameters, we show that their estimates are asymptotically multivariate normal and we provide an estimate for their covariance matrix. We propose according to the parametric multiple testing procedures and simultaneous confidence intervals. Also, the logrank test may be included in the framework. Finite sample type I error rate and power are studied by simulation. The methods are illustrated with an example from oncology. A software implementation is provided in the R package nph.
存活时间是许多随机对照试验的主要终点,而治疗效果通常是在比例危险假设下通过危险比来量化的。越来越多的人意识到,在许多情况下,这一假设是先验违反的,例如,由于药物起效延迟。在这种情况下,对危险比估计值的解释是模糊的,因此需要通过统计推断来确定量化治疗效果的替代参数。我们认为里程碑生存概率或定量的差异或比率、受限平均生存时间的差异以及平均危险比都是值得关注的。通常情况下,需要报告一个以上的此类参数来评估可能的治疗效果,在确证试验中,需要对相应的推论程序进行多重性调整。简单的 Bonferroni 调整可能过于保守,因为不同的相关参数通常会表现出相当大的相关性。因此,需要采用考虑到相关性的同步推断程序。通过使用上述参数的计数过程表示法,我们证明了它们的估计值在渐近上是多元正态的,并提供了它们协方差矩阵的估计值。我们根据参数多重检验程序和同步置信区间提出了建议。此外,对数秩检验也可纳入该框架。通过模拟研究了有限样本 I 型错误率和功率。以肿瘤学为例对这些方法进行了说明。软件实现在 R 软件包 nph 中提供。
{"title":"Simultaneous inference procedures for the comparison of multiple characteristics of two survival functions.","authors":"Robin Ristl, Heiko Götte, Armin Schüler, Martin Posch, Franz König","doi":"10.1177/09622802241231497","DOIUrl":"10.1177/09622802241231497","url":null,"abstract":"<p><p>Survival time is the primary endpoint of many randomized controlled trials, and a treatment effect is typically quantified by the hazard ratio under the assumption of proportional hazards. Awareness is increasing that in many settings this assumption is a priori violated, for example, due to delayed onset of drug effect. In these cases, interpretation of the hazard ratio estimate is ambiguous and statistical inference for alternative parameters to quantify a treatment effect is warranted. We consider differences or ratios of milestone survival probabilities or quantiles, differences in restricted mean survival times, and an average hazard ratio to be of interest. Typically, more than one such parameter needs to be reported to assess possible treatment benefits, and in confirmatory trials, the according inferential procedures need to be adjusted for multiplicity. A simple Bonferroni adjustment may be too conservative because the different parameters of interest typically show considerable correlation. Hence simultaneous inference procedures that take into account the correlation are warranted. By using the counting process representation of the mentioned parameters, we show that their estimates are asymptotically multivariate normal and we provide an estimate for their covariance matrix. We propose according to the parametric multiple testing procedures and simultaneous confidence intervals. Also, the logrank test may be included in the framework. Finite sample type I error rate and power are studied by simulation. The methods are illustrated with an example from oncology. A software implementation is provided in the R package nph.</p>","PeriodicalId":22038,"journal":{"name":"Statistical Methods in Medical Research","volume":" ","pages":"589-610"},"PeriodicalIF":2.3,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11025310/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140094617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01Epub Date: 2024-02-06DOI: 10.1177/09622802231224638
Taylor Krajewski, Michael Hudgens
Estimating treatment (or policy or intervention) effects on a single individual or unit has become increasingly important in health and biomedical sciences. One method to estimate these effects is the synthetic control method, which constructs a synthetic control, a weighted average of control units that best matches the treated unit's pre-treatment outcomes and other relevant covariates. The intervention's impact is then estimated by comparing the post-intervention outcomes of the treated unit and its synthetic control, which serves as a proxy for the counterfactual outcome had the treated unit not experienced the intervention. The augmented synthetic control method, a recent adaptation of the synthetic control method, relaxes some of the synthetic control method's assumptions for broader applicability. While synthetic controls have been used in a variety of fields, their use in public health and biomedical research is more recent, and newer methods such as the augmented synthetic control method are underutilized. This paper briefly describes the synthetic control method and its application, explains the augmented synthetic control method and its differences from the synthetic control method, and estimates the effects of an antimalarial initiative in Mozambique using both the synthetic control method and the augmented synthetic control method to highlight the advantages of using the augmented synthetic control method to analyze the impact of interventions implemented in a single region.
{"title":"The augmented synthetic control method in public health and biomedical research.","authors":"Taylor Krajewski, Michael Hudgens","doi":"10.1177/09622802231224638","DOIUrl":"10.1177/09622802231224638","url":null,"abstract":"<p><p>Estimating treatment (or policy or intervention) effects on a single individual or unit has become increasingly important in health and biomedical sciences. One method to estimate these effects is the synthetic control method, which constructs a synthetic control, a weighted average of control units that best matches the treated unit's pre-treatment outcomes and other relevant covariates. The intervention's impact is then estimated by comparing the post-intervention outcomes of the treated unit and its synthetic control, which serves as a proxy for the counterfactual outcome had the treated unit not experienced the intervention. The augmented synthetic control method, a recent adaptation of the synthetic control method, relaxes some of the synthetic control method's assumptions for broader applicability. While synthetic controls have been used in a variety of fields, their use in public health and biomedical research is more recent, and newer methods such as the augmented synthetic control method are underutilized. This paper briefly describes the synthetic control method and its application, explains the augmented synthetic control method and its differences from the synthetic control method, and estimates the effects of an antimalarial initiative in Mozambique using both the synthetic control method and the augmented synthetic control method to highlight the advantages of using the augmented synthetic control method to analyze the impact of interventions implemented in a single region.</p>","PeriodicalId":22038,"journal":{"name":"Statistical Methods in Medical Research","volume":" ","pages":"376-391"},"PeriodicalIF":2.3,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10981189/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139724029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01Epub Date: 2024-02-07DOI: 10.1177/09622802241227951
Amra Pepić, Maria Stark, Tim Friede, Annette Kopp-Schneider, Silvia Calderazzo, Maria Reichert, Michael Wolf, Ulrich Wirth, Stefan Schopf, Antonia Zapf
The development process of medical devices can be streamlined by combining different study phases. Here, for a diagnostic medical device, we present the combination of confirmation of diagnostic accuracy (phase III) and evaluation of clinical effectiveness regarding patient-relevant endpoints (phase IV) using a seamless design. This approach is used in the Thyroid HEmorrhage DetectOr Study (HEDOS & HEDOS II) investigating a post-operative hemorrhage detector named ISAR-M THYRO® in patients after thyroid surgery. Data from the phase III trial are reused as external controls in the control group of the phase IV trial. An unblinded interim analysis is planned between the two study stages which includes a recalculation of the sample size for the phase IV part after completion of the first stage of the seamless design. The study concept presented here is the first seamless design proposed in the field of diagnostic studies. Hence, the aim of this work is to emphasize the statistical methodology as well as feasibility of the proposed design in relation to the planning and implementation of the seamless design. Seamless designs can accelerate the overall trial duration and increase its efficiency in terms of sample size and recruitment. However, careful planning addressing numerous methodological and procedural challenges is necessary for successful implementation as well as agreement with regulatory bodies.
{"title":"A diagnostic phase III/IV seamless design to investigate the diagnostic accuracy and clinical effectiveness using the example of HEDOS and HEDOS II.","authors":"Amra Pepić, Maria Stark, Tim Friede, Annette Kopp-Schneider, Silvia Calderazzo, Maria Reichert, Michael Wolf, Ulrich Wirth, Stefan Schopf, Antonia Zapf","doi":"10.1177/09622802241227951","DOIUrl":"10.1177/09622802241227951","url":null,"abstract":"<p><p>The development process of medical devices can be streamlined by combining different study phases. Here, for a diagnostic medical device, we present the combination of confirmation of diagnostic accuracy (phase III) and evaluation of clinical effectiveness regarding patient-relevant endpoints (phase IV) using a seamless design. This approach is used in the Thyroid HEmorrhage DetectOr Study (HEDOS & HEDOS II) investigating a post-operative hemorrhage detector named ISAR-M THYRO® in patients after thyroid surgery. Data from the phase III trial are reused as external controls in the control group of the phase IV trial. An unblinded interim analysis is planned between the two study stages which includes a recalculation of the sample size for the phase IV part after completion of the first stage of the seamless design. The study concept presented here is the first seamless design proposed in the field of diagnostic studies. Hence, the aim of this work is to emphasize the statistical methodology as well as feasibility of the proposed design in relation to the planning and implementation of the seamless design. Seamless designs can accelerate the overall trial duration and increase its efficiency in terms of sample size and recruitment. However, careful planning addressing numerous methodological and procedural challenges is necessary for successful implementation as well as agreement with regulatory bodies.</p>","PeriodicalId":22038,"journal":{"name":"Statistical Methods in Medical Research","volume":" ","pages":"433-448"},"PeriodicalIF":2.3,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10981198/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139703499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}