Pub Date : 2019-06-01DOI: 10.35603/EPS2019/ISSUE1.02
A. Nikiforov
Abstract Ore-controlling factors determine the patterns of formation and localization of mineralization within ore regions and deposits. The need for this study arises from the importance of integrated assessment of mineral resources and improvement of metasomatic formation techniques. This is especially important for geological materials which are mined for their direct commercial value (industrial materials). This article is devoted to the study of the ore control of complex industrial minerals. The Khizovaara structure belongs to the Tikshozero greenstone belt. Within the structure, a multistage metamorphism and metasomatism processes are manifested. The totality of lithological, structural and petrologic ore control factors determines the existence within the structure of several deposits. These are deposits of industrial minerals, such as garnet, quartz, muscovite, kyanite, staurolite. In almost all cases, the ores are complex. The following objects were studied: Southern Lens (kyanite + quartz) deposit, Northern lens (kyanite + quartz) deposit, East Khizovaara (muscovite + quartz) deposit, Vysota-181 (garnet + staurolite + kyanite + muscovite + quartz) deposit, ore occurence Fuxit (decorative rocks). For the ores of each site, the processes of regional metamorphism of the amphibolite facies of kyanite-biotite and muscovite-chlorite-kyanite subfacies are important. Metamorphism, tectonic regime and geological connection with rocks has been studied as a ore control factor, based on this, data on the quantitative distribution of industrial minerals of metamorphic genesis have been obtained. Acidic and alkaline metasomatites of each site are considered. On the basis of these data, metasomatic processes that lead to the formation of complex ores are revealed. The process of superposition of metasomatosis products of the late stage on the products of early stage metasomatosis was studied. This process leads to the formation of complex ores of three or four minerals. The result of the work is a general scheme of metamorphic and metasomatic ores control
{"title":"ORE CONTROL OF KHIZOVAARA STRUCTURE DEPOSITS","authors":"A. Nikiforov","doi":"10.35603/EPS2019/ISSUE1.02","DOIUrl":"https://doi.org/10.35603/EPS2019/ISSUE1.02","url":null,"abstract":"Abstract \u0000Ore-controlling factors determine the patterns of formation and localization of mineralization within ore regions and deposits. The need for this study arises from the importance of integrated assessment of mineral resources and improvement of metasomatic formation techniques. This is especially important for geological materials which are mined for their direct commercial value (industrial materials). This article is devoted to the study of the ore control of complex industrial minerals. The Khizovaara structure belongs to the Tikshozero greenstone belt. Within the structure, a multistage metamorphism and metasomatism processes are manifested. The totality of lithological, structural and petrologic ore control factors determines the existence within the structure of several deposits. These are deposits of industrial minerals, such as garnet, quartz, muscovite, kyanite, staurolite. In almost all cases, the ores are complex. The following objects were studied: Southern Lens (kyanite + quartz) deposit, Northern lens (kyanite + quartz) deposit, East Khizovaara (muscovite + quartz) deposit, Vysota-181 (garnet + staurolite + kyanite + muscovite + quartz) deposit, ore occurence Fuxit (decorative rocks). For the ores of each site, the processes of regional metamorphism of the amphibolite facies of kyanite-biotite and muscovite-chlorite-kyanite subfacies are important. Metamorphism, tectonic regime and geological connection with rocks has been studied as a ore control factor, based on this, data on the quantitative distribution of industrial minerals of metamorphic genesis have been obtained. Acidic and alkaline metasomatites of each site are considered. On the basis of these data, metasomatic processes that lead to the formation of complex ores are revealed. The process of superposition of metasomatosis products of the late stage on the products of early stage metasomatosis was studied. This process leads to the formation of complex ores of three or four minerals. The result of the work is a general scheme of metamorphic and metasomatic ores control","PeriodicalId":22116,"journal":{"name":"SWS Journal of EARTH AND PLANETARY SCIENCES","volume":"106 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88621826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-06-20DOI: 10.5593/SGEM2018/4.1/S17.022
V. Kampars
Transesterification does not allow to make full conversion of oil to biodiesel because the by-product glycerol cannot be included in the composition of biofuel. Interesterification constitutes a full conversion process with production of triacetin (TA) instead of glycerol, which can be included in the composition of biofuel and allows to increase its yield. Both interesterification and transesterification effectively occur only in presence of catalysts. Results of the investigation of heterogeneous and homogeneous catalysts indicate the superior importance of catalyst solubility in starting reaction mixture. Partial solubility can remarkably lower the activity of homogeneous catalyst and extremely increase that of formally heterogeneous one. The reaction mixture of interesterification reaction is less polar than that of transesterification, and potassium tert-butoxide (t-BuOK) should be more appropriate catalyst for interesterification than sodium methoxide which is used in most cases. The catalytic system t-BuOK/t-BuOH substantially increases the yield of TA and changes the properties of obtained biofuel. Whereas the content of the TA in the interesterification reaction mixture does not achieve the same level from the theoretically predicted as the FAME, the occurrence of side reaction between t-BuOH and TA cannot be excluded. This paper presents a study of the interesterification of rapeseed oil in presence of catalytic system t-BuOK/THF (catalytic system without alcohols) with the aim of establishing the influence of aprotic tetrahydrofuran to the proceeding the reaction, composition of reaction mixtures and their fuel properties. Obtained results show that the absence of alcoholic hydroxyl groups in the catalytic system insufficiently increases the activity of catalytic system but fails to increase the yield of FAME.
{"title":"BIOFUEL VIA INTERESTERIFICATION OF RAPESEED OIL WITH METHYL ACETATE IN PRESENCE OF POTASSIUM t-BUTOXIDE/THF","authors":"V. Kampars","doi":"10.5593/SGEM2018/4.1/S17.022","DOIUrl":"https://doi.org/10.5593/SGEM2018/4.1/S17.022","url":null,"abstract":"Transesterification does not allow to make full conversion of oil to biodiesel because the by-product glycerol cannot be included in the composition of biofuel. Interesterification constitutes a full conversion process with production of triacetin (TA) instead of glycerol, which can be included in the composition of biofuel and allows to increase its yield. Both interesterification and transesterification effectively occur only in presence of catalysts. Results of the investigation of heterogeneous and homogeneous catalysts indicate the superior importance of catalyst solubility in starting reaction mixture. Partial solubility can remarkably lower the activity of homogeneous catalyst and extremely increase that of formally heterogeneous one. The reaction mixture of interesterification reaction is less polar than that of transesterification, and potassium tert-butoxide (t-BuOK) should be more appropriate catalyst for interesterification than sodium methoxide which is used in most cases. The catalytic system t-BuOK/t-BuOH substantially increases the yield of TA and changes the properties of obtained biofuel. Whereas the content of the TA in the interesterification reaction mixture does not achieve the same level from the theoretically predicted as the FAME, the occurrence of side reaction between t-BuOH and TA cannot be excluded. This paper presents a study of the interesterification of rapeseed oil in presence of catalytic system t-BuOK/THF (catalytic system without alcohols) with the aim of establishing the influence of aprotic tetrahydrofuran to the proceeding the reaction, composition of reaction mixtures and their fuel properties. Obtained results show that the absence of alcoholic hydroxyl groups in the catalytic system insufficiently increases the activity of catalytic system but fails to increase the yield of FAME.","PeriodicalId":22116,"journal":{"name":"SWS Journal of EARTH AND PLANETARY SCIENCES","volume":"359 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82629874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-06-20DOI: 10.5593/SGEM2018/1.1/S01.070
V. Shekov
Simple and cheap methods for the study of building stone deposits for the production of blocks of commercial size can be used to make geological work more efficient. However, physical processes in a massif are hard to understand when doing geophysical research, and the effect of microstructural parameters, mainly the microfracturing of rocks, on geophysical field indices is poorly understood. The authors have studied the impact of microfracturing on the physico-mechanical properties on coarse- to giant-grained rapakivi granites from the Salmi massif, Fennoscandian Shield. The goal of the present study is to assess the physical and physico-mechanical parameters in fine- and medium-grained quartz-free rocks. The authors have studied the various physical and physico-mechanical indices of gabbro-dolerites from the Ropruchei sill (Fennoscandian Shield, within the deposit prospected and revealed the effect of microfracturing indices on them. The study of these properties have shown that microfracturing in gabbro-dolerites is an essential factor which forms the physical parameters of a rock. The testing of this rock type has shown the rate of travel of an elastic wave is clearly related to the microfracturing of samples. The magnetic properties of gabbro-dolerite are due to high concentrations of titanomagnetite, the mineral grains of which formed upon the crystallization of magma during its interstratal intrusion. The distribution of titanomagnetite, based on size and concentration in the rock, depends on liquation conditions in the active stress field. The dependence of the microfracturing of gabbro-dolerites on their iron concentration (FeO+Fe2O3) shows that these «damages» appeared at a ‘brittle” stage in the evolution of the massif in the form of microfractures, the structural parameters of which have inherited the parameters of the stress and deformation field which existed in the massif at that time and which accumulated iron. As a result, microfracturing has a considerable effect on the parameters of the electromagnetic indices of the massif by accumulating iron oxides in the pores, and the higher the index, the higher the geophysical medium indices. Understanding of the physical problem, which accompanies the formation of a gabbro-dolerite complex, helps conduct the geophysical study of a massif, interpret data more objectively and more accurately delineate massive zones in the medium that could be used as high-quality building materials.
{"title":"THE EFFECT OF MICROFRACTURING IN GABBRO-DOLERITES ON THEIR PHYSICAL PROPERTIES","authors":"V. Shekov","doi":"10.5593/SGEM2018/1.1/S01.070","DOIUrl":"https://doi.org/10.5593/SGEM2018/1.1/S01.070","url":null,"abstract":"Simple and cheap methods for the study of building stone deposits for the production of blocks of commercial size can be used to make geological work more efficient. However, physical processes in a massif are hard to understand when doing geophysical research, and the effect of microstructural parameters, mainly the microfracturing of rocks, on geophysical field indices is poorly understood. \u0000The authors have studied the impact of microfracturing on the physico-mechanical properties on coarse- to giant-grained rapakivi granites from the Salmi massif, Fennoscandian Shield. The goal of the present study is to assess the physical and physico-mechanical parameters in fine- and medium-grained quartz-free rocks. \u0000The authors have studied the various physical and physico-mechanical indices of gabbro-dolerites from the Ropruchei sill (Fennoscandian Shield, within the deposit prospected and revealed the effect of microfracturing indices on them. \u0000The study of these properties have shown that microfracturing in gabbro-dolerites is an essential factor which forms the physical parameters of a rock. The testing of this rock type has shown the rate of travel of an elastic wave is clearly related to the microfracturing of samples. \u0000The magnetic properties of gabbro-dolerite are due to high concentrations of titanomagnetite, the mineral grains of which formed upon the crystallization of magma during its interstratal intrusion. The distribution of titanomagnetite, based on size and concentration in the rock, depends on liquation conditions in the active stress field. The dependence of the microfracturing of gabbro-dolerites on their iron concentration (FeO+Fe2O3) shows that these «damages» appeared at a ‘brittle” stage in the evolution of the massif in the form of microfractures, the structural parameters of which have inherited the parameters of the stress and deformation field which existed in the massif at that time and which accumulated iron. \u0000As a result, microfracturing has a considerable effect on the parameters of the electromagnetic indices of the massif by accumulating iron oxides in the pores, and the higher the index, the higher the geophysical medium indices. \u0000Understanding of the physical problem, which accompanies the formation of a gabbro-dolerite complex, helps conduct the geophysical study of a massif, interpret data more objectively and more accurately delineate massive zones in the medium that could be used as high-quality building materials.","PeriodicalId":22116,"journal":{"name":"SWS Journal of EARTH AND PLANETARY SCIENCES","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80675541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}