首页 > 最新文献

Systematic Biology最新文献

英文 中文
The Fossilised Birth-Death Model is Identifiable. 化石化的出生-死亡模型是可识别的。
IF 6.1 1区 生物学 Q1 EVOLUTIONARY BIOLOGY Pub Date : 2024-10-22 DOI: 10.1093/sysbio/syae058
Kate Truman, Timothy G Vaughan, Alex Gavryushkin, Alexandra Sasha Gavryushkina

Time-dependent birth-death sampling models have been used in numerous studies for inferring past evolutionary dynamics in different biological contexts, e.g. speciation and extinction rates in macroevolutionary studies, or effective reproductive number in epidemiological studies. These models are branching processes where lineages can bifurcate, die, or be sampled with time-dependent birth, death, and sampling rates, generating phylogenetic trees. It has been shown that in some subclasses of such models, different sets of rates can result in the same distributions of reconstructed phylogenetic trees, and therefore the rates become unidentifiable from the trees regardless of their size. Here we show that widely used time-dependent fossilised birth-death (FBD) models are identifiable. This subclass of models makes more realistic assumptions about the fossilisation process and certain infectious disease transmission processes than the unidentifiable birth-death sampling models. Namely, FBD models assume that sampled lineages stay in the process rather than being immediately removed upon sampling. Identifiability of the time-dependent FBD model justifies using statistical methods that implement this model to infer the underlying temporal diversification or epidemiological dynamics from phylogenetic trees or directly from molecular or other comparative data. We further show that the time-dependent fossilised-birth-death model with an extra parameter, the removal after sampling probability, is unidentifiable. This implies that in scenarios where we do not know how sampling affects lineages we are unable to infer this extra parameter together with birth, death, and sampling rates solely from trees.

依赖时间的出生-死亡采样模型已被大量研究用于推断不同生物背景下过去的进化动态,例如宏观进化研究中的物种分化和灭绝率,或流行病学研究中的有效繁殖数量。这些模型是一个分支过程,在这个过程中,世系可以分叉、死亡,或以随时间变化的出生率、死亡率和采样率进行采样,从而生成系统进化树。有研究表明,在这类模型的某些子类中,不同的速率集会导致重建的系统发生树分布相同,因此,无论系统发生树的大小如何,速率都无法从系统发生树中识别出来。在这里,我们证明了广泛使用的时间依赖化石出生-死亡(FBD)模型是可识别的。与无法识别的出生-死亡抽样模型相比,这一子类模型对化石化过程和某些传染病的传播过程做出了更现实的假设。也就是说,FBD 模型假定采样的世系会留在化石过程中,而不是在采样后立即消失。时间依赖性 FBD 模型的可识别性使我们有理由使用实现该模型的统计方法,从系统发生树或直接从分子或其他比较数据中推断潜在的时间多样化或流行病学动态。我们进一步证明,具有额外参数(取样后移除概率)的时间依赖性化石出生-死亡模型是不可识别的。这意味着,在我们不知道采样如何影响世系的情况下,我们无法仅从树中推断出这个额外参数以及出生率、死亡率和采样率。
{"title":"The Fossilised Birth-Death Model is Identifiable.","authors":"Kate Truman, Timothy G Vaughan, Alex Gavryushkin, Alexandra Sasha Gavryushkina","doi":"10.1093/sysbio/syae058","DOIUrl":"10.1093/sysbio/syae058","url":null,"abstract":"<p><p>Time-dependent birth-death sampling models have been used in numerous studies for inferring past evolutionary dynamics in different biological contexts, e.g. speciation and extinction rates in macroevolutionary studies, or effective reproductive number in epidemiological studies. These models are branching processes where lineages can bifurcate, die, or be sampled with time-dependent birth, death, and sampling rates, generating phylogenetic trees. It has been shown that in some subclasses of such models, different sets of rates can result in the same distributions of reconstructed phylogenetic trees, and therefore the rates become unidentifiable from the trees regardless of their size. Here we show that widely used time-dependent fossilised birth-death (FBD) models are identifiable. This subclass of models makes more realistic assumptions about the fossilisation process and certain infectious disease transmission processes than the unidentifiable birth-death sampling models. Namely, FBD models assume that sampled lineages stay in the process rather than being immediately removed upon sampling. Identifiability of the time-dependent FBD model justifies using statistical methods that implement this model to infer the underlying temporal diversification or epidemiological dynamics from phylogenetic trees or directly from molecular or other comparative data. We further show that the time-dependent fossilised-birth-death model with an extra parameter, the removal after sampling probability, is unidentifiable. This implies that in scenarios where we do not know how sampling affects lineages we are unable to infer this extra parameter together with birth, death, and sampling rates solely from trees.</p>","PeriodicalId":22120,"journal":{"name":"Systematic Biology","volume":" ","pages":""},"PeriodicalIF":6.1,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142475252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Complex Models of Sequence Evolution Improve Fit, but not Gene Tree Discordance, for Tetrapod Mitogenomes. 序列进化的复杂模型改善了四足有丝分裂基因组的拟合度,但没有改善基因树的不一致性。
IF 6.1 1区 生物学 Q1 EVOLUTIONARY BIOLOGY Pub Date : 2024-10-11 DOI: 10.1093/sysbio/syae056
Benjamin S Toups, Robert C Thomson, Jeremy M Brown

Variation in gene tree estimates is widely observed in empirical phylogenomic data and is often assumed to be the result of biological processes. However, a recent study using tetrapod mitochondrial genomes to control for biological sources of variation due to their haploid, uniparentally inherited, and non-recombining nature found that levels of discordance among mitochondrial gene trees were comparable to those found in studies that assume only biological sources of variation. Additionally, they found that several of the models of sequence evolution chosen to infer gene trees were doing an inadequate job fitting the sequence data. These results indicated that significant amounts of gene tree discordance in empirical data may be due to poor fit of sequence evolution models, and that more complex and biologically realistic models may be needed. To test how the fit of sequence evolution models relates to gene tree discordance, we analyzed the same mitochondrial datasets as the previous study using two additional, more complex models of sequence evolution that each includes a different biologically realistic aspect of the evolutionary process: a covarion model to incorporate site-specific rate variation across lineages (heterotachy), and a partitioned model to incorporate variable evolutionary patterns by codon position. Our results show that both additional models fit the data better than the models used in the previous study, with the covarion being consistently and strongly preferred as tree size increases. However, even these more preferred models still inferred highly discordant mitochondrial gene trees, thus deepening the mystery around what we label the "Mito-Phylo Paradox" and leading us to ask whether the observed variation could, in fact, be biological in nature after all.

在经验性的系统发生组数据中,基因树估计值的变异被广泛观察到,并且通常被认为是生物过程的结果。然而,最近一项使用四足动物线粒体基因组来控制生物变异来源的研究发现,线粒体基因树之间的不一致程度与仅假定生物变异来源的研究中发现的不一致程度相当。此外,他们还发现,用于推断基因树的几个序列进化模型与序列数据的拟合程度不够。这些结果表明,经验数据中存在的大量基因树不一致现象可能是由于序列进化模型的拟合效果不佳造成的,因此可能需要更复杂、更符合生物学实际的模型。为了检验序列进化模型的拟合度与基因树不一致性之间的关系,我们使用了两个额外的、更复杂的序列进化模型来分析与前一项研究相同的线粒体数据集,这两个模型分别包含了进化过程中不同的生物学现实方面:一个是科瓦里翁模型(covarion model),它包含了不同世系中特定位点的速率变化(heterotachy);另一个是分区模型(partitioned model),它包含了不同密码子位置的进化模式。我们的研究结果表明,这两个额外的模型都比之前研究中使用的模型更适合数据,随着树规模的增加,共线性模型一直是首选。然而,即使是这些更受青睐的模型,仍然推断出了高度不和谐的线粒体基因树,从而加深了我们所称的 "Mito-Phylo 悖论 "的神秘性,并使我们提出了这样一个问题:所观察到的变异实际上是否具有生物学性质?
{"title":"Complex Models of Sequence Evolution Improve Fit, but not Gene Tree Discordance, for Tetrapod Mitogenomes.","authors":"Benjamin S Toups, Robert C Thomson, Jeremy M Brown","doi":"10.1093/sysbio/syae056","DOIUrl":"https://doi.org/10.1093/sysbio/syae056","url":null,"abstract":"<p><p>Variation in gene tree estimates is widely observed in empirical phylogenomic data and is often assumed to be the result of biological processes. However, a recent study using tetrapod mitochondrial genomes to control for biological sources of variation due to their haploid, uniparentally inherited, and non-recombining nature found that levels of discordance among mitochondrial gene trees were comparable to those found in studies that assume only biological sources of variation. Additionally, they found that several of the models of sequence evolution chosen to infer gene trees were doing an inadequate job fitting the sequence data. These results indicated that significant amounts of gene tree discordance in empirical data may be due to poor fit of sequence evolution models, and that more complex and biologically realistic models may be needed. To test how the fit of sequence evolution models relates to gene tree discordance, we analyzed the same mitochondrial datasets as the previous study using two additional, more complex models of sequence evolution that each includes a different biologically realistic aspect of the evolutionary process: a covarion model to incorporate site-specific rate variation across lineages (heterotachy), and a partitioned model to incorporate variable evolutionary patterns by codon position. Our results show that both additional models fit the data better than the models used in the previous study, with the covarion being consistently and strongly preferred as tree size increases. However, even these more preferred models still inferred highly discordant mitochondrial gene trees, thus deepening the mystery around what we label the \"Mito-Phylo Paradox\" and leading us to ask whether the observed variation could, in fact, be biological in nature after all.</p>","PeriodicalId":22120,"journal":{"name":"Systematic Biology","volume":" ","pages":""},"PeriodicalIF":6.1,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142406814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inference of Phylogenetic Networks from Sequence Data using Composite Likelihood. 利用复合似然法从序列数据推断系统发育网络
IF 6.1 1区 生物学 Q1 EVOLUTIONARY BIOLOGY Pub Date : 2024-10-10 DOI: 10.1093/sysbio/syae054
Sungsik Kong, David L Swofford, Laura S Kubatko

While phylogenies have been essential in understanding how species evolve, they do not adequately describe some evolutionary processes. For instance, hybridization, a common phenomenon where interbreeding between two species leads to formation of a new species, must be depicted by a phylogenetic network, a structure that modifies a phylogenetic tree by allowing two branches to merge into one, resulting in reticulation. However, existing methods for estimating networks become computationally expensive as the dataset size and/or topological complexity increase. The lack of methods for scalable inference hampers phylogenetic networks from being widely used in practice, despite accumulating evidence that hybridization occurs frequently in nature. Here, we propose a novel method, PhyNEST (Phylogenetic Network Estimation using SiTe patterns), that estimates binary, level-1 phylogenetic networks with a fixed, user-specified number of reticulations directly from sequence data. By using the composite likelihood as the basis for inference, PhyNEST is able to use the full genomic data in a computationally tractable manner, eliminating the need to summarize the data as a set of gene trees prior to network estimation. To search network space, PhyNEST implements both hill climbing and simulated annealing algorithms. PhyNEST assumes that the data are composed of coalescent independent sites that evolve according to the Jukes-Cantor substitution model and that the network has a constant effective population size. Simulation studies demonstrate that PhyNEST is often more accurate than two existing composite likelihood summary methods (SNaQ and PhyloNet) and that it is robust to at least one form of model misspecification (assuming a less complex nucleotide substitution model than the true generating model). We applied PhyNEST to reconstruct the evolutionary relationships among Heliconius butterflies and Papionini primates, characterized by hybrid speciation and widespread introgression, respectively. PhyNEST is implemented in an open-source Julia package and is publicly available at https://github.com/sungsik-kong/PhyNEST.jl.

虽然系统发育对理解物种如何进化至关重要,但系统发育并不能充分描述某些进化过程。例如,杂交是两个物种杂交导致形成新物种的常见现象,必须用系统发育网络来描述,这种结构通过允许两个分支合并成一个分支来修改系统发育树,从而形成网状结构。然而,随着数据集规模和/或拓扑复杂性的增加,现有的网络估算方法计算成本变得非常昂贵。尽管越来越多的证据表明杂交在自然界中经常发生,但缺乏可扩展的推断方法阻碍了系统发生网络在实践中的广泛应用。在这里,我们提出了一种名为 PhyNEST(使用 SiTe 模式的系统发生网络估算)的新方法,它可以直接从序列数据中估算出具有固定的、用户指定的网状结构数量的二元一级系统发生网络。通过使用复合似然作为推断的基础,PhyNEST 能够以计算简单的方式使用完整的基因组数据,而无需在网络估算之前将数据归纳为一组基因树。为了搜索网络空间,PhyNEST 采用了爬山算法和模拟退火算法。PhyNEST 假设数据由独立的聚合位点组成,这些位点根据 Jukes-Cantor 替换模型进化,网络的有效种群规模恒定。模拟研究表明,PhyNEST 往往比现有的两种复合似然总结方法(SNaQ 和 PhyloNet)更准确,而且它至少对一种形式的模型错误规范(假设核苷酸替换模型没有真正的生成模型那么复杂)具有鲁棒性。我们应用 PhyNEST 重建了 Heliconius 蝴蝶和 Papionini 灵长类动物之间的进化关系,这两种动物分别具有杂交物种和大范围内生的特点。PhyNEST 是在开源的 Julia 软件包中实现的,可在 https://github.com/sungsik-kong/PhyNEST.jl 上公开获取。
{"title":"Inference of Phylogenetic Networks from Sequence Data using Composite Likelihood.","authors":"Sungsik Kong, David L Swofford, Laura S Kubatko","doi":"10.1093/sysbio/syae054","DOIUrl":"https://doi.org/10.1093/sysbio/syae054","url":null,"abstract":"<p><p>While phylogenies have been essential in understanding how species evolve, they do not adequately describe some evolutionary processes. For instance, hybridization, a common phenomenon where interbreeding between two species leads to formation of a new species, must be depicted by a phylogenetic network, a structure that modifies a phylogenetic tree by allowing two branches to merge into one, resulting in reticulation. However, existing methods for estimating networks become computationally expensive as the dataset size and/or topological complexity increase. The lack of methods for scalable inference hampers phylogenetic networks from being widely used in practice, despite accumulating evidence that hybridization occurs frequently in nature. Here, we propose a novel method, PhyNEST (Phylogenetic Network Estimation using SiTe patterns), that estimates binary, level-1 phylogenetic networks with a fixed, user-specified number of reticulations directly from sequence data. By using the composite likelihood as the basis for inference, PhyNEST is able to use the full genomic data in a computationally tractable manner, eliminating the need to summarize the data as a set of gene trees prior to network estimation. To search network space, PhyNEST implements both hill climbing and simulated annealing algorithms. PhyNEST assumes that the data are composed of coalescent independent sites that evolve according to the Jukes-Cantor substitution model and that the network has a constant effective population size. Simulation studies demonstrate that PhyNEST is often more accurate than two existing composite likelihood summary methods (SNaQ and PhyloNet) and that it is robust to at least one form of model misspecification (assuming a less complex nucleotide substitution model than the true generating model). We applied PhyNEST to reconstruct the evolutionary relationships among Heliconius butterflies and Papionini primates, characterized by hybrid speciation and widespread introgression, respectively. PhyNEST is implemented in an open-source Julia package and is publicly available at https://github.com/sungsik-kong/PhyNEST.jl.</p>","PeriodicalId":22120,"journal":{"name":"Systematic Biology","volume":" ","pages":""},"PeriodicalIF":6.1,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142401387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessing the Adequacy of Morphological Models using Posterior Predictive Simulations 利用后验预测模拟评估形态学模型的适当性
IF 6.5 1区 生物学 Q1 EVOLUTIONARY BIOLOGY Pub Date : 2024-10-07 DOI: 10.1093/sysbio/syae055
Laura P A Mulvey, Michael R May, Jeremy M Brown, Sebastian Höhna, April M Wright, Rachel C M Warnock
Reconstructing the evolutionary history of different groups of organisms provides insight into how life originated and diversified on Earth. Phylogenetic trees are commonly used to estimate this evolutionary history. Within Bayesian phylogenetics a major step in estimating a tree is in choosing an appropriate model of character evolution. While the most common character data used is molecular sequence data, morphological data remains a vital source of information. The use of morphological characters allows for the incorporation fossil taxa, and despite advances in molecular sequencing, continues to play a significant role in neontology. Moreover, it is the main data source that allows us to unite extinct and extant taxa directly under the same generating process. We therefore require suitable models of morphological character evolution, the most common being the Mk Lewis model. While it is frequently used in both palaeobiology and neontology, it is not known whether the simple Mk substitution model, or any extensions to it, provide a sufficiently good description of the process of morphological evolution. In this study we investigate the impact of different morphological models on empirical tetrapod data sets. Specifically, we compare unpartitioned Mk models with those where characters are partitioned by the number of observed states, both with and without allowing for rate variation across sites and accounting for ascertainment bias. We show that the choice of substitution model has an impact on both topology and branch lengths, highlighting the importance of model choice. Through simulations, we validate the use of the model adequacy approach, posterior predictive simulations, for choosing an appropriate model. Additionally, we compare the performance of model adequacy with Bayesian model selection. We demonstrate how model selection approaches based on marginal likelihoods are not appropriate for choosing between models with partition schemes that vary in character state space (i.e., that vary in Q-matrix state size). Using posterior predictive simulations, we found that current variations of the Mk model are often performing adequately in capturing the evolutionary dynamics that generated our data. We do not find any preference for a particular model extension across multiple data sets, indicating that there is no ‘one size fits all’ when it comes to morphological data and that careful consideration should be given to choosing models of discrete character evolution. By using suitable models of character evolution, we can increase our confidence in our phylogenetic estimates, which should in turn allow us to gain more accurate insights into the evolutionary history of both extinct and extant taxa.
重建不同生物类群的进化史有助于深入了解生命如何在地球上起源和多样化。系统发生树通常用于估算这种进化历史。在贝叶斯系统发育学中,估计系统树的一个主要步骤是选择一个合适的特征进化模型。虽然最常用的特征数据是分子序列数据,但形态数据仍然是重要的信息来源。使用形态特征可以纳入化石类群,尽管分子测序技术在不断进步,但形态特征在新生物学中仍然发挥着重要作用。此外,它也是使我们能够将已灭绝类群和现生类群直接整合到同一生成过程中的主要数据来源。因此,我们需要合适的形态特征演化模型,最常见的是 Mk Lewis 模型。虽然该模型在古生物学和新生物学中经常被使用,但简单的 Mk 替换模型或其扩展模型是否能对形态演化过程提供足够好的描述还不得而知。在本研究中,我们研究了不同形态模型对四足动物经验数据集的影响。具体来说,我们比较了未分区的 Mk 模型和按观察到的状态数量对特征进行分区的模型,既考虑到了不同位点的速率变化,也考虑到了确定偏差。我们发现,替代模型的选择对拓扑结构和分支长度都有影响,这突出了模型选择的重要性。通过模拟,我们验证了使用模型充分性方法--后验预测模拟--来选择合适的模型。此外,我们还比较了模型充分性与贝叶斯模型选择的性能。我们证明了基于边际似然的模型选择方法如何不适合在具有不同特征状态空间(即不同 Q 矩阵状态大小)的分区方案的模型之间进行选择。通过后验预测模拟,我们发现 Mk 模型的当前变体往往能充分捕捉到产生数据的进化动态。在多个数据集中,我们没有发现对某一特定模型扩展的偏好,这表明在形态学数据方面没有 "一刀切 "的做法,在选择离散特征演化模型时应慎重考虑。通过使用合适的特征演化模型,我们可以提高系统发生学估计的可信度,从而使我们能够更准确地了解已灭绝类群和现生类群的演化历史。
{"title":"Assessing the Adequacy of Morphological Models using Posterior Predictive Simulations","authors":"Laura P A Mulvey, Michael R May, Jeremy M Brown, Sebastian Höhna, April M Wright, Rachel C M Warnock","doi":"10.1093/sysbio/syae055","DOIUrl":"https://doi.org/10.1093/sysbio/syae055","url":null,"abstract":"Reconstructing the evolutionary history of different groups of organisms provides insight into how life originated and diversified on Earth. Phylogenetic trees are commonly used to estimate this evolutionary history. Within Bayesian phylogenetics a major step in estimating a tree is in choosing an appropriate model of character evolution. While the most common character data used is molecular sequence data, morphological data remains a vital source of information. The use of morphological characters allows for the incorporation fossil taxa, and despite advances in molecular sequencing, continues to play a significant role in neontology. Moreover, it is the main data source that allows us to unite extinct and extant taxa directly under the same generating process. We therefore require suitable models of morphological character evolution, the most common being the Mk Lewis model. While it is frequently used in both palaeobiology and neontology, it is not known whether the simple Mk substitution model, or any extensions to it, provide a sufficiently good description of the process of morphological evolution. In this study we investigate the impact of different morphological models on empirical tetrapod data sets. Specifically, we compare unpartitioned Mk models with those where characters are partitioned by the number of observed states, both with and without allowing for rate variation across sites and accounting for ascertainment bias. We show that the choice of substitution model has an impact on both topology and branch lengths, highlighting the importance of model choice. Through simulations, we validate the use of the model adequacy approach, posterior predictive simulations, for choosing an appropriate model. Additionally, we compare the performance of model adequacy with Bayesian model selection. We demonstrate how model selection approaches based on marginal likelihoods are not appropriate for choosing between models with partition schemes that vary in character state space (i.e., that vary in Q-matrix state size). Using posterior predictive simulations, we found that current variations of the Mk model are often performing adequately in capturing the evolutionary dynamics that generated our data. We do not find any preference for a particular model extension across multiple data sets, indicating that there is no ‘one size fits all’ when it comes to morphological data and that careful consideration should be given to choosing models of discrete character evolution. By using suitable models of character evolution, we can increase our confidence in our phylogenetic estimates, which should in turn allow us to gain more accurate insights into the evolutionary history of both extinct and extant taxa.","PeriodicalId":22120,"journal":{"name":"Systematic Biology","volume":"54 1","pages":""},"PeriodicalIF":6.5,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142384288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phylogenomics of Bivalvia Using Ultraconserved Elements (UCEs) Reveal New Topologies for Pteriomorphia and Imparidentia. 使用超保守元素(UCEs)的双壳类系统发生组学揭示了翼手目和翼手目的新拓扑结构。
IF 6.1 1区 生物学 Q1 EVOLUTIONARY BIOLOGY Pub Date : 2024-09-16 DOI: 10.1093/sysbio/syae052
Yi-Xuan Li, Jack Chi-Ho Ip, Chong Chen, Ting Xu, Qian Zhang, Yanan Sun, Pei-Zhen Ma, Jian-Wen Qiu

Despite significant advances in phylogenetics over the past decades, the deep relationships within Bivalvia (phylum Mollusca) remain inconclusive. Previous efforts based on morphology or several genes have failed to resolve many key nodes in the phylogeny of Bivalvia. Advances have been made recently using transcriptome data, but the phylogenetic relationships within Bivalvia historically lacked consensus, especially within Pteriomorphia and Imparidentia. Here, we inferred the relationships of key lineages within Bivalvia using matrices generated from specifically designed ultraconserved elements (UCEs) with 16 available genomic resources and 85 newly sequenced specimens from 55 families. Our new probes (Bivalve UCE 2k v.1) for target sequencing captured an average of 849 UCEs with 1085-bp in mean length from in vitro experiments. Our results introduced novel schemes from six major clades (Protobranchina, Pteriomorphia, Palaeoheterodonta, Archiheterodonta, Anomalodesmata and Imparidentia), though some inner nodes were poorly resolved, such as paraphyletic Heterodonta in some topologies potentially due to insufficient taxon sampling. The resolution increased when analyzing specific matrices for Pteriomorphia and Imparidentia. We recovered three Pteriomorphia topologies different from previously published trees, with the strongest support for ((Ostreida + (Arcida + Mytilida)) + (Pectinida + (Limida + Pectinida))). Limida were nested within Pectinida, warranting further studies. For Imparidentia, our results strongly supported the new hypothesis of (Galeommatida + (Adapedonta + Cardiida)), while the possible non-monophyly of Lucinida was inferred but poorly supported. Overall, our results provide important insights into the phylogeny of Bivalvia and show that target enrichment sequencing of UCEs can be broadly applied to study both deep and shallow phylogenetic relationships.

尽管过去几十年来系统发生学取得了重大进展,但双壳纲动物(软体动物门)内部的深层关系仍未确定。以前基于形态学或几个基因的研究未能解决双壳纲系统发育中的许多关键节点。最近,利用转录组数据的研究取得了进展,但双壳纲的系统发育关系历来缺乏共识,尤其是翼手目(Pteriomorphia)和栉水母目(Imparidentia)的系统发育关系。在此,我们利用专门设计的超保守元素(UCEs)矩阵,结合 16 个可用的基因组资源和 55 个科的 85 个新测序标本,推断了双壳纲内关键种系的关系。我们用于目标测序的新探针(Bivalve UCE 2k v.1)从体外实验中平均捕获了 849 个 UCE,平均长度为 1085-bp。我们的研究结果引入了来自六个主要支系(原枝目、翼手目、古翼手目、古翼手目、无尾目和无尾目)的新方案,但一些内部节点的解析度较低,如一些拓扑结构中的旁支系异齿目(Heterodonta),这可能是由于分类群取样不足造成的。在分析翼手目和翼手目的特定矩阵时,分辨率有所提高。我们发现了三种不同于以前发表的翼手目拓扑结构,其中((Ostreida + (Arcida + Mytilida)) + (Pectinida + (Limida + Pectinida))支持度最高。)Limida 嵌套在 Pectinida 中,值得进一步研究。对于无尾目(Imparidentia),我们的结果有力地支持了(Galeommatida + (Adapedonta + Cardiida))的新假说,而推断出了 Lucinida 的可能非单系,但支持度不高。总之,我们的研究结果为双壳纲的系统发育提供了重要的见解,并表明 UCEs 的目标富集测序可广泛应用于研究深层和浅层的系统发育关系。
{"title":"Phylogenomics of Bivalvia Using Ultraconserved Elements (UCEs) Reveal New Topologies for Pteriomorphia and Imparidentia.","authors":"Yi-Xuan Li, Jack Chi-Ho Ip, Chong Chen, Ting Xu, Qian Zhang, Yanan Sun, Pei-Zhen Ma, Jian-Wen Qiu","doi":"10.1093/sysbio/syae052","DOIUrl":"https://doi.org/10.1093/sysbio/syae052","url":null,"abstract":"<p><p>Despite significant advances in phylogenetics over the past decades, the deep relationships within Bivalvia (phylum Mollusca) remain inconclusive. Previous efforts based on morphology or several genes have failed to resolve many key nodes in the phylogeny of Bivalvia. Advances have been made recently using transcriptome data, but the phylogenetic relationships within Bivalvia historically lacked consensus, especially within Pteriomorphia and Imparidentia. Here, we inferred the relationships of key lineages within Bivalvia using matrices generated from specifically designed ultraconserved elements (UCEs) with 16 available genomic resources and 85 newly sequenced specimens from 55 families. Our new probes (Bivalve UCE 2k v.1) for target sequencing captured an average of 849 UCEs with 1085-bp in mean length from in vitro experiments. Our results introduced novel schemes from six major clades (Protobranchina, Pteriomorphia, Palaeoheterodonta, Archiheterodonta, Anomalodesmata and Imparidentia), though some inner nodes were poorly resolved, such as paraphyletic Heterodonta in some topologies potentially due to insufficient taxon sampling. The resolution increased when analyzing specific matrices for Pteriomorphia and Imparidentia. We recovered three Pteriomorphia topologies different from previously published trees, with the strongest support for ((Ostreida + (Arcida + Mytilida)) + (Pectinida + (Limida + Pectinida))). Limida were nested within Pectinida, warranting further studies. For Imparidentia, our results strongly supported the new hypothesis of (Galeommatida + (Adapedonta + Cardiida)), while the possible non-monophyly of Lucinida was inferred but poorly supported. Overall, our results provide important insights into the phylogeny of Bivalvia and show that target enrichment sequencing of UCEs can be broadly applied to study both deep and shallow phylogenetic relationships.</p>","PeriodicalId":22120,"journal":{"name":"Systematic Biology","volume":" ","pages":""},"PeriodicalIF":6.1,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142295902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The limits of the metapopulation: Lineage fragmentation in a widespread terrestrial salamander (Plethodon cinereus) 元种群的极限:一种广泛分布的陆生蝾螈(Plethodon cinereus)的种系破碎现象
IF 6.5 1区 生物学 Q1 EVOLUTIONARY BIOLOGY Pub Date : 2024-09-09 DOI: 10.1093/sysbio/syae053
Brian P Waldron, Emily F Watts, Donald J Morgan, Maggie M Hantak, Alan R Lemmon, Emily Moriarty Lemmon, Shawn R Kuchta
In vicariant species formation, divergence results primarily from periods of allopatry and restricted gene flow. Widespread species harboring differentiated, geographically distinct sublineages offer a window into what may be a common mode of species formation, whereby a species originates, spreads across the landscape, then fragments into multiple units. However, incipient lineages usually lack reproductive barriers that prevent their fusion upon secondary contact, blurring the boundaries between a single, large metapopulation-level lineage and multiple independent species. Here we explore this model of species formation in the Eastern Red-backed Salamander (Plethodon cinereus), a widespread terrestrial vertebrate with at least six divergent mitochondrial clades throughout its range. Using anchored hybrid enrichment data, we applied phylogenomic and population genomic approaches to investigate patterns of divergence, gene flow, and secondary contact. Genomic data broadly match most mitochondrial groups but reveal mitochondrial introgression and extensive admixture at several contact zones. While species delimitation analyses in BPP supported five lineages of P. cinereus, genealogical divergence indices (gdi) were highly sensitive to the inclusion of admixed samples and the geographic representation of candidate species, with increasing support for multiple species when removing admixed samples or limiting sampling to a single locality per group. An analysis of morphometric data revealed differences in body size and limb proportions among groups, with a reduction of forelimb length among warmer and drier localities consistent with increased fossoriality. We conclude that P. cinereus is a single species, but one with highly structured component lineages of various degrees of independence.
在近缘物种的形成过程中,分化主要是由异源繁殖和基因流动受限造成的。广泛分布的物种蕴藏着不同的、地理上截然不同的亚系,这为我们了解物种形成的常见模式提供了一个窗口。然而,初生亚系通常缺乏生殖障碍,无法在二次接触时进行融合,从而模糊了单一大型元种群级亚系与多个独立物种之间的界限。在这里,我们探讨了东红背大鲵(Plethodon cinereus)物种形成的这一模式,东红背大鲵是一种广泛分布的陆生脊椎动物,在其整个分布区至少有六个线粒体支系。利用锚定杂交富集数据,我们应用系统发生组和种群基因组方法研究了分化、基因流和二次接触的模式。基因组数据与大多数线粒体群大体吻合,但也揭示了几个接触区的线粒体引入和广泛混杂。虽然 BPP 中的物种划分分析支持 P. cinereus 的五个系,但系谱分异指数(gdi)对是否包含混杂样本和候选物种的地理代表性高度敏感,当去除混杂样本或将取样限制在每个组的单一地点时,对多个物种的支持度会增加。对形态计量数据的分析表明,各组之间的体型和肢体比例存在差异,在温暖和干燥的地方,前肢长度缩短,这与穴居性增加一致。我们的结论是,P. cinereus 是一个单一的物种,但具有不同独立程度的高度结构化的组成品系。
{"title":"The limits of the metapopulation: Lineage fragmentation in a widespread terrestrial salamander (Plethodon cinereus)","authors":"Brian P Waldron, Emily F Watts, Donald J Morgan, Maggie M Hantak, Alan R Lemmon, Emily Moriarty Lemmon, Shawn R Kuchta","doi":"10.1093/sysbio/syae053","DOIUrl":"https://doi.org/10.1093/sysbio/syae053","url":null,"abstract":"In vicariant species formation, divergence results primarily from periods of allopatry and restricted gene flow. Widespread species harboring differentiated, geographically distinct sublineages offer a window into what may be a common mode of species formation, whereby a species originates, spreads across the landscape, then fragments into multiple units. However, incipient lineages usually lack reproductive barriers that prevent their fusion upon secondary contact, blurring the boundaries between a single, large metapopulation-level lineage and multiple independent species. Here we explore this model of species formation in the Eastern Red-backed Salamander (Plethodon cinereus), a widespread terrestrial vertebrate with at least six divergent mitochondrial clades throughout its range. Using anchored hybrid enrichment data, we applied phylogenomic and population genomic approaches to investigate patterns of divergence, gene flow, and secondary contact. Genomic data broadly match most mitochondrial groups but reveal mitochondrial introgression and extensive admixture at several contact zones. While species delimitation analyses in BPP supported five lineages of P. cinereus, genealogical divergence indices (gdi) were highly sensitive to the inclusion of admixed samples and the geographic representation of candidate species, with increasing support for multiple species when removing admixed samples or limiting sampling to a single locality per group. An analysis of morphometric data revealed differences in body size and limb proportions among groups, with a reduction of forelimb length among warmer and drier localities consistent with increased fossoriality. We conclude that P. cinereus is a single species, but one with highly structured component lineages of various degrees of independence.","PeriodicalId":22120,"journal":{"name":"Systematic Biology","volume":"63 1","pages":""},"PeriodicalIF":6.5,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142160434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dating in the Dark: Elevated Substitution Rates in Cave Cockroaches (Blattodea: Nocticolidae) Have Negative Impacts on Molecular Date Estimates. 黑暗中的约会:洞穴蟑螂(Blattodea: Nocticolidae)的替代率升高对分子日期估计有负面影响。
IF 6.1 1区 生物学 Q1 EVOLUTIONARY BIOLOGY Pub Date : 2024-09-05 DOI: 10.1093/sysbio/syae002
Toby G L Kovacs, James Walker, Simon Hellemans, Thomas Bourguignon, Nikolai J Tatarnic, Jane M McRae, Simon Y W Ho, Nathan Lo

Rates of nucleotide substitution vary substantially across the Tree of Life, with potentially confounding effects on phylogenetic and evolutionary analyses. A large acceleration in mitochondrial substitution rate occurs in the cockroach family Nocticolidae, which predominantly inhabit subterranean environments. To evaluate the impacts of this among-lineage rate heterogeneity on estimates of phylogenetic relationships and evolutionary timescales, we analyzed nuclear ultraconserved elements (UCEs) and mitochondrial genomes from nocticolids and other cockroaches. Substitution rates were substantially elevated in nocticolid lineages compared with other cockroaches, especially in mitochondrial protein-coding genes. This disparity in evolutionary rates is likely to have led to different evolutionary relationships being supported by phylogenetic analyses of mitochondrial genomes and UCE loci. Furthermore, Bayesian dating analyses using relaxed-clock models inferred much deeper divergence times compared with a flexible local clock. Our phylogenetic analysis of UCEs, which is the first genome-scale study to include all 13 major cockroach families, unites Corydiidae and Nocticolidae and places Anaplectidae as the sister lineage to the rest of Blattoidea. We uncover an extraordinary level of genetic divergence in Nocticolidae, including two highly distinct clades that separated ~115 million years ago despite both containing representatives of the genus Nocticola. The results of our study highlight the potential impacts of high among-lineage rate variation on estimates of phylogenetic relationships and evolutionary timescales.

生命之树上的核苷酸替换率差异很大,可能会对系统发育和进化分析产生混淆影响。在主要栖息于地下环境的蟑螂科(Nocticolidae)中,线粒体替代率出现了大幅加速。为了评估这种线粒体间比率异质性对系统发生关系和进化时间尺度估计的影响,我们分析了蜚蠊科和其他蜚蠊的核超保原(UCE)和线粒体基因组。与其他蟑螂相比,北极蠊种系的替代率大幅提高,尤其是线粒体蛋白编码基因。这种进化速度上的差异很可能导致线粒体基因组和 UCE 位点的系统进化分析支持不同的进化关系。此外,与灵活的局部时钟相比,使用松弛时钟模型进行的贝叶斯年代学分析推断出了更深的分化时间。我们的 UCE 系统发育分析是首次包括所有 13 个主要蟑螂科的基因组规模的研究,它将 Corydiidae 和 Nocticolidae 结合在一起,并将 Anaplectidae 视为 Blattoidea 其他科的姊妹系。我们发现蜚蠊科的遗传分化程度非常高,其中包括两个高度不同的支系,尽管这两个支系都包含蜚蠊属的代表,但它们在大约 1.15 亿年前就已经分开了。我们的研究结果凸显了不同品系之间的高比率差异对系统发生关系和进化时间尺度估计的潜在影响。
{"title":"Dating in the Dark: Elevated Substitution Rates in Cave Cockroaches (Blattodea: Nocticolidae) Have Negative Impacts on Molecular Date Estimates.","authors":"Toby G L Kovacs, James Walker, Simon Hellemans, Thomas Bourguignon, Nikolai J Tatarnic, Jane M McRae, Simon Y W Ho, Nathan Lo","doi":"10.1093/sysbio/syae002","DOIUrl":"10.1093/sysbio/syae002","url":null,"abstract":"<p><p>Rates of nucleotide substitution vary substantially across the Tree of Life, with potentially confounding effects on phylogenetic and evolutionary analyses. A large acceleration in mitochondrial substitution rate occurs in the cockroach family Nocticolidae, which predominantly inhabit subterranean environments. To evaluate the impacts of this among-lineage rate heterogeneity on estimates of phylogenetic relationships and evolutionary timescales, we analyzed nuclear ultraconserved elements (UCEs) and mitochondrial genomes from nocticolids and other cockroaches. Substitution rates were substantially elevated in nocticolid lineages compared with other cockroaches, especially in mitochondrial protein-coding genes. This disparity in evolutionary rates is likely to have led to different evolutionary relationships being supported by phylogenetic analyses of mitochondrial genomes and UCE loci. Furthermore, Bayesian dating analyses using relaxed-clock models inferred much deeper divergence times compared with a flexible local clock. Our phylogenetic analysis of UCEs, which is the first genome-scale study to include all 13 major cockroach families, unites Corydiidae and Nocticolidae and places Anaplectidae as the sister lineage to the rest of Blattoidea. We uncover an extraordinary level of genetic divergence in Nocticolidae, including two highly distinct clades that separated ~115 million years ago despite both containing representatives of the genus Nocticola. The results of our study highlight the potential impacts of high among-lineage rate variation on estimates of phylogenetic relationships and evolutionary timescales.</p>","PeriodicalId":22120,"journal":{"name":"Systematic Biology","volume":" ","pages":"532-545"},"PeriodicalIF":6.1,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11377191/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139698361","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phylogenomics of Neogastropoda: The Backbone Hidden in the Bush. 新腹足纲的系统发生组学:隐藏在灌木丛中的骨干。
IF 6.1 1区 生物学 Q1 EVOLUTIONARY BIOLOGY Pub Date : 2024-09-05 DOI: 10.1093/sysbio/syae010
Alexander E Fedosov, Paul Zaharias, Thomas Lemarcis, Maria Vittoria Modica, Mandë Holford, Marco Oliverio, Yuri I Kantor, Nicolas Puillandre

The molluskan order Neogastropoda encompasses over 15,000 almost exclusively marine species playing important roles in benthic communities and in the economies of coastal countries. Neogastropoda underwent intensive cladogenesis in the early stages of diversification, generating a "bush" at the base of their evolutionary tree, which has been hard to resolve even with high throughput molecular data. In the present study to resolve the bush, we use a variety of phylogenetic inference methods and a comprehensive exon capture dataset of 1817 loci (79.6% data occupancy) comprising 112 taxa of 48 out of 60 Neogastropoda families. Our results show consistent topologies and high support in all analyses at (super)family level, supporting monophyly of Muricoidea, Mitroidea, Conoidea, and, with some reservations, Olivoidea and Buccinoidea. Volutoidea and Turbinelloidea as currently circumscribed are clearly paraphyletic. Despite our analyses consistently resolving most backbone nodes, 3 prove problematic: First, the uncertain placement of Cancellariidae, as the sister group to either a Ficoidea-Tonnoidea clade or to the rest of Neogastropoda, leaves monophyly of Neogastropoda unresolved. Second, relationships are contradictory at the base of the major "core Neogastropoda" grouping. Third, coalescence-based analyses reject monophyly of the Buccinoidea in relation to Vasidae. We analyzed phylogenetic signal of targeted loci in relation to potential biases, and we propose the most probable resolutions in the latter 2 recalcitrant nodes. The uncertain placement of Cancellariidae may be explained by orthology violations due to differential paralog loss shortly after the whole genome duplication, which should be resolved with a curated set of longer loci.

软体动物新腹足纲(Neogastropoda)包括 15,000 多个几乎完全属于海洋的物种,它们在底栖动物群落和沿海国家的经济中发挥着重要作用。新腹足纲在多样化的早期阶段经历了密集的支系发生,在其进化树的基部产生了一个 "灌木丛",即使有高通量的分子数据也很难解决这个问题。在本研究中,我们使用了多种系统发生推断方法和一个包含 1,817 个位点(数据占有率为 79.6%)的全面外显子捕获数据集,包括 60 个新腹足目科属中 48 个科属的 112 个类群,以解决这个灌木丛的问题。我们的结果表明,在(超)科一级的所有分析中,拓扑结构一致,支持率高,支持 Muricoidea、Mitroidea、Conoidea 的单系,以及 Olivoidea 和 Buccinoidea 的单系(有一些保留)。目前划分的涡虫纲(Volutoidea)和涡虫纲(Turbinelloidea)显然属于旁系。尽管我们的分析一直在解决大多数骨干节点的问题,但有三个节点证明是有问题的:首先,巨蟹目(Cancellariidae)作为蝶形目-盾形目(Ficoidea-Tonnoidea)支系或新腹足纲(Neogastropoda)其他支系的姐妹群的位置不确定,使得新腹足纲(Neogastropoda)的单系性悬而未决。其次,在 "核心新腹足纲 "主要类群的基部,各种关系相互矛盾。第三,基于聚合的分析否定了与瓣鳃亚目(Vasidae)相关的瓣鳃亚目(Buccinoidea)的单系性。我们分析了目标位点的系统发生信号与潜在偏差的关系,并提出了后两个难以解决的节点的最可能的解决方案。巨嘴鸟科的位置不确定可能是由于全基因组复制后不久因不同的旁系丢失而造成的违反系统发育规律的现象,而这一问题应通过一组较长的基因位点来解决。
{"title":"Phylogenomics of Neogastropoda: The Backbone Hidden in the Bush.","authors":"Alexander E Fedosov, Paul Zaharias, Thomas Lemarcis, Maria Vittoria Modica, Mandë Holford, Marco Oliverio, Yuri I Kantor, Nicolas Puillandre","doi":"10.1093/sysbio/syae010","DOIUrl":"10.1093/sysbio/syae010","url":null,"abstract":"<p><p>The molluskan order Neogastropoda encompasses over 15,000 almost exclusively marine species playing important roles in benthic communities and in the economies of coastal countries. Neogastropoda underwent intensive cladogenesis in the early stages of diversification, generating a \"bush\" at the base of their evolutionary tree, which has been hard to resolve even with high throughput molecular data. In the present study to resolve the bush, we use a variety of phylogenetic inference methods and a comprehensive exon capture dataset of 1817 loci (79.6% data occupancy) comprising 112 taxa of 48 out of 60 Neogastropoda families. Our results show consistent topologies and high support in all analyses at (super)family level, supporting monophyly of Muricoidea, Mitroidea, Conoidea, and, with some reservations, Olivoidea and Buccinoidea. Volutoidea and Turbinelloidea as currently circumscribed are clearly paraphyletic. Despite our analyses consistently resolving most backbone nodes, 3 prove problematic: First, the uncertain placement of Cancellariidae, as the sister group to either a Ficoidea-Tonnoidea clade or to the rest of Neogastropoda, leaves monophyly of Neogastropoda unresolved. Second, relationships are contradictory at the base of the major \"core Neogastropoda\" grouping. Third, coalescence-based analyses reject monophyly of the Buccinoidea in relation to Vasidae. We analyzed phylogenetic signal of targeted loci in relation to potential biases, and we propose the most probable resolutions in the latter 2 recalcitrant nodes. The uncertain placement of Cancellariidae may be explained by orthology violations due to differential paralog loss shortly after the whole genome duplication, which should be resolved with a curated set of longer loci.</p>","PeriodicalId":22120,"journal":{"name":"Systematic Biology","volume":" ","pages":"521-531"},"PeriodicalIF":6.1,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11377187/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140060479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Rediscovery of a Relict Unlocks the First Global Phylogeny of Whip Spiders (Amblypygi). 重新发现的一个遗迹解开了鞭蜘蛛(Amblypygi)的第一个全球系统发育过程。
IF 6.1 1区 生物学 Q1 EVOLUTIONARY BIOLOGY Pub Date : 2024-09-05 DOI: 10.1093/sysbio/syae021
Gustavo S de Miranda, Siddharth S Kulkarni, Jéssica Tagliatela, Caitlin M Baker, Alessandro P L Giupponi, Facundo M Labarque, Efrat Gavish-Regev, Michael G Rix, Leonardo S Carvalho, Lívia Maria Fusari, Mark S Harvey, Hannah M Wood, Prashant P Sharma

Asymmetrical rates of cladogenesis and extinction abound in the tree of life, resulting in numerous minute clades that are dwarfed by larger sister groups. Such taxa are commonly regarded as phylogenetic relicts or "living fossils" when they exhibit an ancient first appearance in the fossil record and prolonged external morphological stasis, particularly in comparison to their more diversified sister groups. Due to their special status, various phylogenetic relicts tend to be well-studied and prioritized for conservation. A notable exception to this trend is found within Amblypygi ("whip spiders"), a visually striking order of functionally hexapodous arachnids that are notable for their antenniform first walking leg pair (the eponymous "whips"). Paleoamblypygi, the putative sister group to the remaining Amblypygi, is known from Late Carboniferous and Eocene deposits but is survived by a single living species, Paracharon caecusHansen (1921), that was last collected in 1899. Due to the absence of genomic sequence-grade tissue for this vital taxon, there is no global molecular phylogeny for Amblypygi to date, nor a fossil-calibrated estimation of divergences within the group. Here, we report a previously unknown species of Paleoamblypygi from a cave site in Colombia. Capitalizing upon this discovery, we generated the first molecular phylogeny of Amblypygi, integrating ultraconserved element sequencing with legacy Sanger datasets and including described extant genera. To quantify the impact of sampling Paleoamblypygi on divergence time estimation, we performed in silico experiments with pruning of Paracharon. We demonstrate that the omission of relicts has a significant impact on the accuracy of node dating approaches that outweighs the impact of excluding ingroup fossils, which bears upon the ancestral range reconstruction for the group. Our results underscore the imperative for biodiversity discovery efforts in elucidating the phylogenetic relationships of "dark taxa," and especially phylogenetic relicts in tropical and subtropical habitats. The lack of reciprocal monophyly for Charontidae and Charinidae leads us to subsume them into one family, Charontidae, new synonymy.

在生命之树上,不对称的类群发生率和灭绝率比比皆是,这就造成了许多微小类群在较大的姊妹类群面前相形见绌。这类类群通常被视为系统发育遗迹或 "活化石",因为它们首次出现在化石记录中的时间较早,而且外部形态长期处于停滞状态,特别是与其更多样化的姊妹类群相比。由于它们的特殊地位,各种系统发育遗物往往会得到很好的研究和优先保护。在这一趋势中,Amblypygi("鞭蛛")是一个明显的例外,这是一种具有视觉冲击力的功能性六足蛛形纲,以其触角状的第一对步行腿(同名的 "鞭")而闻名。古amblypygi 是其余 Amblypygi 的姊妹类群,已知于晚石炭世和始新世的沉积物中,但目前仅存 Paracharon caecus Hansen(1921 年)这一个物种,该物种最后一次被采集是在 1899 年。由于缺乏这一重要类群的基因组序列级组织,迄今为止还没有Amblypygi的全球分子系统发生,也没有对该类群内部的分化进行化石校准估算。在这里,我们报告了哥伦比亚一个洞穴遗址中发现的一个以前未知的古囊蝶类物种。利用这一发现,我们整合了超保留元素测序与传统的 Sanger 数据集,并将已描述的现生属纳入其中,首次建立了 Amblypygi 的分子系统发育。为了量化古囊虫采样对分化时间估计的影响,我们对 Paracharon 进行了剪枝硅学实验。我们证明,遗物的遗漏对节点测年方法的准确性有重大影响,其影响超过了排除内群化石的影响,这对该类群祖先分布范围的重建产生了影响。我们的研究结果突出表明,生物多样性发现工作必须阐明 "暗类群 "的系统发育关系,特别是热带和亚热带栖息地的系统发育遗物。夏龙科和夏麟科缺乏互为单系的关系,因此我们将它们归入一个科,即夏龙科(Charontidae),这是新的异名。
{"title":"The Rediscovery of a Relict Unlocks the First Global Phylogeny of Whip Spiders (Amblypygi).","authors":"Gustavo S de Miranda, Siddharth S Kulkarni, Jéssica Tagliatela, Caitlin M Baker, Alessandro P L Giupponi, Facundo M Labarque, Efrat Gavish-Regev, Michael G Rix, Leonardo S Carvalho, Lívia Maria Fusari, Mark S Harvey, Hannah M Wood, Prashant P Sharma","doi":"10.1093/sysbio/syae021","DOIUrl":"10.1093/sysbio/syae021","url":null,"abstract":"<p><p>Asymmetrical rates of cladogenesis and extinction abound in the tree of life, resulting in numerous minute clades that are dwarfed by larger sister groups. Such taxa are commonly regarded as phylogenetic relicts or \"living fossils\" when they exhibit an ancient first appearance in the fossil record and prolonged external morphological stasis, particularly in comparison to their more diversified sister groups. Due to their special status, various phylogenetic relicts tend to be well-studied and prioritized for conservation. A notable exception to this trend is found within Amblypygi (\"whip spiders\"), a visually striking order of functionally hexapodous arachnids that are notable for their antenniform first walking leg pair (the eponymous \"whips\"). Paleoamblypygi, the putative sister group to the remaining Amblypygi, is known from Late Carboniferous and Eocene deposits but is survived by a single living species, Paracharon caecusHansen (1921), that was last collected in 1899. Due to the absence of genomic sequence-grade tissue for this vital taxon, there is no global molecular phylogeny for Amblypygi to date, nor a fossil-calibrated estimation of divergences within the group. Here, we report a previously unknown species of Paleoamblypygi from a cave site in Colombia. Capitalizing upon this discovery, we generated the first molecular phylogeny of Amblypygi, integrating ultraconserved element sequencing with legacy Sanger datasets and including described extant genera. To quantify the impact of sampling Paleoamblypygi on divergence time estimation, we performed in silico experiments with pruning of Paracharon. We demonstrate that the omission of relicts has a significant impact on the accuracy of node dating approaches that outweighs the impact of excluding ingroup fossils, which bears upon the ancestral range reconstruction for the group. Our results underscore the imperative for biodiversity discovery efforts in elucidating the phylogenetic relationships of \"dark taxa,\" and especially phylogenetic relicts in tropical and subtropical habitats. The lack of reciprocal monophyly for Charontidae and Charinidae leads us to subsume them into one family, Charontidae, new synonymy.</p>","PeriodicalId":22120,"journal":{"name":"Systematic Biology","volume":" ","pages":"495-505"},"PeriodicalIF":6.1,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140908807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Random-Effects Substitution Models for Phylogenetics via Scalable Gradient Approximations. 通过可扩展梯度近似为系统发育建立随机效应替代模型
IF 6.1 1区 生物学 Q1 EVOLUTIONARY BIOLOGY Pub Date : 2024-09-05 DOI: 10.1093/sysbio/syae019
Andrew F Magee, Andrew J Holbrook, Jonathan E Pekar, Itzue W Caviedes-Solis, Fredrick A Matsen Iv, Guy Baele, Joel O Wertheim, Xiang Ji, Philippe Lemey, Marc A Suchard

Phylogenetic and discrete-trait evolutionary inference depend heavily on an appropriate characterization of the underlying character substitution process. In this paper, we present random-effects substitution models that extend common continuous-time Markov chain models into a richer class of processes capable of capturing a wider variety of substitution dynamics. As these random-effects substitution models often require many more parameters than their usual counterparts, inference can be both statistically and computationally challenging. Thus, we also propose an efficient approach to compute an approximation to the gradient of the data likelihood with respect to all unknown substitution model parameters. We demonstrate that this approximate gradient enables scaling of sampling-based inference, namely Bayesian inference via Hamiltonian Monte Carlo, under random-effects substitution models across large trees and state-spaces. Applied to a dataset of 583 SARS-CoV-2 sequences, an HKY model with random-effects shows strong signals of nonreversibility in the substitution process, and posterior predictive model checks clearly show that it is a more adequate model than a reversible model. When analyzing the pattern of phylogeographic spread of 1441 influenza A virus (H3N2) sequences between 14 regions, a random-effects phylogeographic substitution model infers that air travel volume adequately predicts almost all dispersal rates. A random-effects state-dependent substitution model reveals no evidence for an effect of arboreality on the swimming mode in the tree frog subfamily Hylinae. Simulations reveal that random-effects substitution models can accommodate both negligible and radical departures from the underlying base substitution model. We show that our gradient-based inference approach is over an order of magnitude more time efficient than conventional approaches.

系统发育和离散性状进化推断在很大程度上取决于对基本性状替换过程的适当描述。在本文中,我们提出了随机效应替代模型,这些模型将常见的连续时间马尔可夫链模型扩展为一类更丰富的过程,能够捕捉到更多的替代动态。由于这些随机效应替代模型所需的参数往往比通常的同类模型多得多,因此推断工作在统计和计算上都具有挑战性。因此,我们还提出了一种高效的方法,用于计算与所有未知替代模型参数相关的数据似然梯度的近似值。我们证明,在大树和状态空间的随机效应替代模型下,这种近似梯度可以扩展基于采样的推断,即通过哈密尔顿蒙特卡洛进行贝叶斯推断。应用于 583 个 SARS-CoV-2 序列的数据集时,随机效应 HKY 模型显示出替换过程中不可逆的强烈信号,后验预测模型检查清楚地表明它是一个比可逆模型更适当的模型。在分析 14 个地区之间 1441 个甲型流感病毒(H3N2)序列的系统地理学传播模式时,随机效应系统地理学替代模型推断航空旅行量能充分预测几乎所有的传播率。随机效应状态依赖替代模型显示,没有证据表明树栖性对树蛙亚科的游泳模式有影响。模拟结果表明,随机效应替代模型可以容纳与基础替代模型的微小偏离或根本偏离。我们的研究表明,与传统方法相比,我们基于梯度的推断方法的时间效率要高出一个数量级。
{"title":"Random-Effects Substitution Models for Phylogenetics via Scalable Gradient Approximations.","authors":"Andrew F Magee, Andrew J Holbrook, Jonathan E Pekar, Itzue W Caviedes-Solis, Fredrick A Matsen Iv, Guy Baele, Joel O Wertheim, Xiang Ji, Philippe Lemey, Marc A Suchard","doi":"10.1093/sysbio/syae019","DOIUrl":"10.1093/sysbio/syae019","url":null,"abstract":"<p><p>Phylogenetic and discrete-trait evolutionary inference depend heavily on an appropriate characterization of the underlying character substitution process. In this paper, we present random-effects substitution models that extend common continuous-time Markov chain models into a richer class of processes capable of capturing a wider variety of substitution dynamics. As these random-effects substitution models often require many more parameters than their usual counterparts, inference can be both statistically and computationally challenging. Thus, we also propose an efficient approach to compute an approximation to the gradient of the data likelihood with respect to all unknown substitution model parameters. We demonstrate that this approximate gradient enables scaling of sampling-based inference, namely Bayesian inference via Hamiltonian Monte Carlo, under random-effects substitution models across large trees and state-spaces. Applied to a dataset of 583 SARS-CoV-2 sequences, an HKY model with random-effects shows strong signals of nonreversibility in the substitution process, and posterior predictive model checks clearly show that it is a more adequate model than a reversible model. When analyzing the pattern of phylogeographic spread of 1441 influenza A virus (H3N2) sequences between 14 regions, a random-effects phylogeographic substitution model infers that air travel volume adequately predicts almost all dispersal rates. A random-effects state-dependent substitution model reveals no evidence for an effect of arboreality on the swimming mode in the tree frog subfamily Hylinae. Simulations reveal that random-effects substitution models can accommodate both negligible and radical departures from the underlying base substitution model. We show that our gradient-based inference approach is over an order of magnitude more time efficient than conventional approaches.</p>","PeriodicalId":22120,"journal":{"name":"Systematic Biology","volume":" ","pages":"562-578"},"PeriodicalIF":6.1,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11498053/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140869958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Systematic Biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1